
Several theoretical results from Frank Ruskey’s
Combinatorial Generation concerning
prenecklaces, necklaces, and Lyndon words

typeset by M. Markov, the author is of course Frank Ruskey

May 3, 2018

Abstract

The presented theorems and their theoretical background is based on
Chapter 7 of Frank Ruskey’s Combinatorial Generation [Rus03].

1 Preliminaries

An alphabet is a finite set of letters. We think of letters as natural numbers.
Typically, our alphabet is Σk � t0, 1, . . . , k � 1u for some k ¥ 2. The set
of all strings over Σk is Σ�k. The set of all strings of length n is Σnk . Thus,
Σ�k �

�
nPN Σ

n
k . Furthermore, Σ�k �

�
nPN� Σ

n
k .

The length of any string x is denoted by |x|.
The symbol ‘ε’ denotes the empty string. Clearly, ε � Σ�kzΣ

�
k and |ε| � 0.

The concatenation operation is denoted with no symbol. If σ1 P Σ
n1

k

and σ2 P Σ
n2

k , the concatenation of σ1 and σ2, in that order, is denoted by
σ1σ2. Clearly, σ1σ2 P Σ

n1�n2

k . Let σ1σ2 be called x. We say that σ1σ2 is a
factorisation of x and σ1, σ2 are factors of x. We say the factorisation is
nontrivial iff σ1 �� ε and σ2 �� ε.

A prefix of any string x is any string u such that there is a factorisation,
not necessarily nontrivial, x � uv. A proper prefix of x is any prefix of x
that is not equal to x. Likewise, v is a suffix of x, and a proper suffix is one
that does not equal the whole string x.

The lexicographic order relation over Σk, shortly the lex order, is the
relation ¨ over Σ�k � Σ

�
k defined as follows. For all x, y P Σ�k, x ¨ y iff:

� x � ε or

� x � ax1 and y � by1 and

1

�� a b or

�� a � b and x1 ¨ y1

where a, b P Σk and x1, y1 P Σ
�
k.

We define another relation over the same domains and call it ‘ ’. For all
x, y P Σ�k, x y iff x ¨ y and x �� y.

The notation “x � yt” says that x is the pt � 1q-times concatenation of
the string y with itself:

x � yy � � �yloomoon
t factors

Clearly, for every string x P Σ�k it is the case that x � yt, for some t ¥ 1

where y is some string in Σ�k such that |x| � t � |y|.
Let x P Σnk for some n ¡ 0. We say x is periodic iff x � yt for some

t ¥ 2. x is aperiodic iff x is not periodic; in other words, x is aperiodic iff
x � yt for and only for t � 1. If x � yt and y is aperiodic we say y is the
periodic reduction of x and |y| is the period of x. E.g., 010100 is aperiodic
and 010101 is periodic; furthermore, the periodic reduction of 010101 is 01
and thus the period is 2.

Let x, y P Σnk . We say x is a rotation of y iff there exists a factorisation
of x, not necessarily nontrivial, say x � uv such that y � vu. We define the
relation �n� Σ

n
k � Σ

n
k as follows:

@x, y P Σnk : x �n y iff x is a rotation of y

Proposition 1. For all n P N, the relation �n is an equivalence relation.

The classes of equivalence of �n are called the necklaces. For simplicity,
each such class is identified with its smallest—in lex order—element. n is
the size of each of those necklaces. E.g., there are precisely six necklaces of
size four:

0000, 0001, 0011, 0101, 0111, 1111

The set of all necklaces denoted by N . The set of all necklaces of size n
over Σnk is denoted by Nkpnq. Equivalently:

Nkpnq � tx P Σ�k | @y such that y �n x : x ¨ yu

As already mentioned, N2p4q � t0000, 0001, 0011, 0101, 0111, 1111u.

2

Any aperiodic necklace is called Lyndon word. The set of all Lyndon
words is denoted by L. The set of all Lyndon words of size n over Σnk is
denoted by Lkpnq. Equivalently:

Lkpnq � tx P Nkpnq | x is aperiodicu

Clearly, L2p4q � t0001, 0011, 0111u.
A prenecklace is any string that is a prefix of some necklace. Clearly,

every necklace is a prenecklace. Note that not every string is a prenecklace.
E.g., 1000 is not a prenecklace because for any β P Σ�k it is the case that
1000β ª 000β1. The set of all prenecklaces of size n over Σnk is denoted by
Pkpnq. Equivalently:

Pkpnq � tx P Σ�k | Dm P N such that Dy P Σmk such that xy P Nkpn�mqu

Clearly, P2p4q � N2p4q Y t0010, 0110u.

