
The C5 = 42 noncrossing partitions of
a 5-element set (below, the other 10 of
the 52 partitions)

Lattice of the 14 Dyck words of length
8 - ( and ) interpreted as up and down

The associahedron of order 4 with the
C4=14 full binary trees with 5 leaves

The triangles correspond to nodes of
the binary trees.

Figure 1. The
invalid portion of
the path is flipped.
Bad paths reach (n
- 1, n + 1) instead
of (n,n).

Figure 2. A path with
exceedance 5.

Figure 4. All monotonic paths in a 3×3 grid,
illustrating the exceedance-decreasing algorithm.

Catalan numbers in Mingantu's book The Quick Method for Obtaining
the Precise Ratio of Division of a Circle volume III
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In combinatorial mathematics, the Catalan numbers form a
sequence of natural numbers that occur in various counting
problems, often involving recursively-defined objects. They are
named after the Belgian mathematician Eugène Charles Catalan
(1814–1894).

Using zero-based numbering, the nth Catalan number is given
directly in terms of binomial coefficients by

The first Catalan numbers for n = 0, 1, 2, 3, … are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845,
35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640,
343059613650, 1289904147324, 4861946401452, … (sequence A000108 in the OEIS).
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An alternative expression for Cn is

which is equivalent to the expression given above because . This shows that Cn is an
integer, which is not immediately obvious from the first formula given. This expression forms the basis for a
proof of the correctness of the formula.

The Catalan numbers satisfy the recurrence relation

moreover,

This is because  since choosing n numbers from a 2n set of numbers can be uniquely

divided into 2 parts: choosing i numbers out of the first n numbers and then choosing n-i numbers from the
remaining n numbers.

They also satisfy:

which can be a more efficient way to calculate them.

Asymptotically, the Catalan numbers grow as

in the sense that the quotient of the nth Catalan number and the expression on the right tends towards 1 as

n → +∞. Some sources use just .[1] (This can be proved by using Stirling's approximation for n!.)

The only Catalan numbers Cn that are odd are those for which n = 2k − 1. All others are even.

The only prime Catalan numbers are C2 = 2 and C3 = 5.[2]

The Catalan numbers have an integral representation

where  This means that the Catalan numbers are a solution of the Hausdorff moment

problem on the interval [0, 4] instead of [0, 1]. The orthogonal polynomials having the weight function 
on  are

There are many counting problems in combinatorics whose solution is given by the Catalan numbers. The
book Enumerative Combinatorics: Volume 2 by combinatorialist Richard P. Stanley contains a set of
exercises which describe 66 different interpretations of the Catalan numbers. Following are some examples,
with illustrations of the cases C3 = 5 and C4 = 14.

Cn is the number of Dyck words[3] of length 2n. A Dyck word
is a string consisting of n X's and n Y's such that no initial
segment of the string has more Y's than X's. For example, the
following are the Dyck words of length 6:

XXXYYY     XYXXYY     XYXYXY     XXYYXY    
XXYXYY.

Re-interpreting the symbol X as an open parenthesis and Y as
a close parenthesis, Cn counts the number of expressions
containing n pairs of parentheses which are correctly matched:

((()))     ()(())     ()()()     (())()     (()())

Cn is the number of different ways n + 1 factors can be
completely parenthesized (or the number of ways of
associating n applications of a binary operator). For n = 3, for
example, we have the following five different
parenthesizations of four factors:

((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd))

Successive applications of a binary operator can be
represented in terms of a full binary tree. (A rooted binary tree
is full if every vertex has either two children or no children.) It
follows that Cn is the number of full binary trees with n + 1
leaves:

Cn is the number of non-isomorphic ordered trees with n vertices. (An ordered tree is a rooted tree in
which the children of each vertex are given a fixed left-to-right order.)[4]

Cn is the number of monotonic lattice paths along the edges of a grid with n × n square cells, which do
not pass above the diagonal. A monotonic path is one which starts in the lower left corner, finishes in
the upper right corner, and consists entirely of edges pointing rightwards or upwards. Counting such
paths is equivalent to counting Dyck words: X stands for "move right" and Y stands for "move up".

