
A labeled tree with Prüfer
sequence {4,4,4,5}.

From Wikipedia, the free encyclopedia

In combinatorial mathematics, the Prüfer sequence (also Prüfer code or Prüfer numbers) of a labeled tree
is a unique sequence associated with the tree. The sequence for a tree on n vertices has length n 2, and can
be generated by a simple iterative algorithm. Prüfer sequences were first used by Heinz Prüfer to prove
Cayley's formula in 1918.[1]

1 Algorithm to convert a tree into a Prüfer sequence
1.1 Example

2 Algorithm to convert a Prüfer sequence into a tree
3 Cayley's formula
4 Other applications[3]

5 References
6 External links

One can generate a labeled tree's Prüfer sequence by iteratively removing vertices from the tree until only
two vertices remain. Specifically, consider a labeled tree T with vertices {1, 2, ..., n}. At step i, remove the
leaf with the smallest label and set the ith element of the Prüfer sequence to be the label of this leaf's
neighbour.

The Prüfer sequence of a labeled tree is unique and has length n 2.

Example

Consider the above algorithm run on the tree shown to the right. Initially,
vertex 1 is the leaf with the smallest label, so it is removed first and 4 is put in
the Prüfer sequence. Vertices 2 and 3 are removed next, so 4 is added twice
more. Vertex 4 is now a leaf and has the smallest label, so it is removed and
we append 5 to the sequence. We are left with only two vertices, so we stop.
The tree's sequence is {4,4,4,5}.

Let {a[1], a[2], ..., a[n]} be a Prüfer sequence:

The tree will have n+2 nodes, numbered from 1 to n+2. For each node set its
degree to the number of times it appears in the sequence plus 1. For instance, in pseudo-code:

Convert-Prüfer-to-Tree(a)
 1 n ← length[a]
 2 T ← a graph with n + 2 isolated nodes, numbered 1 to n + 2
 3 degree ← an array of integers
 4 for each node i in T
 5 do degree[i] ← 1
 6 for each value i in a
 7 do degree[i] ← degree[i] + 1

Next, for each number in the sequence a[i], find the first (lowest-numbered) node, j, with degree equal to
1, add the edge (j, a[i]) to the tree, and decrement the degrees of j and a[i]. In pseudo-code:

 8 for each value i in a
 9 for each node j in T
10 if degree[j] = 1
11 then Insert edge[i, j] into T
12 degree[i] ← degree[i] - 1
13 degree[j] ← degree[j] - 1
14 break

At the end of this loop two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u,v) to
the tree.[2]

15 u ← v ← 0
16 for each node i in T
17 if degree[i] = 1
18 then if u = 0
19 then u ← i
20 else v ← i
21 break
22 Insert edge[u, v] into T
23 degree[u] ← degree[u] - 1
24 degree[v] ← degree[v] - 1
25 return T

The Prüfer sequence of a labeled tree on n vertices is a unique sequence of length n 2 on the labels 1 to n
— this much is clear. Somewhat less obvious is the fact that for a given sequence S of length n–2 on the
labels 1 to n, there is a unique labeled tree whose Prüfer sequence is S.

The immediate consequence is that Prüfer sequences provide a bijection between the set of labeled trees on
n vertices and the set of sequences of length n–2 on the labels 1 to n. The latter set has size nn 2, so the
existence of this bijection proves Cayley's formula, i.e. that there are nn 2 labeled trees on n vertices.

[3]

Cayley's formula can be strengthened to prove the following claim:

The number of spanning trees in a complete graph with a degree specified for each vertex is
equal to the multinomial coefficient

The proof follows by observing that in the Prüfer sequence number appears exactly times.

Cayley's formula can be generalized: a labeled tree is in fact a spanning tree of the labeled complete
graph. By placing restrictions on the enumerated Prüfer sequences, similar methods can give the
number of spanning trees of a complete bipartite graph. If G is the complete bipartite graph with
vertices 1 to n1 in one partition and vertices n1 + 1 to n in the other partition, the number of labeled
spanning trees of G is , where n2 = n n1.
Generating uniformly distributed random Prüfer sequences and converting them into the
corresponding trees is a straightforward method of generating uniformly distributed random labelled
trees.