2 Lemmas and Theorems on Prenecklaces,

Necklaces and Lyndon Words

Let α P Σnk be the string α � a0a1 � � �an�1.

Lemma 1 (Lemma 7.1 in [Rus03]). If α � xy � yx and x �� ε and y �� ε
then α � pa0a1 � � �ad�1q

n
d where d � gcdpn, |x|q.

Proof: Let |x| � m. Then xy � yx implies:

a0 � am pmod nq

a1 � am�1 pmod nq

a2 � am�2 pmod nq

� � �

am�1 � a2m�1 pmod nq

am � a2m pmod nq

� � �

an�1 � am�n�1 pmod nq, i.e. an�1 � am�1 pmod nq

Shortly, ai � ai�m pmod nq, for 0 ¤ i ¤ n� 1. The remainder of the proof
relies on Lemma 2.2 in [Rus03] that says that, given m and n, iterating
jm pmod nq for 0 ¤ j ¤ n � 1 yields a multiset of n numbers (so far, it
is obvious) that consists of d copies of each of the m

d
distinct numbers kd,

0 ¤ k ¤ m
d
� 1, where d � gcdpm,nq. The proof of Lemma 2.2 in [Rus03] in

its turn relies on Section 4.8 in [GKP94]. l

3

Corollary 1 (Corollary 7.1 in [Rus03]). If α � xy � yx and x �� ε and
y �� ε then α is periodic.

Theorem 1 (Theorem 7.3 in [Rus03]). The following formulae are valid for
all n ¥ 1, k ¥ 1:

|Lkpnq| �
1

n

¸
d|n

µ
�n
d

	
kd (1)

|Nkpnq| �
1

n

ņ

j�1

kgcdpj,nq �
1

n

¸
d|n

φpdqk
n
d (2)

|Pkpnq| �
ņ

j�1

|Lkpjq| (3)

Proof: Let Akpnq be the set of all aperiodic strings of length n over Σk. But
every string in Σnk is an “integral power” of some aperiodic string, so kn �°
d|n |Akpdq|. Apply Möbius inversion to obtain |Akpnq| �

°
d|n µ

�
n
d

�
kd.

Now note that |Akpnq| � n|Lkpnq| because all n circular shifts of an aperiodic
string produce distinct results. Equation (1) follows.

Equation (2) is proved with Burnside’s lemma. Necklaces are obtained
as a result of the action of the cyclic group Cn on all strings in Σnk . Let σ be
the function cyclic shift left by one position. Then Cn � tσ0, σ1, . . . , σn�1u.
We are interested in the fixpoints; more precisely, we would like to determine
for how many strings α it is the case that σjpαq � α. Use Lemma 1 and
conclude that can occur only if α � βt where β is aperiodic, i.e. β P L,
and |β| � gcdpn, jq. The number of these strings is clearly k|β| � kgcdpj,nq.
By Burnside’s lemma, the number of the equivalence classes is

°n
j�1 k

gcdpj,nq

divided by the cardinality of C, i.e. by n.
The fact that

°n
j�1 k

gcdpj,nq �
°
d|nφpdqk

n
d follows from equation (2.11)

in [Rus03]. It says that:

ņ

j�1

fpgcdpn, jqq �
¸
d|n

φ
�n
d

	
fpdq �

¸
d|n

φpdqf
�n
d

	

The derivation uses the fact that d � gcdpn, jq iff 1 � gcd
�
j, n
d

�
, i.e. j and

n
d

are relatively prime; having noted that, the derivation is trivial because
the three sums describe different arrangements of the same summands. The
preliminaries of (2.11) do not specify anything about f. We can safely assume
f is any arithmetic function.

