
A Simple Test on 2-Vertex- and

2-Edge-Connectivity

Jens M. Schmidt
MPI für Informatik, Saarbrücken
(jens.schmidt@mpi-inf.mpg.de)

Abstract

Testing a graph on 2-vertex- and 2-edge-connectivity are two funda-
mental algorithmic graph problems. For both problems, different linear-
time algorithms with simple implementations are known. Here, an even
simpler linear-time algorithm is presented that computes a structure from
which both the 2-vertex- and 2-edge-connectivity of a graph can be easily
“read off”. The algorithm computes all bridges and cut vertices of the
input graph in the same time.

1 Introduction

Testing a graph on 2-connectivity (i. e., 2-vertex-connectivity) and on 2-edge-
connectivity are fundamental algorithmic graph problems. Tarjan presented the
first linear-time algorithms for these problems, respectively [11, 12]. Since then,
many linear-time algorithms have been given (e. g., [2, 3, 4, 5, 6, 13, 14, 15])
that compute structures which inherently characterize either the 2- or 2-edge-
connectivity of a graph. Examples include open ear decompositions [8, 16], block-

cut trees [7], bipolar orientations [2] and s-t-numberings [2] (all of which can be
used to determine 2-connectivity) and ear decompositions [8] (the existence of
which determines 2-edge-connectivity).

Most of the mentioned algorithms use a depth-first search-tree (DFS-tree)
and compute so-called low-point values, which are defined in terms of a DFS-tree
(see [11] for a definition of low-points). This is a concept Tarjan introduced in his
first algorithms and that has been applied successfully to many graph problems
later on. However, low-points do not always provide the most natural solution:
Brandes [2] and Gabow [6] gave considerably simpler algorithms for computing
most of the above-mentioned structures (and testing 2-connectivity) by using
simple path-generating rules instead of low-points; they call these algorithms
path-based.

The aim of this paper is a self-contained exposition of an even simpler linear-
time algorithm that tests both the 2- and 2-edge-connectivity of a graph. It is
suitable for teaching in introductory courses on algorithms. While Tarjan’s
two algorithms are currently the most popular ones used for teaching (see [6]
for a list of 11 text books in which they appear), in my teaching experience,
undergraduate students have difficulties with the details of using low-points.

1

The algorithm presented here uses a very natural path-based approach in-
stead of low-points; similar approaches have been presented by Ramachan-
dran [10] and Tsin [14] in the context of parallel and distributed algorithms,
respectively. The approach is related to ear decompositions; in fact, it computes
an (open) ear decomposition if the input graph has appropriate connectivity.

Notation. We use standard graph-theoretic terminology from [1]. Let δ(G)
be the minimum degree of a graph G. A cut vertex is a vertex in a connected
graph that disconnects the graph upon deletion. Similarly, a bridge is an edge
in a connected graph that disconnects the graph upon deletion. A graph is
2-connected if it is connected and contains at least 3 vertices, but no cut ver-
tex. A graph is 2-edge-connected if it is connected and contains at least 2
vertices, but no bridge. Note that for very small graphs, different definitions of
(edge)connectivity are used in literature; here, we chose the common definition
that ensures consistency with Menger’s Theorem [9]. It is easy to see that every
2-connected graph is 2-edge-connected, as otherwise any bridge in this graph on
at least 3 vertices would have an end point that is a cut vertex.

2 Decomposition into Chains

We will decompose the input graph into a set of paths and cycles, each of which
will be called a chain. Some easy-to-check properties on these chains will then
characterize both the 2- and 2-edge-connectivity of the graph. Let G = (V, E) be
the input graph and assume for convenience that G is simple and that |V | ≥ 3.

We first perform a depth-first search on G. This implicitly checks G on being
connected. If G is connected, we get a DFS-tree T that is rooted on a vertex r;
otherwise, we stop, as G is neither 2- nor 2-edge-connected. The DFS assigns
a depth-first index (DFI) to every vertex. We assume that all tree edges (i. e.,
edges in T) are oriented towards r and all backedges (i. e., edges that are in G
but not in T) are oriented away from r. Thus, every backedge lies in exactly
one directed cycle C(e). Let every vertex be marked as unvisited.

We now decompose G into chains by applying the following procedure for
each vertex v in ascending DFI-order: For every backedge e that starts at v,
we traverse C(e), beginning with v, and stop at the first vertex that is marked
as visited. During such a traversal, every traversed vertex is marked as visited.
Thus, a traversal stops at the latest at v and forms either a directed path or
cycle, beginning with v; we call this path or cycle a chain and identify it with
the list of vertices and edges in the order in which they were visited. The ith
chain found by this procedure is referred to as Ci.