The following diagrams show the case n = 4:

This can be succinctly represented by listing the Catalan elements by column height:[5]

[0,0,0,0][0,0,0,1][0,0,0,2][0,0,1,1]
[0,1,1,1] [0,0,1,2] [0,0,0,3] [0,1,1,2][0,0,2,2][0,0,1,3]

[0,0,2,3][0,1,1,3] [0,1,2,2][0,1,2,3]

Cn is the number of different ways a convex polygon with
n + 2 sides can be cut into triangles by connecting vertices
with straight lines (a form of Polygon triangulation). The
following hexagons illustrate the case n = 4:

Cn is the number of stack-sortable permutations of {1, ..., n}.
A permutation w is called stack-sortable if S(w) = (1, ..., n),
where S(w) is defined recursively as follows: write w = unv
where n is the largest element in w and u and v are shorter
sequences, and set S(w) = S(u)S(v)n, with S being the identity
for one-element sequences. These are the permutations that
avoid the pattern 231.
Cn is the number of permutations of {1, ..., n} that avoid the pattern 123 (or any of the other patterns
of length 3); that is, the number of permutations with no three-term increasing subsequence. For n = 3,
these permutations are 132, 213, 231, 312 and 321. For n = 4, they are 1432, 2143, 2413, 2431, 3142,
3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312 and 4321.
Cn is the number of noncrossing partitions of the set {1, ..., n}. A fortiori, Cn never exceeds the nth
Bell number. Cn is also the number of noncrossing partitions of the set {1, ..., 2n} in which every
block is of size 2. The conjunction of these two facts may be used in a proof by mathematical
induction that all of the free cumulants of degree more than 2 of the Wigner semicircle law are zero.
This law is important in free probability theory and the theory of random matrices.
Cn is the number of ways to tile a stairstep shape of height n with n rectangles. The following figure
illustrates the case n = 4:

Cn is the number of rooted binary trees with n internal nodes (n + 1 leaves or external nodes).
Illustrated in following Figure are the trees corresponding to n = 0,1,2 and 3. There are 1, 1, 2, and 5
respectively. Here, we consider as binary trees those in which each node has zero or two children, and
the internal nodes are those that have children.

Cn is the number of ways to form a “mountain ranges” with n upstrokes and n down-strokes that all
stay above the original line.The mountain range interpretation is that the mountains will never go
below the horizon.

Cn is the number of standard Young tableaux whose diagram is a 2-by-n rectangle. In other words, it is
the number of ways the numbers 1, 2, ..., 2n can be arranged in a 2-by-n rectangle so that each row
and each column is increasing. As such, the formula can be derived as a special case of the
hook-length formula.
Cn is the number of ways that the vertices of a convex 2n-gon can be paired so that the line segments
joining paired vertices do not intersect. This is precisely the condition that guarantees that the paired
edges can be identified (sewn together) to form a closed surface of genus zero (a topological
2-sphere).
Cn is the number of semiorders on n unlabeled items.[6]

In chemical engineering Cn is the number of possible separation sequences which can separate a
mixture of n components.[7]

There are several ways of explaining why the formula

solves the combinatorial problems listed above. The first proof below uses a generating function. The other
proofs are examples of bijective proofs; they involve literally counting a collection of some kind of object to
arrive at the correct formula.

First proof

We first observe that all of the combinatorial problems listed above satisfy Segner's[8] recurrence relation

For example, every Dyck word w of length ≥ 2 can be written in a unique way in the form

w = Xw1Yw2

with (possibly empty) Dyck words w1 and w2.

The generating function for the Catalan numbers is defined by

The two recurrence relations together can then be summarized in generating function form by the relation

in other words, this equation follows from the recurrence relations by expanding both sides into power series.
On the one hand, the recurrence relations uniquely determine the Catalan numbers; on the other hand, the
generating function solution

has a power series at 0 and its coefficients must therefore be the Catalan numbers. The chosen solution
satisfies the following condition.

