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The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character
string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a
string that has runs of repeated characters by techniques such as move-to-front transform and run-length
encoding. More importantly, the transformation is reversible, without needing to store any additional data.
The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only
some extra computation.
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The Burrows–Wheeler transform is an algorithm used in data compression techniques such as bzip2. It was
invented by Michael Burrows and David Wheeler in 1994 while Burrows was working at DEC Systems
Research Center in Palo Alto, California.[1] It is based on a previously unpublished transformation
discovered by Wheeler in 1983.

When a character string is transformed by the BWT, the transformation permutes the order of the characters.
If the original string had several substrings that occurred often, then the transformed string will have several
places where a single character is repeated multiple times in a row.

For example:

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT[2]

The output is easier to compress because it has many repeated characters. In this example the transformed
string, there are a total of eight runs of identical characters: XX, II, XX, SS, PP, .., II, and III, which
together make 17 out of the 44 characters.

The transform is done by sorting all rotations of the text into lexicographic order, by which we mean that the
8 rotations appear in the second column in a different order, in that the 8 rows have been sorted into
lexicographical order. We then take as output the last column and the number k = 7 of the row that the non
rotated row ends up in. For example, the text "^BANANA|" is transformed into "BNN^AA|A" through these
steps (the red | character indicates the 'EOF' pointer):
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The following pseudocode gives a simple (though inefficient) way to calculate the BWT and its inverse. It
assumes that the input string s contains a special character 'EOF' which is the last character, occurs nowhere
else in the text.

function BWT (string s)
   create a table, rows are all possible rotations of s
   sort rows alphabetically
   return (last column of the table)

function inverseBWT (string s)
   create empty table

repeat length(s) times
       // first insert creates first column
       insert s as a column of table before first column of the table
       sort rows of the table alphabetically
   return (row that ends with the 'EOF' character)

To understand why this creates more-easily-compressible data, consider transforming a long English text
frequently containing the word "the". Sorting the rotations of this text will group rotations starting with "he "
together, and the last character of that rotation (which is also the character before the "he ") will usually be
"t", so the result of the transform would contain a number of "t" characters along with the perhaps
less-common exceptions (such as if it contains "Brahe ") mixed in. So it can be seen that the success of this
transform depends upon one value having a high probability of occurring before a sequence, so that in
general it needs fairly long samples (a few kilobytes at least) of appropriate data (such as text).

The remarkable thing about the BWT is not that it generates a more easily encoded output—an ordinary sort
would do that—but that it is reversible, allowing the original document to be re-generated from the last
column data.

The inverse can be understood this way. Take the final table in the BWT algorithm, and erase all but the last
column. Given only this information, you can easily reconstruct the first column. The last column tells you
all the characters in the text, so just sort these characters alphabetically to get the first column. Then, the
first and last columns (of each row) together give you all pairs of successive characters in the document,
where pairs are taken cyclically so that the last and first character form a pair. Sorting the list of pairs gives
the first and second columns. Continuing in this manner, you can reconstruct the entire list. Then, the row
with the "end of file" character at the end is the original text. Reversing the example above is done like this:
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A number of optimizations can make these algorithms run more efficiently without changing the output.
There is no need to represent the table in either the encoder or decoder. In the encoder, each row of the table
can be represented by a single pointer into the strings, and the sort performed using the indices. Some care
must be taken to ensure that the sort does not exhibit bad worst-case behavior: Standard library sort
functions are unlikely to be appropriate. In the decoder, there is also no need to store the table, and in fact
no sort is needed at all. In time proportional to the alphabet size and string length, the decoded string may be
generated one character at a time from right to left. A "character" in the algorithm can be a byte, or a bit, or
any other convenient size.

One may also make the observation that mathematically, the encoded string can be computed as a simple
modification of the suffix array, and suffix arrays can be computed with linear time and memory. The BWT
can be defined with regards to the suffix array SA of text T as (1-based indexing):

[3]

There is no need to have an actual 'EOF' character. Instead, a pointer can be used that remembers where in a
string the 'EOF' would be if it existed. In this approach, the output of the BWT must include both the
transformed string, and the final value of the pointer. That means the BWT does expand its input slightly.
The inverse transform then shrinks it back down to the original size: it is given a string and a pointer, and
returns just a string.

A complete description of the algorithms can be found in Burrows and Wheeler's paper, or in a number of
online sources.

When a bijective variant of the Burrows–Wheeler transform is performed on "^BANANA", you get
ANNBAA  ̂without the need for a special character for the end of the string. A special character forces one
to increase character space by one, or to have a separate field with a numerical value for an offset. Either of
these features makes data compression more difficult. When dealing with short files, the savings are great
percentage-wise.

The bijective transform is done by sorting all rotations of the Lyndon words. In comparing two strings of
unequal length, one can compare the infinite periodic repetitions of each of these in lexicographic order and
take the last column of the base-rotated Lyndon word. For example, the text "^BANANA|" is transformed
into "ANNBAA |̂" through these steps (the red | character indicates the EOF pointer) in the original string.
The EOF character is unneeded in the bijective transform, so it is dropped during the transform and re-added
to its proper place in the file.

The string is broken into Lyndon words so the words in the sequence are decreasing using the comparison
method above. "^BANANA" becomes ( )̂ (B) (AN) (AN) (A), but Lyndon words are combined into ( )̂ (B)
(ANAN) (A).
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The above may be viewed as four cycles:

 ̂= ( )̂(^)... = ^^^^ .̂..
B = (B)(B)... = BBBB...
ANAN = (ANAN)(ANAN)... = ANANANAN...
A = (A)(A).. = AAAAA..

or 5 cycles WHERE ANAN broken into 2:

AN = (AN) (AN) ... = ANANANAN
AN = (AN) (AN) ... = ANANANAN

If a cycle is N character it will be repeated N times:
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Since any rotation of the input string will lead to the same transformed string, the BWT cannot be inverted
without adding an EOF marker to the input or, augmenting the output with information such as an index,
making it possible to identify the input string from all its rotations.