The proof of (3) relies on Lemma 4. According to Lemma 4, each pre-
necklace is a prefix of some string β� where β is a Lyndon word. Furthermore,

4

each prenecklace is uniquely determined by its longest prefix that is a Lyndon
word. Having that in mind, (3) follows immediately. l

Theorem 2 (Theorem 7.4 in [Rus03]). The following conditions characterise
N and L. Suppose α P Σ�k .

1. α P N iff for any factorisation of α, say α � xy, it is the case that
xy ¨ yx.

2. α P L iff for any nontrivial factorisation of α, say α � xy, it is the
case that xy yx.

Proof: The first statement follows immediately from the definition of “neck-
lace”. We prove the second statement.

In one direction, assume α is a Lyndon word. Then assume there exists
a nontrivial factorisation of α, say α � xy, such that xy ¢ yx. But that is
equivalent to xy © yx. The following two cases are exhaustive.

� If xy ¡ yx then there is a rotation of α, namely yx, that is smaller
than α and thus α R N . Then α R L, contrary to the former assumtion
that α is a Lyndon word.

� If xy � yx we conclude α is periodic – that follows from the assumption
the factorisation xy is nontrivial and Corollary 1. That conclusion,
however, contradicts the former assumption that α is a Lyndon word.

In the other direction, assume for every nontrivial factorisation of α, say
α � xy, it is the case that xy yx. Assume that α R L. However, it must
be the case that α P N since xy yx for every nontrivial factorisation xy of
α. It must be the case that α is periodic. But then there exists a nontrivial
factorisation of α, say α � x 1y 1, such that α � y 1x 1. Then x 1y 1 � y 1x 1 in
contradiction of the assumption that for every nontrivial factorisation of α,
say α � xy, it is the case that xy yx. l

Lemma 2 (Lemma 7.2 in [Rus03]). If α P N , then αt P N for all t ¥ 1.

Proof: If t � 1 there is nothing to prove. Assume t ¡ 1. Consider any
factorisation of αt, say αt � xy. Clearly, yx has the form γαt�1δ where δγ
is a factorisation of α. But α is a necklace and therefore δγ ¨ γδ. It follows
that pδγqt ¨ pγδqt. The left-hand side equals αt. The right-hand side equals
γαt�1δ. Then αt ¨ γαt�1δ. Then xy ¨ yx. Use Theorem 2 and conclude
αt is a necklace. l

Lemma 3 (Lemma 7.3 in [Rus03]). If α P L and α has factorisation α � βγ
such that γ �� ε, then for any t ¥ 1:

5

1. αtβ P P, and

2. αtβ P N iff β � H.

Proof: Consider the first claim. α is a necklace because it is a Lyndon word.
Use Lemma 2 to conclude both αt and αt�1 are necklaces. Then clearly αtβ
is a necklace since β is a prefix of α.

Consider the second claim. If β � ε then obviously αtβ � αt and it is
a necklace. Now assume β �� ε. Recall that βγ is a factorisation of α and
α is a Lyndon word. By Theorem 2 it is the case that βγ γβ. Then
pβγqt pγβqt and βpβγqt βpγβqt. But βpγβqt � βαt and βpβγqt �
pβγqtβ � αtβ. It follows βαt αtβ and thus αtβ is not a necklace by
Theorem 2. l

For any nonempty string α, let lynpαq be the length of the longest prefix of
α that is a Lyndon word. Since a single letter is a Lyndon word, lynpαq ¥ 1.

Lemma 4 (Lemma 7.4 in [Rus03]). Let α � a1a2 � � �an be a string and
p � lynpαq. α P P iff aj�p � aj, for j � p� 1, p� 2, . . . , n.

Proof, part 1: Assume

a1 � ap�1

a2 � ap�2

� � �

an�p � ap

Let the longest prefix of α that is a Lyndon word be σ. Clearly, |σ| � p.
Then α has a factorisation σtz for some t ¥ 1 where z is a prefix of α. In
other words, from left to right, α is a repetition of the same Lyndon word σ
followed by some suffix z that is a prefix of α. Use Lemma 3 to conclude α
is a prenecklace.

Proof, part 2: Assume α is a prenecklace. We have to show that a1 � ap�1,
a2 � ap�2, etc., an�p � ap. Assume the opposite.