Prüfer, H. (1918). "Neuer Beweis eines Satzes über Permutationen". Arch. Math. Phys. 27: 742–744.1.
Jens Gottlieb; Bryant A. Julstrom; Günther R. Raidl; Franz Rothlauf. (2001). "Prüfer numbers: A poor
representation of spanning trees for evolutionary search" (PDF). Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001): 343–350.

2.

Kajimoto, H. (2003). "An Extension of the Prüfer Code and Assembly of Connected Graphs from Their
Blocks". Graphs and Combinatorics. 19: 231–239. doi:10.1007/s00373-002-0499-3.

3.

Prüfer code (http://mathworld.wolfram.com/PrueferCode.html) – from MathWorld

Retrieved from "https://en.wikipedia.org/w/index.php?title=Prüfer_sequence&oldid=759139282"

Categories: Enumerative combinatorics Trees (graph theory)

This page was last modified on 9 January 2017, at 13:01.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered
trademark of the Wikimedia Foundation, Inc., a non-profit organization.

From ProofWiki

1 Algorithm
1.1 Finiteness
1.2 Definiteness
1.3 Inputs
1.4 Outputs
1.5 Effective

2 Example
2.1 Iteration 1
2.2 Iteration 2
2.3 Iteration 3
2.4 Iteration 4
2.5 Iteration 5
2.6 Iteration 6
2.7 Iteration 7

3 Also see

Given a finite labeled tree, it is possible to generate a Prüfer sequence
corresponding to that tree.

Let be a labeled tree of order , where the labels are assigned the values
to .

Step 1: If there are two (or less) nodes in , then stop. Otherwise,
continue on to step 2.

Step 2: Find all the nodes of of degree . There are bound to be some,
from Finite Tree has Leaf Nodes. Choose the one with the lowest label.

Step 3: Look at the node adjacent to , and assign the label of to
the first available element of the Prüfer sequence being generated.

Step 4: Remove the node and its incident edge. This leaves a smaller
tree . Go back to step 1.

The above constitutes an algorithm, for the following reasons:

Finiteness

For each iteration through the algorithm, step 4 is executed, which reduces the
number of nodes by .

Therefore, after iterations, at step 1 there will be nodes left, and the
algorithm will stop.

Definiteness

Step 1: There are either more than nodes in a tree or there are or
less.

Step 2: There are bound to be some nodes of degree , from Finite Tree
has Leaf Nodes. As integers are totally ordered, it is always possible to
find the lowest label.

Step 3: As the node is of degree , there is a unique node to which
it is adjacent. (Note that this node will not also have degree , for then

 would be a tree of order 2, and we have established from step 1 that
this is not the case.)

Step 4: The node and edge to be removed are unique and specified
precisely, as this is a tree we are talking about.

Inputs

The input to this algorithm is the tree .

Outputs

The output to this algorithm is the Prüfer sequence .

Effective

Each step of the algorithm is basic enough to be done exactly and in a finite
length of time.

Let be the following labeled tree:

This tree has nodes, so the corresponding Prüfer sequence will have
elements.

Iteration 1

Step 1: There are nodes, so continue to step 2.

Step 2: The nodes of degree are . Of these, is the
lowest.

Step 3: is adjacent to , so add to the Prüfer sequence.

Step 4: Removing node leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 2

Step 1: There are nodes, so continue to step 2.

Step 2: The nodes of degree are . Of these, is the lowest.

Step 3: is adjacent to , so add to the Prüfer sequence.

Step 4: Removing node leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 3

Step 1: There are nodes, so continue to step 2.

Step 2: The nodes of degree are . Of these, is the lowest.

Step 3: is adjacent to , so add to the Prüfer sequence.

Step 4: Removing node leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 4

Step 1: There are nodes, so continue to step 2.

Step 2: The nodes of degree are . Of these, is the lowest.

Step 3: is adjacent to , so add to the Prüfer sequence.

Step 4: Removing node leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 5

Step 1: There are nodes, so continue to step 2.

Step 2: The nodes of degree are . Of these, is the lowest.

Step 3: is adjacent to , so add to the Prüfer sequence.

