
A labeled tree with Prüfer
sequence {4,4,4,5}.
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In combinatorial mathematics, the Prüfer sequence (also Prüfer code or Prüfer numbers) of a labeled tree
is a unique sequence associated with the tree. The sequence for a tree on n vertices has length n  2, and can
be generated by a simple iterative algorithm. Prüfer sequences were first used by Heinz Prüfer to prove
Cayley's formula in 1918.[1]
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One can generate a labeled tree's Prüfer sequence by iteratively removing vertices from the tree until only
two vertices remain. Specifically, consider a labeled tree T with vertices {1, 2, ..., n}. At step i, remove the
leaf with the smallest label and set the ith element of the Prüfer sequence to be the label of this leaf's
neighbour.

The Prüfer sequence of a labeled tree is unique and has length n  2.

Example

Consider the above algorithm run on the tree shown to the right. Initially,
vertex 1 is the leaf with the smallest label, so it is removed first and 4 is put in
the Prüfer sequence. Vertices 2 and 3 are removed next, so 4 is added twice
more. Vertex 4 is now a leaf and has the smallest label, so it is removed and
we append 5 to the sequence. We are left with only two vertices, so we stop.
The tree's sequence is {4,4,4,5}.

Let {a[1], a[2], ..., a[n]} be a Prüfer sequence:

The tree will have n+2 nodes, numbered from 1 to n+2. For each node set its
degree to the number of times it appears in the sequence plus 1. For instance, in pseudo-code:

Convert-Prüfer-to-Tree(a)
 1 n ← length[a]
 2 T ← a graph with n + 2 isolated nodes, numbered 1 to n + 2
 3 degree ← an array of integers
 4 for each node i in T
 5     do degree[i] ← 1
 6 for each value i in a
 7     do degree[i] ← degree[i] + 1

Next, for each number in the sequence a[i], find the first (lowest-numbered) node, j, with degree equal to
1, add the edge (j, a[i]) to the tree, and decrement the degrees of j and a[i]. In pseudo-code:

 8 for each value i in a
 9     for each node j in T
10          if degree[j] = 1
11             then Insert edge[i, j] into T
12                  degree[i] ← degree[i] - 1
13                  degree[j] ← degree[j] - 1
14                  break

At the end of this loop two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u,v) to
the tree.[2]

15 u ← v ← 0
16 for each node i in T
17     if degree[i] = 1
18         then if u = 0
19             then u ← i
20             else v ← i
21                  break
22 Insert edge[u, v] into T
23 degree[u] ← degree[u] - 1
24 degree[v] ← degree[v] - 1
25 return T

The Prüfer sequence of a labeled tree on n vertices is a unique sequence of length n  2 on the labels 1 to n
— this much is clear. Somewhat less obvious is the fact that for a given sequence S of length n–2 on the
labels 1 to n, there is a unique labeled tree whose Prüfer sequence is S.

The immediate consequence is that Prüfer sequences provide a bijection between the set of labeled trees on
n vertices and the set of sequences of length n–2 on the labels 1 to n. The latter set has size nn 2, so the
existence of this bijection proves Cayley's formula, i.e. that there are nn 2 labeled trees on n vertices.

[3]

Cayley's formula can be strengthened to prove the following claim:

The number of spanning trees in a complete graph  with a degree  specified for each vertex  is
equal to the multinomial coefficient

The proof follows by observing that in the Prüfer sequence number  appears exactly  times.

Cayley's formula can be generalized: a labeled tree is in fact a spanning tree of the labeled complete
graph. By placing restrictions on the enumerated Prüfer sequences, similar methods can give the
number of spanning trees of a complete bipartite graph. If G is the complete bipartite graph with
vertices 1 to n1 in one partition and vertices n1 + 1 to n in the other partition, the number of labeled
spanning trees of G is , where n2 = n  n1.
Generating uniformly distributed random Prüfer sequences and converting them into the
corresponding trees is a straightforward method of generating uniformly distributed random labelled
trees.
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Given a finite labeled tree, it is possible to generate a Prüfer sequence
corresponding to that tree.

Let  be a labeled tree of order , where the labels are assigned the values 
to .

Step 1: If there are two (or less) nodes in , then stop. Otherwise,
continue on to step 2.

Step 2: Find all the nodes of  of degree . There are bound to be some,
from Finite Tree has Leaf Nodes. Choose the one  with the lowest label.

Step 3: Look at the node adjacent to , and assign the label of  to
the first available element of the Prüfer sequence being generated.

Step 4: Remove the node  and its incident edge. This leaves a smaller
tree . Go back to step 1.

The above constitutes an algorithm, for the following reasons:

Finiteness

For each iteration through the algorithm, step 4 is executed, which reduces the
number of nodes by .

Therefore, after  iterations, at step 1 there will be nodes left, and the
algorithm will stop.

Definiteness

Step 1: There are either more than  nodes in a tree or there are  or
less.

Step 2: There are bound to be some nodes of degree , from Finite Tree
has Leaf Nodes. As integers are totally ordered, it is always possible to
find the lowest label.

Step 3: As the node  is of degree , there is a unique node  to which
it is adjacent. (Note that this node will not also have degree , for then

 would be a tree of order 2, and we have established from step 1 that
this is not the case.)