The other solution has a pole at 0 and this reasoning doesn't apply to it.

The square root term can be expanded as a power series using the identity

This is a special case of Newton's generalized binomial theorem; as with the general theorem, it can be
proved by computing derivatives to produce its Taylor series. Setting y = −4x and substituting this power
series into the expression for c(x) and shifting the summation index n by 1, the expansion simplifies to

The coefficients are now the desired formula for Cn.

Another way to get c(x) is to solve for xc(x) and observe that  appears in each term of the power

series.

Second proof

This proof depends on a trick known as André's reflection method, which was
originally used in connection with Bertrand's ballot theorem. (The reflection principle
has been widely attributed to Désiré André, but his method did not actually use
reflections; and the reflection method is a variation due to Aebly and Mirimanoff.[9])
We count the paths which start and end on the diagonal of the n × n grid. All such
paths have n rightward and n upward steps. Since we can choose which of the 2n steps
are upward (or, equivalently, rightward) ones, there are  total monotonic paths of
this type. A bad path will cross the main diagonal and touch the next higher (fatal)
diagonal (depicted red in the illustration). We flip the portion of the path occurring
after that touch about that fatal diagonal, as illustrated; this geometric operation
amounts to interchanging all the rightward and upward steps after that touch. In the
section of the path that is not reflected, there is one more upward step than rightward
steps, so the remaining section of the bad path has one more rightward than upward
step (because it ends on the main diagonal). When this portion of the path is reflected,
it will also have one more upward step than rightward steps. Since there are still 2n
steps, there must now be n + 1 upward steps and n - 1 rightward steps. So, instead of
reaching the target (n,n), all bad paths (after the portion of the path is reflected) will end in location (n - 1, n
+ 1). As any monotonic path in the n - 1 × n + 1 grid must meet the fatal diagonal, this reflection process sets
up a bijection between the bad paths of the original grid and the monotonic paths of this new grid because
the reflection process is reversible. The number of bad paths is therefore,

and the number of Catalan paths (i.e., good paths) is obtained by removing the number of bad paths from the
total number of monotonic paths of the original grid,

In terms of Dyck words, we start with a (non-Dyck) sequence of n X's and n Y's and interchange all X's and
Y's after the first Y that violates the Dyck condition. At that first Y, there are k + 1 Y's and k X's for some k
between 1 and n - 1.

Third proof

The following bijective proof, while being more involved than the previous one, provides a more natural
explanation for the term n + 1 appearing in the denominator of the formula for Cn. A generalized version of
this proof can be found in a paper of Rukavicka Josef (2011).[10]

Suppose we are given a monotonic path, which may happen to cross the
diagonal. The exceedance of the path is defined to be the number of vertical
edges which lie above the diagonal. For example, in Figure 2, the edges lying
above the diagonal are marked in red, so the exceedance of the path is 5.

Now, if we are given a monotonic path whose exceedance is not zero, then we
may apply the following algorithm to construct a new path whose exceedance is
one less than the one we started with.

Starting from the bottom left, follow the path until it first travels above the
diagonal.
Continue to follow the path until it touches the diagonal again. Denote by
X the first such edge that is reached.
Swap the portion of the path occurring before X with the portion occurring after X.

The following example should make this clearer. In Figure 3, the black dot indicates the point where the path
first crosses the diagonal. The black edge is X, and we swap the red portion with the green portion to make a
new path, shown in the second diagram.

Figure 3. The green and red portions are being exchanged.

Notice that the exceedance has dropped from three to two. In fact, the algorithm will cause the exceedance
to decrease by one, for any path that we feed it, because the first vertical step starting on the diagonal (at the
point marked with a black dot) is the unique vertical edge that under the operation passes from above the
diagonal to below it; all other vertical edges stay on the same side of the diagonal.

It is also not difficult to see that this process is
reversible: given any path P whose exceedance is less
than n, there is exactly one path which yields P when
the algorithm is applied to it. Indeed, the (black) edge
X, which originally was the first horizontal step ending
on the diagonal, has become the last horizontal step
starting on the diagonal.