Step 4: Removing node leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 6

Step 1: There are nodes, so continue to step 2.

Step 2: The nodes of degree are . Of these, is the lowest.

Step 3: is adjacent to , so add to the Prüfer sequence.

Step 4: Removing node leaves the following tree:

At this stage, the Prüfer sequence is .

Iteration 7

Step 1: There are nodes, so stop.

The Prüfer sequence is .

1 2 n−2

From ProofWiki

1 Algorithm
1.1 Finiteness
1.2 Definiteness
1.3 Inputs
1.4 Outputs
1.5 Effective

2 Example
2.1 Iteration 1
2.2 Iteration 2
2.3 Iteration 3
2.4 Iteration 4
2.5 Iteration 5
2.6 Iteration 6
2.7 Iteration 7

3 Also see

Given a Prüfer sequence, it is possible to generate a finite labeled tree
corresponding to that sequence.

Let be a Prüfer sequence. This will be called the
sequence.

It is assumed the sequence is not empty.

Step 1: Draw the nodes of the tree we are to generate, and label them
from to . This will be called the tree.

Step 2: Make a list of all the integers . This will be called
the list.

Step 3: If there are two numbers left in the list, connect them with an
edge and then stop. Otherwise, continue on to step 4.

Step 4: Find the smallest number in the list which is not in the sequence,
and also the first number in the the sequence. Add an edge to the tree
connecting the nodes whose labels correspond to those numbers.

Step 5: Delete the first of those numbers from the list and the second
from the sequence. This leaves a smaller list and a shorter sequence.
Then return to step 3.

The above constitutes an algorithm, for the following reasons:

Finiteness

For each iteration through the algorithm, step 5 is executed, which reduces the
size of the list by .

Therefore, after iterations, at step 1 there will be numbers left in the
list, and the algorithm will stop.

Definiteness

Steps 1 and 2: Trivially definite.

Step 3: We are starting with a non-empty Prüfer sequence of length
, so the list must originally contain at least elements. As the

number of elements in the list decreases by each iteration (see step 5),
eventually there is bound to be just two elements in the list.

Step 4: As there are more elements in the list than there are in the
sequence, by the Pigeonhole Principle there has to be at least one number
in the list that is not in the sequence.

Step 5: Trivially definite.

Inputs

The input to this algorithm is the Prüfer sequence .

Outputs

The output to this algorithm is the tree .

The fact that is in fact a tree follows from the fact that:

 has nodes and (from the method of construction) edges;

Each new edge connects two as yet unconnected parts of , so every
edge is a bridge. Therefore there are no cycles in , from Condition for
Edge to be Bridge.

So is a tree from Equivalent Definitions for Finite Tree.

Effective

Each step of the algorithm is basic enough to be done exactly and in a finite
length of time.

Let the starting Prüfer sequence be .

Step 1: The sequence is length , so the tree will have nodes:

Step 2: We generate the list: .

Iteration 1

Step 3: There are elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join and , to obtain this
graph:

Step 5: We delete from the list to obtain , and
from the start of the sequence to obtain .

Iteration 2

Step 3: There are elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join and , to obtain this
graph:

Step 5: We delete from the list to obtain , and
from the start of the sequence to obtain .

Iteration 3

Step 3: There are elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join and , to obtain this
graph:

Step 5: We delete from the list to obtain , and from
the start of the sequence to obtain .

Iteration 4

Step 3: There are elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join and , to obtain this
graph:

Step 5: We delete from the list to obtain , and from the
start of the sequence to obtain .

Iteration 5

Step 3: There are elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join and , to obtain this
graph:

Step 5: We delete from the list to obtain , and from the
start of the sequence to obtain .

Iteration 6

Step 3: There are elements in the list, so we move on to step 4.

Step 4: The smallest number in the list which is not in the sequence is ,
and the first number in the sequence is . We join and , to obtain this
graph:

Step 5: We delete from the list to obtain , and from the start
of the sequence, which is at this point empty.

Iteration 7

Step 3: There are elements in the list: , so we join them to
obtain this graph:

Then we stop.

The algorithm has terminated, and the tree is complete.

Rearranging the positions of the nodes, we can draw it like this:

1 2 n−2

1 2 n−2

