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Abstract:  Cayley's 1875 enumerations of centered and bicentered alkanes (unlabeled trees of valency at most 4)
are corrected and extended — possibly for the first time in 124 years. 

1. Introduction

In 1875 Cayley attempted to enumerate alkanes CnH2n+2, or equivalently n-node unlabeled trees in which each node

has degree at most 4, and published a short note [Cay75] containing the table:

         n      1  2   3  4  5  6  7  8  9  10  11  12  13   

   centered   1  0  1  1  2  2  6  9  20  37  86 183 419        (1)

  bicentered  0  1  0  1  1  3  3  9  15  38  73 174 380        (2)

      total      1  1  1  2  3  5  9  18  35  75 159 357 799        (3)

( The terms "centered" and "bicentered" are defined below.) This table was reproduced by Busacker and Saaty
in 1965 [BuS65], and the three sequences were included in [HIS]. 

In fact the last two columns are in error, as had already been pointed out by Herrmann in 1880 [Her80]. Herrmann uses
a different method from Cayley, and gives the correct values 355 (for n = 12) and 802 (for n = 13) for sequence (3).
However, neither in [Her80] nor in his two later notes [Her97], [Her98] does he mention sequences (1) and (2).

The alkane sequence (3) is also discussed in the works by Schiff [Sch75], Losanitsch [Los97], [Los97a],
Henze and Blaire [HeB31], Perry [Per32], Polya [Polya36], [Polya37], Harary and Norman [HaN60], Lederberg [Led69],
Read [Rea76], Robinson, Harary and Balaban [RoHB76], and Bergeron, Labelle and Leroux [BeLL98].
The simplest generating function is due to Harary and Norman (see Section 4 of [Rea76] or p. 289 of [BeLL98]).
However, none of these authors use Cayley's method, and as far as we can tell none of them discuss sequences (1) and (2).

In 1988 R. K. Guy wrote to N.J.A.S., pointing out that there were errors in these three sequences, and suggested
that Polya counting theory be used to extend (1) and (2). ( The correct version of (3), sequence A000602,
was already present in [HIS].)  To do so is the goal of the present note.

We confess to having another, more ignoble reason for wishing to extend sequences (1) and (2). The sequences
in the data-base [EIS] are numbered (A000001, A000002, A000003, ...), and several people have suggested
that the "diagonal" sequence, whose nth term is the nth term of A n ,  should be added to [EIS].

The fact that (1) is sequence A000022 provided additional motivation for extending it to at least the 22nd term!
( The "diagonal" sequence is now in the data-base, sequence A031135, as is the even less well-defined A037181
whose nth term is 1 + nth term of A n .) 

The hard part was determining exactly what Cayley was attempting to count, since [Cay75] is somewhat unclear,
and contains many typographical errors. Once the problem was identified, it turned out to be quite easy to calculate
these sequences — so in fact it is very likely that this has been done in the 124 years since [Cay75] appeared.
But we have been unable to find any record of it in the literature.

2. Generating functions

A tree of diameter 2m has a unique node called the center, at the midpoint of any path of length 2m.
A tree of diameter 2m+1 has a unique pair of nodes called bicenters, at the middle of any path of length 2m+1.
These terms were introduced by Jordan around 1869 ([Har69], p. 35).

Cayley's approach [Cay75] to counting alkanes uses the notions of center and bicenter to reduce the problem
to simpler questions about rooted trees. This turns out to be an awkward way to attack the problem
(since the notion of diameter is irrelevant), and may explain why no one else has used this approach.

It is simpler to make use of the notion of "centroid" and "bicentroid", also due to Jordan (see Harary [Har69],
p. 36, for the definition). In 1881 Cayley [Cay81] found recurrences for the numbers of n-node trees
with a centroid (sequence A000676) and with a bicentroid (A000677), which gave him a simpler way
to enumerate unrooted trees (A000055). However, as far as we know Cayley did not use the centroid/bicentroid method
to enumerate alkanes (A000602). This was apparently first done by Polya [Polya36], [Polya37] in 1936. 

However, our concern here is with centered and bi-centered trees. 

We will say that a tree is k-valent if the degree of every node is at most k. Alkanes are precisely the 4-valent trees.

We wll also consider rooted trees, and define a b-ary rooted tree to be either the empty tree or a rooted tree
in which the out-degree of every node (the valency excluding the edge connecting it to the root) is at most b.
This generalizes the notion of a binary rooted tree, the case b = 2, which is either the empty tree or a rooted tree
in which every node has 0, 1 or 2 sons. ( The literature contains several other definitions of binary and b-ary trees.
These terms sometimes refer specifically to planar trees. Our trees are not planar, and in particular there is no notion
of right or left.) 

We will find generating functions for centered and bicentered k-valent trees.