This implies that the number of paths of exceedance n
is equal to the number of paths of exceedance n − 1,
which is equal to the number of paths of exceedance
n − 2, and so on, down to zero. In other words, we
have split up the set of all monotonic paths into n + 1
equally sized classes, corresponding to the possible
exceedances between 0 and n. Since there are

monotonic paths, we obtain the desired formula

Figure 4 illustrates the situation for n = 3. Each of the 20 possible monotonic paths appears somewhere in
the table. The first column shows all paths of exceedance three, which lie entirely above the diagonal. The
columns to the right show the result of successive applications of the algorithm, with the exceedance
decreasing one unit at a time. There are five rows, that is, C3 = 5.

Fourth proof

This proof uses the triangulation definition of Catalan numbers to establish a relation between Cn and Cn+1.
Given a polygon P with n+ 2 sides, first mark one of its sides as the base. If P is then triangulated, we can
further choose and orient one of its 2n+1 edges. There are (4n+2)Cn such decorated triangulations. Now
given a polygon Q with n+3 sides, again mark one of its sides as the base. If Q is triangulated, we can further
mark one of the sides other than the base side. There are (n+2)Cn+1 such decorated triangulations. Then
there is a simple bijection between these two kinds of decorated triangulations: We can either collapse the
triangle in Q whose side is marked, or in reverse expand the oriented edge in P to a triangle and mark its new
side. Thus

The binomial formula for Cn follows immediately from this relation and the initial condition C1 = 1.

Fifth proof

This proof is based on the Dyck words interpretation of the Catalan numbers, so Cn is the number of ways to
correctly match n pairs of brackets. We denote a (possibly empty) correct string with c and its inverse
(where "[" and "]" are exchanged) with c+. Since any c can be uniquely decomposed into c = [ c1 ] c2,
summing over the possible spots to place the closing bracket immediately gives the recursive definition

Now let b stand for a balanced string of length 2n—that is, containing an equal number of "[" and "]"—and
 with some factor dn ≥ 1. As above, any balanced string can be uniquely decomposed

into either [ c ] b or ] c+ [ b, so

Also, any incorrect balanced string starts with c ], so

Subtracting the above equations and using Bi = di Ci gives

Comparing coefficients with the original recursion formula for Cn gives di = i + 1, so

The n×n Hankel matrix whose (i, j) entry is the Catalan number Ci+j−2 has determinant 1, regardless of the
value of n. For example, for n = 4 we have

Moreover, if the indexing is "shifted" so that the (i, j) entry is filled with the Catalan number Ci+j−1 then the
determinant is still 1, regardless of the value of n. For example, for n = 4 we have

Taken together, these two conditions uniquely define the Catalan numbers.

The Catalan sequence was described in
the 18th century by Leonhard Euler,
who was interested in the number of
different ways of dividing a polygon into
triangles. The sequence is named after
Eugène Charles Catalan, who discovered
the connection to parenthesized
expressions during his exploration of the
Towers of Hanoi puzzle. The counting
trick for Dyck words was found by D.
André in 1887.

In 1988, it came to light that the Catalan
number sequence had been used in
China by the Mongolian mathematician
Mingantu by 1730.[11][12] That is when
he started to write his book Ge Yuan Mi
Lu Jie Fa, which was completed by his
student Chen Jixin in 1774 but published sixty years later. P.J. Larcombe (1999) sketched some of the
features of the work of Mingantu, including the stimulus of Pierre Jartoux, who brought three infinite series
to China early in the 1700s.

For instance, Ming used the Catalan sequence to express series expansions of sin(2α) and sin(4α) in terms of
sin(α).

The two-parameter sequence of non-negative integers  is a generalization of the Catalan

numbers. These are named super-Catalan numbers, by Ira Gessel. These number should not confused with
the Schröder–Hipparchus numbers, which sometimes are also called super-Catalan numbers.

For , this is just two times the ordinary Catalan numbers, and for , the numbers have an easy
combinatorial description. However, other combinatorial descriptions are only known[13] for  and

, and it is an open problem to find a general combinatorial interpretation.
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