The chain C1, if exists, is a cycle, as every vertex is unvisited at the beginning
(note C1 does not have to contain r). There are |E| − |V | + 1 chains, as every
of the |E| − |V | + 1 backedges creates exactly one chain. We call the set C =
{C1, . . . , C|E|−|V |+1} a chain decomposition; see Figure 1 for an example.

Clearly, a chain decomposition can be computed in linear time. This almost
concludes the algorithmic part; we now state easy-to-check conditions on C
that characterize 2- and 2-edge-connectivity. All proofs will be given in the
next section.

Theorem 1. Let C be a chain decomposition of a simple connected graph G.

Then G is 2-edge-connected if and only if the chains in C partition E.

2

(a) An input graph G.

���

��

��

��

��

��

��

�	

�

��

(b) A DFS-tree of G (de-
picted with straight-lines)
and the edge-orientation it
imposes. There are |E| −
|V | + 1 = 5 backedges.

��

��
��

��

��

���

��

��

��

��

��

��

�	

�

��

(c) A chain decomposition
C = {C1, . . . , C5} of G.
The chains C2 and C3 are
paths; all other chains are
cycles. The edge v6v5 is
not contained in any chain
and therefore a bridge.
Since δ(G) ≥ 2 and C \ C1

contains a cycle, G con-
tains a cut vertex (in fact,
v5 and v6 are cut vertices).

Figure 1: A graph G, its DFS-tree and a chain decomposition of G.

Theorem 2. Let C be a chain decomposition of a simple 2-edge-connected graph

G. Then G is 2-connected if and only if C1 is the only cycle in C.

The properties in Theorems 1 and 2 can be efficiently tested: In order to
check whether C partitions E, we mark every edge that is traversed by the chain
decomposition. If G is 2-edge-connected, every Ci can be checked on forming
a cycle by comparing its first and last vertex on identity. For pseudo-code, see
Algorithm 1.

Algorithm 1 Check(graph G) ⊲ G is simple and connected with |V | ≥ 3

1: Compute a DFS-tree T of G
2: Compute a chain decomposition C; mark every visited edge
3: if G contains an unvisited edge then

4: output “not 2-edge-connected”

5: else if there is a cycle in C different from C1 then

6: output “2-edge-connected but not 2-connected”

7: else

8: output “2-connected”

We state a variant of Theorem 2, which does not rely on edge-connectivity.
Its proof is very similar to the one of Theorem 2.

Theorem 3. Let C be a chain decomposition of a simple connected graph G.

Then G is 2-connected if and only if δ(G) ≥ 2 and C1 is the only cycle in C.

3

3 Proofs

It remains to give the proofs of Theorems 1 and 2. For a tree T rooted at r
and a vertex x in T , let T (x) be the subtree of T that consists of x and all
descendants of x (independent of the edge orientations of T). Theorem 1 is
immediately implied by the following lemma.

Lemma 4. Let C be a chain decomposition of a simple connected graph G. An

edge e in G is a bridge if and only if e is not contained in any chain in C.

Proof. Let e be a bridge and assume to the contrary that e is contained in a
chain whose first edge (i. e., whose backedge) is b. The bridge e is not contained
in any cycle of G, as otherwise the end points of e would still be connected when
deleting e, contradicting that e is a bridge. This contradicts the fact that e is
contained in the cycle C(b).

Let e be an edge that is not contained in any chain in C. Let T be the
DFS-tree that was used for computing C and let x be the end point of e that is
farthest away from the root r of T , in particular x Ó= r. Then e is a tree-edge,
as otherwise e would be contained in a chain. For the same reason, there is no
backedge with exactly one end point in T (x). Deleting e therefore disconnects
all vertices in T (x) from r. Hence, e is a bridge.

The following lemma implies Theorem 2, as every 2-edge-connected graph
has minimum degree 2.

Lemma 5. Let C be a chain decomposition of a simple connected graph G with

δ(G) ≥ 2. A vertex v in G is a cut vertex if and only if v is incident to a bridge

or v is the first vertex of a cycle in C \ C1.

Proof. Let v be a cut vertex in G; we may assume that v is not incident to a
bridge. Let X and Y be connected components of G\v. Then X and Y have to
contain at least two neighbors of v in G, respectively. Let X+v and Y +v denote
the subgraphs of G that are induced by X ∪ v and Y ∪ v, respectively. Both
X+v and Y +v contain a cycle through v, as both X and Y are connected. It
follows that C1 exists; assume w. l. o. g. that C1 /∈ X+v. Then there is at least
one backedge in X+v that starts at v. When the first such backedge is traversed
in the chain decomposition, every vertex in X is still unvisited. The traversal
therefore closes a cycle that starts at v and is different from C1, as C1 /∈ X+v.