Fix k, and let Th,n be the number of (k–1)-ary rooted trees with n nodes and height at most h. ( The height of a node

in a rooted tree is the number of edges joining the node to the root.)  By convention the empty tree has height  –1.

Let  Th (z)  =  Σ Th,n z n.  Then  T–1 (z)  =  1,   T0 (z)  =  1 + z,  and  for  h > –1,

                            n ≥ 0

    Th+1 (z)  =  1 + z Sk–1 (Th (z)),        (4) 

where  Sm (  f(z)) denotes the result of substituting  f(z) into the cycle index for the symmetric group of order m!.

For example,

S3 (  f(z))  =  ( f(z) 3 + 3 f(z) f(z 2 ) + 2 f(z 3 )) / 3!. 

Equation (4) holds because if we remove the root and adjacent edges from a rooted tree of height h+1 we are left
with an unordered (k–1)-tuple of trees of height h.

Let C2h,n be the number of centered k-valent trees with n nodes and diameter 2h,  and  let  C2h (z)  =  Σ C2h,n z n.

                                                                                                                                                           n ≥ 0 
By deleting the center node and adjacent edges, we see that any such tree corresponds to an unordered k-tuple
of (k–1)-ary rooted trees of height at most h–1, at least two of which have height exactly h–1. Therefore

C2h (z)  =  (1 + z Sk (Th–1 (z))) – (1 + z Sk (Th–2 (z))) – (Th–1 (z) – Th–2 (z))(Th–1 (z) – 1).        (5) 

The three expressions in (5) account for the k-tuples of rooted trees of height at most h–1,  k-tuples of rooted trees
of height at most h–2, and rooted trees with exactly one subtree at the root with height h–1, respectively.

Finally, let  Cn denote the number of centered k-valent trees with n nodes,  and  C(z)  =  Σ Cn z n.  Then

                                                                                                                                     n ≥ 0 

C(z)  =  Σ C2h (z). 

 h ≥ 0 

For k = 4 we obtain

C(z)  =  z + z 3 + z 4 + 2 z 5 + 2 z 6 + 6 z 7 + 9 z 8 + 20 z 9 + 37 z 10 + 86 z 11 + 181 z 12 + 422 z 13 + ... , 

which is the corrected version of Cayley's sequence (1), A000022. (See the table below.) 

Bicentered trees are easier to handle. Let B2h+1,n be the number of bicentered k-valent trees with n nodes and diameter 2h+1,

let  B2h+1 (z)  =  Σ B2h+1,n z n,  let Bn be the total number of bicentered k-valent trees with n nodes, and let

                         n ≥ 0 

B(z)  =  Σ Bn z n.  Since a bicentered tree corresponds to an unordered pair of (k–1)-ary rooted trees of height exactly h,

            n ≥ 0

we have

B2h+1 (z)  =  S2 (Th (z) – Th–1(z)) , 

and then

B(z)  =  Σ B2h+1 (z) . 

h ≥ 0    

For k = 4 we obtain

B(z)  =  z 2 + z 4 + z 5 + 3 z 6 + 3 z 7 + 9 z 8 + 15 z 9 + 38 z 10 + 73 z 11 + 174 z 12 + 380 z 13 + ... , 

Cayley's sequence (2), A000200 (which as it turns out was correct). 

The generating function for alkanes (A000602) is then

C(z) + B(z)  =  z + z 2 + z 3 + 2 z 4 + 3 z 5 + 5 z 6 + 9 z 7 + 18 z 8 + 35 z 9 + 75 z 10 + 159 z 11 + 355 z 12 + 802 z 13 + ... , 

in agreement with Henze and Blair [HeB31] (except that the value they give for n = 19,   147284,   is incorrect:
it should be 148284). Further terms are shown in the following table: 

Table: Numbers of centered, bicentered
and unrestricted 4-valent trees

with n nodes

  n  centered     bicentered   total 

   (A000022)   (A000200)   (A000602)  

 1  1  0  1

 2  0  1  1

 3  1  0  1

 4  1  1  2

 5  2  1  3

 6  2  3  5

 7  6  3  9

 8  9  9  18

 9  20  15  35

 10  37  38  75

 11  86  73  159

 12  181  174  355

 13  422  380  802

 14  943  915  1858

 15  2223  2124  4347

 16  5225  5134  10359

 17  12613  12281  24894

 18  30513  30010  60523

 19  74883  73401  148284

 20  184484  181835  366319

 21  458561  452165  910726

 22  1145406  1133252  2278658

... ... ... ... 

If we set k = 3 in the above formulae (corresponding to centered, bicentered and unrestricted 4-valent trees), we obtain
sequences A000675, A000673 and A000672, for which the initial terms were (correctly) published by Cayley
in another 1875 paper [Cay75a], and further terms were computed by R. W. Robinson in 1975 [Rob75]. 

For k = 5 and 6 the resulting sequences (A036648, A036649, A036650, A036651, A036652, A036653)
appear to be new.
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