Define j to be the smallest index such that p� 1 ¤ j ¤ n and aj�p �� aj.
Let the longest prefix of α that is a Lyndon word be σ. Then, for some t ¥ 1,
α has the form:

α � σtδajaj�1 � � �an

where δ is a proper prefix of α. Every letter from δ matches the letter that
is at distance p left of it (that letter is in the rightmost copy of σ) and the
“problematic” letter aj does not match the letter that is at distance p to the

6

left of it (that letter is aj�p and is in the rightmost copy of σ, too). It follows
σ � δγ for some nonempty suffix γ where aj�p is the first letter of γ.

Assume aj�p ¡ aj. Since α P P there is a string η such that αη is a
necklace. Consider αη:

αη � σσ � � �σlooomooon
t factors

δajaj�1 � � �anη

Consider the rightmost σ in details, noting the rightmost letter of the right-
most σ is atp:

αη � σσ � � �σlooomooon
t�1 factors

δ aj�p � � �atplooooomooooon
γloooooomoooooon

the rightmost σ

δajaj�1 � � �anη

The “problematic” pair of symbols aj�p, aj that do not match is coloured.
Now imagine that αη is cyclically shifted left p positions. Call the result τ:

τ � σσ � � �σlooomooon
t�2 factors

δ aj�p � � �atplooooomooooon
γloooooomoooooon
σ

δajaj�1 � � �anησ

Compare τ with αη. The red letter aj in τ is precisely in the same position as
the green letter aj�p in αη. To see why, note that the prefix of τ left of the red
letter aj is precisely the same as the prefix of αη left of the green letter aj�p
– in both strings, the said prefix is σt�1δ. So, the result of the comparison of
both strings depends on the comparison between aj and aj�p. However, we
assumed that aj�p ¡ aj. It follows that τ αη. Then a nontrivial rotation
of αη, namely τ, is lexicographically smaller than αη, and by Theorem 2, αη
is not a necklace.

In the remainder of the proof assume aj�p aj. Consider the prefix of α
up to and including aj. Call that prefix ρ. Then ρ � σtδaj. Ignore the rest
of α and focus on ρ only. Note that |ρ| ¡ |σ| because even if t is as small
as 1 and δ is empty, still ρ has at least one more letter than σ, namely aj.
Recall that σ is the longest prefix of α that is a Lyndon word. The proof
proceeds by analyses of cases and subcases but the idea is always the same:
show that ρ is a Lyndon word, in contradiction of the earlier assymption that
the longest prefix of α that is a Lyndon word is σ. The tool we use to show
that ρ is a Lyndon word is Theorem 2: we consider an arbitrary nontrivial
factorisation xy of ρ and show that xy yx; by Theorem 2 that means ρ
is a Lyndon word. So, consider an arbitrary nontrivial factorisation ρ � xy.

7

As ρ � σtδaj, there are two possibilities for x relative to σtδaj: σ
t is a prefix

of x or x is a prefix of σt.

Case 1: σt is a prefix of x. Then x � σtu where u may or may not be
empty. Then y � vaj where, clearly, uv � δ. y cannot be empty because
aj is in y. We already note that δ is a proper prefix of σ. In the current
notation, uv is a proper prefix of σ. It follows σ � uvw for some nonempty
string w. Furthermore, aj�p is the first letter of w because aj�p is the first
letter right of δ in σ.

� Assume u �� ε. But uvw vwu because uvw, that is σ, is a Lyndon
word and u vw is a nontrivial factorisation of its; recall that both u
and vw are nonempty. However, vwu vaj because the first letter of
w is aj�p and we did assume aj�p aj. By the transitivity of we
infer uvw vaj. Then

uvwloomoon
σ

σt�1δajlooooooomooooooon
xy

 vajloomoon
y

σtuloomoon
x

We proved that xy yx under the current assumptions.

� Assume u � ε. In this subcase uvw � vw. We want to prove that
uvw vaj, that is, vw vaj. But that is true for precisely the same
reason as above: the first letter of w is smaller than aj. Having shown
that uvw vaj, we derive xy yx precisely as above.

Case 2: x is a prefix of σt. Then x � σm1u and y � vσm2δaj where uv is a
factorisation of σ and m1 �m2 � t� 1.