There is a bijective version of the transform, by which the transformed string uniquely identifies the original.
In this version, every string has a unique inverse of the same length.[4][5]

The fastest versions are linear in time and space.

The bijective transform is computed by factoring the input into a non-increasing sequence of Lyndon words;
such a factorization exists in the Chen–Fox–Lyndon theorem,[6] and may be found in linear time.[7] The
algorithm sorts the rotations of all the words; as in the Burrows–Wheeler transform, this produces a sorted
sequence of n strings. The transformed string is then obtained by picking the final character of each string in
this sorted list.

For example, applying the bijective transform gives:

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Lyndon words SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Output STEYDST.E.IXXIIXXSMPPXS.B..EE..SUSFXDIOIIIIT

The bijective transform includes eight runs of identical characters. These runs are, in order: XX, II, XX, PP,
.., EE, .., and IIII.

In total, 18 characters are used in these runs.

When a text is edited, its Burrows–Wheeler transform will change. Salson et al.[8] propose an algorithm that
deduces the Burrows–Wheeler transform of an edited text from that of the original text, doing a limited
number of local reorderings in the original Burrows–Wheeler transform, which can be faster than
constructing the Burrows–Wheeler transform of the edited text directly.

This Python implementation sacrifices speed for simplicity: the program is short, but takes more than the
linear time that would be desired in a practical implementation.

Using the STX/ETX control codes to mark the start and end of the text, and using s[i:] + s[:i] to
construct the ith rotation of s, the forward transform takes the last character of each of the sorted rows:

def bwt(s):
"""Apply Burrows-Wheeler transform to input string."""
assert "\002" not in s and "\003" not in s, "Input string cannot contain STX and ETX characters"
s = "\002" + s + "\003" # Add start and end of text marker
table = sorted(s[i:] + s[:i] for i in range(len(s))) # Table of rotations of string
last_column = [row[-1:] for row in table] # Last characters of each row
return "".join(last_column) # Convert list of characters into string

The inverse transform repeatedly inserts r as the left column of the table and sorts the table. After the whole
table is built, it returns the row that ends with ETX, minus the STX and ETX.

def ibwt(r):
"""Apply inverse Burrows-Wheeler transform."""
table = [""] * len(r) # Make empty table
for i in range(len(r)):

table = sorted(r[i] + table[i] for i in range(len(r))) # Add a column of r
s = [row for row in table if row.endswith("\003")][0] # Find the correct row (ending in ETX)
return s.rstrip("\003").strip("\002") # Get rid of start and end markers

Here is another, more efficient method for the inverse transform. Although more complex, it increases the
speed greatly when decoding lengthy strings.

def ibwt(r, *args):
"""Inverse Burrows-Wheeler transform. args is the original index \

if it was not indicated by an ETX character."""

firstCol = "".join(sorted(r))
count = [0]*256
byteStart = [-1]*256
output = [""] * len(r)
shortcut = [None]*len(r)
#Generates shortcut lists
for i in range(len(r)):

shortcutIndex = ord(r[i])
shortcut[i] = count[shortcutIndex]
count[shortcutIndex] += 1
shortcutIndex = ord(firstCol[i])
if byteStart[shortcutIndex] == -1:

byteStart[shortcutIndex] = i

localIndex = (r.index("\003") if not args else args[0])
for i in range(len(r)):

#takes the next index indicated by the transformation vector
nextByte = r[localIndex]
output [len(r)-i-1] = nextByte
shortcutIndex = ord(nextByte)
#assigns localIndex to the next index in the transformation vector
localIndex = byteStart[shortcutIndex] + shortcut[localIndex]

return "".join(output).rstrip("\003").strip("\002")

Here is a third one, more efficient and very simple method. It increases the speed greatly when decoding
lengthy strings. Although it needs an origin index list generated by bwt.

def bwt(s):
"""Apply Burrows-Wheeler transform to input string. Not indicated by a unique byte but use index list
# Table of rotations of string
table = [s[i:] + s[:i] for i in range(len(s))]
# Sorted table
table_sorted = table[:]
table_sorted.sort()
# Get index list of ((every string in sorted table)'s next string in unsorted table)'s index in sorte
indexlist = []
for t in table_sorted:

index1 = table.index(t)
index1 = index1+1 if index1 < len(s)-1 else 0
index2 = table_sorted.index(table[index1])
indexlist.append(index2)

# Join last characters of each row into string
r = ''.join([row[-1] for row in table_sorted])
return r, indexlist

def ibwt(r,indexlist):
"""Inverse Burrows-Wheeler transform. Not indicated by a unique byte but use index list"""
s=''
x = indexlist[0]
for _ in r:

s = s + r[x]
x = indexlist[x]

return s

The advent of next-generation sequencing (NGS) techniques at the end of the 2000s decade has led to
another application of the Burrows–Wheeler transformation. In NGS, DNA is fragmented into small pieces,
of which the first few bases are sequenced, yielding several millions of "reads", each 30 to 500 base pairs
("DNA characters") long. In many experiments, e.g., in ChIP-Seq, the task is now to align these reads to a
reference genome, i.e., to the known, nearly complete sequence of the organism in question (which may be
up to several billion base pairs long). A number of alignment programs, specialized for this task, were
published, which initially relied on hashing (e.g., Eland, SOAP,[9] or Maq[10]). In an effort to reduce the
memory requirement for sequence alignment, several alignment programs were developed (Bowtie,[11]

BWA,[12] and SOAP2[13]) that use the Burrows–Wheeler transform.
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