Necklace (combinatorics)

In combinatorics, a k-ary necklace of length n is an equivalence class of n-character strings over an alphabet of size k, taking all rotations as equivalent. It represents a structure with n circularly connected beads of up to k different colors.
A k-ry bracelet, also referred to as a turnover (or free) necklace, is a necklace such that strings may also be equivalent under reflection. That is, given two strings, if each is the reverse of the other then they belong to the same equivalence class. For this reason, a necklace might also be called a fixed necklace to distinguish it from a
Technically, one may classify a necklace as an orbit of the action of the cyclic group on n-character strings, and a group's action. This enables application of Pólya enumeration theorem for enumeration of necklaces and bracelets.
Contents
- 1 Equivalence classes 1.1 Number of necklaces - 2 Examples - 2.1 Necklace example - 2.2 Bracelet example - 3 Aperiodic necklaces 4 Products of necklaces - 5 See also - 6 References - 7 External links

Equivalence classes
Number of necklaces
There are

$$
N_{k}(n)=\frac{1}{n} \sum_{d \mid n} \varphi(d) k^{\frac{n}{d}}
$$

tient function. ${ }^{[1]}$

There are

corresponding to the k-thinteger partition
set paratitions up to ototation and reflection)

One in the midade is shira, son
Compare box(69) in it he tringel.

16 Tantrix tiles, corresponding to the 16 necklas
with2 2 red, 2 yellow wand 2 green beads.

$$
B_{k}(n)= \begin{cases}\frac{1}{2} N_{k}(n)+\frac{1}{4}(k+1) k^{\frac{n}{2}} & \text { if } n \text { is even } \\ \frac{1}{2} N_{k}(n)+\frac{1}{2} k^{\frac{n+1}{2}} & \text { if } n \text { is odd }\end{cases}
$$

hary bracelets oflength n, where $N_{k}(h)$ is n namber orkay ned

Examples

Necklace example
f there are n beads, all distinct, on a necklace joined at the ends, then the number of distinct orderings a the necklace, after allowing for rotations, is $\frac{n}{n}$, for $n>0$. This may also be expressed as $(n-1)$.! T
number is less than the general case, which lacks the requirement that each bead must be distinct.

An intuitive justification for this can be given. If there isa line of n distinct objects " "beads"), the number of spossible to rotate the string of n beads into n positions.

acelet exampl

If there are n beads, all distinct, on a bracelet joined at the ends, then the number of distinct orderings on the bracelet, after allowing for rotations and reflection, is $\frac{n!}{2 n}$, for $n>2$. Note that this number is less than the eneral case of $B_{n}(n)$, which lacks the requirement that each bead must be distinct.
To explain this, one may begin with the count for a necklace. This number can be further divided by 2 .
Aperiodic necklaces
An aperiodic necklace of length n is an equivalence class of size n, i.e., no two distinct rotations of a necklace from such class are equal.

ion, there are

$$
M_{k}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) k^{\frac{n}{d}}
$$

different k-ary aperiodic necklaces of length n, where μ is the Möbius function.
ach aperiodic necklace contains a single Lyndon word so that Lyndon words form representatives

Products of necklaces

limit of the prod

$$
\lim _{n \rightarrow \infty} \prod_{n=1}^{n} N_{k}(n)=\frac{k^{n}}{n!} 1(1+X)\left(1+X+X^{2}\right) \cdots\left(1+X+X^{2}+\cdots+X^{n-1}\right)
$$

on of the produc

$$
\prod_{m=1}^{n} \sum_{i=0}^{m-1} X^{i}=1(1+X)\left(1+X+X^{2}\right) \cdots\left(1+X+X^{2}+\cdots+X^{n-1}\right)
$$

esents the number of permutations of n with k inversions, expressed by a Mahonian number: A00830
See also

- Lyndon word
mathematics)
Necklace spliting problem
- Proofs of Fermat's little theorem $\#$ Proof by counting necklaces

References

1. Weisstein, Eric W. "Necklace". MathWorld.

External links

- Weisstein, Eric W. "Necklace". MathWorld.

Info on necklaces, Lyndon words, De Bruijn sequences (http://www.theory.csc.uvic.cal/coss inf
/neckN Necklacelnfo.html)
Retrieved from "http://en.wikipedia.org/w/index.php?title=Necklace_(combinatorics)\&oldid=767219408"

ategories: Combinatorics on words | Enumerative combinatoric

[^0]
[^0]: This page was last modified on 24 February 2017, at $16: 21$.
 Text is available under the Creative Commons Attribution-ShareAlike License, additional terms may
 apply. By using this site you aroe to the Terms of Use and Privacy Policy. Wikipedia® is a registered
 trademark of the Wikimedia Foundation, Inc., a non-profito roganization.