� u � ε or v � ε. These two possibilities are effectively the same thing
because both of them imply the “slice” between x and y does not “cut”
any σ in two (nonempty) parts. So, without loss of generality, assume
u � ε and thus v � σ. Then

xy � σm1εloomoon
x

σσm2δajlooomooon
y

� σm1σm2�1δaj

We claim that

σm1loomoon
x

σm2�1δajloooomoooon
y

 σm2�1δajloooomoooon
y

σm1loomoon
x

8

But that follows immediately from the observation that the letter aj
in the right-hand side is matched against a letter aj�p in the left-hand
side; this aj�p is either in σm1 or in σm2�1. To see why aj is matched
against aj�p note that the prefix σm2�1δ is found as a prefix of the left-
hand side where it is being followed by an aj�p letter. Since aj�p aj,
it follows the left-hand side is indeed smaller in the lex order.

Now observe the left-hand side is xy and the right-hand side is yx.
Once again we showed that xy yx.

� u �� ε and v �� ε and thus uv is a nontrivial factorisation of σ.

�� Assume m2 � 0. The string ρ � xy looks like:

xy � σm1uloomoon
x

vδajloomoon
y

� σσm1�1ulooomooon
x

vδajloomoon
y

Clearly, yx looks like:

yx � vδajloomoon
y

σm1uloomoon
x

Note that xy starts with a σ and when we compare xy with yx
to see which one is lexicographically smaller we compare that σ
with vδaj. Note that both u and δ are prefixes of σ and we do
not know which one of them is longer.

� � � δ is a proper prefix of u and that means δaj is not longer than
u. So, when we compare xy with yx, the string δaj that yx
begins with is matched against the prefix u of the leftmost σ
of xy. But σ P L and uv is a nontrivial factorisation of σ,
therefore uv vu by Theorem 2. Furthermore, it must be
the case that vu vδaj because they have a common prefix
and u δaj since δ is a proper prefix of u and aj is matched
against a smaller letter in u, namely one that equals aj�p.

� � � δ is not a proper prefix of u and that means δaj is longer than
u. When we compare xy with yx, the string σ that xy begins
with is matched against the prefix vδ of yx. But now δ is at
least as long as u so we effectively compare the prefix σ of
xy with the prefix vu of yx. Since σ � uv and uv vu, the
desired result follows.

�� Now assume m2 ¡ 0. We can rewrite

xy � σm1uvσm2δaj � upvuq
m1pvuqm2vδaj � upvuq

m1�m2vδaj

9

Let us compare xy with yx. That is, compare

uvupvuqm1�m2�1vδaj vs vuvpuvqm2�1δajσ
m1u

We can rewrite xy and yx in this way because m2 ¡ 0. However,
uv vu because uv � σ is a Lyndon word. Then certainly
uvz1 vuz2 for any strings z1, z2. Thus we demontrated that
xy yx. l

The following theorem is called “The Fundamental Theorem of Necklaces”
in [Rus03].

Theorem 3 (Theorem 7.5 in [Rus03]). Let α � a1a2 � � �an�1 P Pkpn�1q. Let
p � lynpαq. Let b P Σk. Then αb P Pkpnq iff b P tan�p, an�p�1, . . . , k�1u.
Furthermore,

lynpαbq �

#
p, if b � an�p

n, if b ¡ an�p

Proof: Follows right away from the proof of Lemma 4. l

The recursive FKM (Fredricksen, Kessler, Maiorana) algorithm that genera-
tes necklaces or prenecklaces or Lyndon words or De Brujin sequences, in lex
order. Its correctness can be proved using Theorem 3 and Lemma 5 below.
Assume k and n are global variables, the string a1a2 � � �an is globally visible,
and a0 � 0 is appended at the beginning.

FKM(t, p P N)
1 if t ¡ n
2 PrintIt(p)
3 else
4 at Ð at�p
5 FKM(t� 1, p)
6 for jÐ at�p to k� 1
7 at Ð j

8 FKM(t� 1, t)

The initial call is, of course, FKMp1, 1q. The function PrintIt can be im-
plemented in four different ways, each implementation outputting one type of
objects from necklaces, prenecklaces, Lyndon words or De Brujin sequences.

� If we wish prenecklaces then PrintItppq is Printlnpa1a2 � � �anq, ig-
noring p.

10

� If we wish necklaces then PrintItppq is
if n mod p � 0 then Printlnpa1a2 � � �anq else do-nothing.