Step 4: The node and edge to be removed are unique and specified
precisely, as this is a tree we are talking about.

Inputs

The input to this algorithm is the tree .

Outputs

The output to this algorithm is the Prüfer sequence .

Effective

Each step of the algorithm is basic enough to be done exactly and in a finite
length of time.

Let  be the following labeled tree:

This tree has  nodes, so the corresponding Prüfer sequence will have 
elements.

Iteration 1

Step 1: There are  nodes, so continue to step 2.

Step 2: The nodes of degree  are . Of these,  is the
lowest.

Step 3:  is adjacent to , so add  to the Prüfer sequence.

Step 4: Removing node  leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 2

Step 1: There are  nodes, so continue to step 2.

Step 2: The nodes of degree  are . Of these,  is the lowest.

Step 3:  is adjacent to , so add  to the Prüfer sequence.

Step 4: Removing node  leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 3

Step 1: There are  nodes, so continue to step 2.

Step 2: The nodes of degree  are . Of these,  is the lowest.

Step 3:  is adjacent to , so add  to the Prüfer sequence.

Step 4: Removing node  leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 4

Step 1: There are  nodes, so continue to step 2.

Step 2: The nodes of degree  are . Of these,  is the lowest.

Step 3:  is adjacent to , so add  to the Prüfer sequence.

Step 4: Removing node  leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 5

Step 1: There are  nodes, so continue to step 2.

Step 2: The nodes of degree  are . Of these,  is the lowest.

Step 3:  is adjacent to , so add  to the Prüfer sequence.

Step 4: Removing node  leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 6

Step 1: There are  nodes, so continue to step 2.

Step 2: The nodes of degree  are . Of these,  is the lowest.

Step 3:  is adjacent to , so add  to the Prüfer sequence.

Step 4: Removing node  leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 7

Step 1: There are  nodes, so stop.

The Prüfer sequence is .

1 2 n−2
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Given a Prüfer sequence, it is possible to generate a finite labeled tree
corresponding to that sequence.

Let  be a Prüfer sequence. This will be called the
sequence.

It is assumed the sequence is not empty.

Step 1: Draw the nodes of the tree we are to generate, and label them
from  to . This will be called the tree.

Step 2: Make a list of all the integers . This will be called
the list.

Step 3: If there are two numbers left in the list, connect them with an
edge and then stop. Otherwise, continue on to step 4.

Step 4: Find the smallest number in the list which is not in the sequence,
and also the first number in the the sequence. Add an edge to the tree
connecting the nodes whose labels correspond to those numbers.

Step 5: Delete the first of those numbers from the list and the second
from the sequence. This leaves a smaller list and a shorter sequence.
Then return to step 3.

The above constitutes an algorithm, for the following reasons:

Finiteness

For each iteration through the algorithm, step 5 is executed, which reduces the
size of the list by .

Therefore, after  iterations, at step 1 there will be  numbers left in the
list, and the algorithm will stop.

Definiteness

Steps 1 and 2: Trivially definite.

Step 3: We are starting with a non-empty Prüfer sequence of length
, so the list must originally contain at least  elements. As the

number of elements in the list decreases by  each iteration (see step 5),
eventually there is bound to be just two elements in the list.

Step 4: As there are more elements in the list than there are in the
sequence, by the Pigeonhole Principle there has to be at least one number
in the list that is not in the sequence.

Step 5: Trivially definite.

Inputs

The input to this algorithm is the Prüfer sequence .

Outputs

The output to this algorithm is the tree .

The fact that  is in fact a tree follows from the fact that:

 has nodes and (from the method of construction) edges;

Each new edge connects two as yet unconnected parts of , so every
edge is a bridge. Therefore there are no cycles in , from Condition for
Edge to be Bridge.

So  is a tree from Equivalent Definitions for Finite Tree.

Effective

Each step of the algorithm is basic enough to be done exactly and in a finite
length of time.

Let the starting Prüfer sequence be .

Step 1: The sequence is length , so the tree will have nodes:

Step 2: We generate the list: .

Iteration 1

Step 3: There are  elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join  and , to obtain this
graph:

Step 5: We delete  from the list to obtain , and 
from the start of the sequence to obtain .

Iteration 2

Step 3: There are  elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join  and , to obtain this
graph:

Step 5: We delete  from the list to obtain , and 
from the start of the sequence to obtain .

Iteration 3

Step 3: There are  elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join  and , to obtain this
graph:

Step 5: We delete  from the list to obtain , and  from
the start of the sequence to obtain .

Iteration 4

Step 3: There are  elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join  and , to obtain this
graph:

Step 5: We delete  from the list to obtain , and  from the
start of the sequence to obtain .

Iteration 5

Step 3: There are  elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join  and , to obtain this
graph:

Step 5: We delete  from the list to obtain , and  from the
start of the sequence to obtain .

Iteration 6

Step 3: There are  elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join  and , to obtain this
graph:

Step 5: We delete  from the list to obtain , and  from the start
of the sequence, which is at this point empty.

Iteration 7

Step 3: There are  elements in the list: , so we join them to
obtain this graph:

Then we stop.

The algorithm has terminated, and the tree is complete.

Rearranging the positions of the nodes, we can draw it like this:

1 2 n−2

1 2 n−2