If v is incident to a bridge, δ(G) ≥ 2 implies that v is a cut vertex. Let v
be the first vertex of a cycle Ci Ó= C1 in C. If v is the root r of the DFS-tree T
that was used for computing C, both cycles C1 and Ci end at v. Thus, v has at
least two children in T and v must be a cut vertex. Otherwise v Ó= r; let wv be
the last edge in Ci. Then no backedge starts at a vertex with smaller DFI than
v and ends at a vertex in T (w), as otherwise vw would not be contained in Ci.
Thus, deleting v separates r from all vertices in T (w) and v is a cut vertex.

4 Extensions

We state how some additional structures can be computed from a chain decom-
position. Note that Lemmas 4 and 5 can be used to compute all bridges and cut
vertices of G in linear time. Having these, the 2-connected components (i. e., the

4

maximal 2-connected subgraphs) of G and the 2-edge-connected components
(i. e., the maximal 2-edge-connected subgraphs) of G can be easily obtained.
This gives the so-called block-cut tree [7] of G, which represents the dependence
of the 2-connected components and cut vertices in G in a tree (it gives also the
corresponding tree representing the 2-edge-connected components and bridges
of G).

Additionally, the set of chains C computed by our algorithm is an ear de-
composition if G is 2-edge-connected and an open ear decomposition if G is
2-connected. Note that C is not an arbitrary (open) ear decomposition, as it
depends on the DFS-tree. The existence of these ear decompositions character-
ize the 2-(edge-)connectivity of a graph [8, 16]; Brandes [2] gives a simple linear-
time transformation that computes a bipolar orientation and a s-t-numbering
from such an open ear decomposition.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[2] U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium
of Algorithms (ESA’02), pages 247–256, 2002.

[3] J. Ebert. st-Ordering the vertices of biconnected graphs. Computing, 30:19–33,
1983.

[4] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci.,
2(3):339–344, 1976.

[5] S. Even and R. E. Tarjan. Corrigendum: Computing an st-Numbering (TCS
2(1976):339-344). Theor. Comput. Sci., 4(1):123, 1977.

[6] H. N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Inf. Process. Lett., 74(3-4):107–114, 2000.

[7] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen,
13:103–107, 1966.

[8] L. Lovász. Computing ears and branchings in parallel. In Proceedings of the
26th Annual Symposium on Foundations of Computer Science (FOCS’85), pages
464–467, 1985.

[9] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96–115, 1927.

[10] V. Ramachandran. Parallel open ear decomposition with applications to graph
biconnectivity and triconnectivity. In Synthesis of Parallel Algorithms, pages
275–340, 1993.

[11] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[12] R. E. Tarjan. A note on finding the bridges of a graph. Information Processing
Letters, 2(6):160–161, 1974.

[13] R. E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inf., 9:85–94,
1986.

[14] Y. H. Tsin. On finding an ear decomposition of an undirected graph distributively.
Inf. Process. Lett., 91:147–153, 2004.

[15] Y. H. Tsin and F. Y. Chin. A general program scheme for finding bridges. Infor-
mation Processing Letters, 17(5):269–272, 1983.

[16] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc.,
34(1):339–362, 1932.

5

A Appendix

We omitted the proof of Theorem 3, as it is very similar to the one of Theorem 2. For
completeness, we give the proof here.

Proof of Theorem 3: Let T be the DFS-tree that was used for computing C and let
r be its root. First, let G be 2-connected. Clearly, this implies δ(G) ≥ 2. Moreover,
r has exactly one child, as otherwise r would be a cut vertex. Thus, r is incident to
a backedge, which implies that C1 exists and is a cycle that starts at r. Assume to
the contrary that v is the first vertex of a cycle Ci Ó= C1. If v = r, both cycles C1

and Ci end at v. Thus, v has at least two children in T . This implies that v is a cut
vertex, which contradicts the 2-connectivity of G. If v Ó= r, let wv be the last edge in
Ci. There is no backedge that starts at a vertex with smaller DFI than v and ends at
a vertex in T (w), as otherwise wv would be contained in a chain Cj with j < i. Thus,
deleting v disconnects r from all vertices in T (w), which contradicts the 2-connectivity
of G.

Let δ(G) ≥ 2 and C1 be the only cycle in C and assume to the contrary that G
is not 2-connected. Then G contains a cut vertex v, as δ(G) ≥ 2 implies |V | ≥ 3.
Clearly, C1 can intersect with at most one connected component of G \ v. Let X be
a connected component of G \ v that does not contain any vertex of C1. Let X+v

be the subgraph of G that is induced by X ∪ v. There must be a cycle in X+v, as
otherwise X+v would be a tree, whose leafs would contradict δ(G) ≥ 2. Hence, X+v

contains at least one backedge; let b be the first backedge in X+v that is traversed by
the chain decomposition. As r /∈ X, all vertices in D(b) except the start point w of b
have greater DFIs than w. Thus, the traversal on b computes a chain Ci ⊂ X+v that
is a cycle and that is distinct from C1, as X does not contain any vertex of C1.

6