� If we wish Lyndon words then PrintItppq is
if p � n then Printlnpa1a2 � � �anq else do-nothing.

� If we wish De Bruijn sequences then PrintItppq is
if n mod p � 0 then Printpa1a2 � � �apq else do-nothing.

The following statement in [Rus03] is not called “lemma” or “proposition” or
“theorem” but merely “definition” (Definition 7.1, to be precise). However,
it is not a definition by its nature because the successor function is not just
any function – it is well-defined by a definition that is completely different
and is based on the definitions of “prenecklace” and “lex order”. Here we
claim a certain property holds for the successor function. The proof follows
from Lemma 4.

Consider the list formed by the elements of Pkpnq in the lex order. Clearly,
the first element is 0n. For any α P Pkpnq such that α pk� 1qn, succpαq is
the string that follows immediately α in the said list.

Lemma 5 (Definition 7.1 in [Rus03]). Let α � a1a2 � � �an and 0n ¨ α

pk� 1qn. Then

succpαq � pa1a2 � � �ai�1pai � 1qq
ta1a2 � � �aj

where i is the largest integer such that 1 ¤ i ¤ n and ai k � 1, t �
X
n
i

\
,

and j � n mod i.
We also define the predecessor function predpαq. If succpαq � β, then

predpβq � α. l

3 Theoretical Results on De Bruijn Sequen-

ces

A De Bruijn cycle, or, alternatively, a cyclic De Bruijn sequence, or shortly
a De Bruijn sequence, over Σk and relative to parameter n, is a cyclic string
S such that every element of Σnk occurs in it precisely once and each letter in
S is the first letter of one element of Σnk . Intuitively, assuming we “drag” a
window of width n over S, we see in this window every possible k-ary string
of length n precisely once. Relative to k � 2 and n � 3, an example of De
Bruijn cycle is 00011101.

11

The length of any De Bruijn cycle—we still have not proved existence—
relative to k and n is kn because that is the number of k-ary strings of length
n and each letter of the cycle is the start of precisely one of them.

The theoretical foundation for the generation of De Bruijn cycles by FKM
is Theorem 4.

Theorem 4 (Theorem 7.6 in [Rus03]). The list of successive periodic re-
ductions of necklaces as produced by the FKM algorithm forms a De Bruijn
cycle.

Proof: Let us first compute the length of the output of FKMp1, 1q relative
to some k and n when the algorithm is tuned (via function PrintIt) to
output De Bruijn cycle. The output is a single string that is a concatenation
of the outputs of all individual calls of PrintIt for, and only for, the values
of p that divide n. Let us call that string D. Each such output of PrintIt
has length p. For each p that divides n the number of outputs is |Lkppq|; on
the other hand, if p does not divide n then nothing is output. Thus:

|D| �
¸
p|n

p|Lkppq|

Let Akpnq denote the set of all aperiodic strings of length n over Σk – as in
the proof of Theorem 1. As we said there, |Akpnq| � n|Lkpnq|. So we can
rewrite the formula for |D| thus:

|D| �
¸
p|n

|Akppq|

As we said in the proof of Theorem 1, the right-hand side of this formula
equals kn. It follows that |D| � kn. On the other hand, every De Bruijn
cycle over Σk and relative to n has length kn. We see that at least the length
of D is right. Next we prove that indeed every k-ary string of length n occurs
precisely one in this output. Clearly, it suffices to show that every such string
occurs at least one because of the already proved fact that |D| � kn.

The first two outputs are 0 and 0n�11, in that order. Thus 0n1 is a prefix ofD.
The last two outputs are pk� 2qpk� 1qn�1 and pk� 1q. Thus pk� 2qpk� 1qn

is a suffix of D. Since D is a circular string, it contains 0npk � 1qn as a
substring. It follows that all strings 0ppk� 1qn�p occur in D, for 0 ¤ p ¤ n.
So far we have proved the occurrence of n� 1 strings in D.

The key observation is that every other string has the form pk � 1qppxyqt

where 0 ¤ p ¤ n � 1, t ¥ 1, x starts with a letter that is not pk � 1q, xy
contains a non-zero letter, and—that is crucially important—yx P L. The
remainder of the proof is in eight cases because we consider three orthogonal
possibilities:

12

� p � 0 or p ¡ 0,

� t � 1 or t ¡ 1,

� y � ε or y �� ε.

Case 1: p � 0, t � 1, y � ε. Clearly, α � x. Since yx P L and y � ε it
must be the case that x P L. So, in this case we consider the Lyndon words.
We already know that FKM outputs all Lyndon words so there is nothing
more to prove here.

Case 2: p � 0, t � 1, y �� ε. Now α � xy and yx P L. We know that FKM
outputs every Lyndon word over Σk of length ¤ n and so it outputs yx.

What is the next output after yx? Note that succpyxq � yz for some
string z since not every letter in x is pk � 1q. Why? Because at least one
letter of x is not pk � 1q. Recall the essence of the successor function from
Lemma 5: the rightmost symbol that is not pk� 1q is increased by 1. Surely
that symbol is in x as we consider succpyxq and therefore the prefix y is left
intact by the successor function. What is the periodic reduction of yz?

We prove the periodic reduction of yz is a string with prefix y. Indeed,
it cannot be the case that yz � βr for some β that is a proper prefix of y
because:

� By Theorem 3 we know that if β is a Lyndon word, then βr is the
smallest necklace of length r|β| with prefix β in the lex order.

� yx is a smaller that yz necklace in the lex order since yz � succpyxq;
if yz were βt for some proper prefix β of y, then yz � βr would be
lexicographically smaller than yx.

We conclude it cannot be the case that after yx the next output string is a
mere proper prefix of y. It follows that y appears right after yx in D and
thus xy is a substring of D. That is, α is a substring of D.

Case 3: p � 0, t ¡ 1, y � ε. Now α � xt and x P L. As x P L, x is output
and it appears somewhere in D.

What string is output next after x? We claim that string is xt�1Spxq
where Spxq is the necklace: that is right after x in the lex order. Furthermore,

:Spxq is not necessarily the same thing as succpxq. The latter is the prenecklace that
is immediately after x in the lex order. The former is the necklace that first appears
after x in the lex order. E.g., let k � 3 and n � 5. Then 01002 is a Lyndon word.
succp01002q � 01010 but 01010 is not output because it is merely a prenecklace and not
a necklace. The necklace that follows 01002 is 01011 and so 01011 is output right after
01002.

13

pt� 1q|x| � |Spxq| � n. Why is that the case? Recall how PrintIt operates
when it is tuned for De Bruijn cycles: if α � a1 � � �an is a periodic necklace,
that is, if p divides n, then only the periodic reduction a1 � � �ap is output.
That periodic reduction is x because x P L and thus it is “atomic”. Next
the string a1 � � �an is “incremented” so that what was the rightmost periodic
reduction, that is the rightmost copy of x, gets incremented to its successor
succpxq. Now the whole string is aperiodic and the next call of PrintIt
outputs an n-letter output.

We showed that the next output after x has prefix xt�1. This means that
xxt�1 occurs as a substring in D. It follows that α is a substring of D.

Case 4: p � 0, t ¡ 1, y �� ε. Now α � pxyqt and yx P L. Being a Lyndon
word, yx is output by FKM.

What is the next string that is output? Similarly to the previous case,
the next string that is output is the aperiodic Sppyxqtq � pyxqt�1ySpxq. To
see why that is the case, recall that x has a letter that is not pk� 1q and so
the successor function increments a letter in the rightmost copy of x; thus
the rightmost y is left intact.

We conclude that yxpyxqt�1ySpxq is a substring of D. But that contains
pxyqt � α as a substring.

Case 5: p ¡ 0, t � 1, y � ε. Now α � pk � 1qpx and x P L. Consider
the string predpxqpk� 1qp and call it β. Here, predp q is the function defined
in Lemma 5. Note that predpxq exists because x cannot be all zeroes and
the predp q function is defined for all strings except for the all-zeroes string.
And x cannot be all zeroes because xy, which in this case is x, by the initial
assumptions has a non-zero letter in it.

But D contains β as a substring because β P L. To see why β �
predpxqpk � 1qp is a Lyndon word recall that x is a Lyndon word of length
smaller than n.

Think of the successor of β. The letter in β that gets incremented is
somewhere in predpxq because the suffix pk � 1qp has no letter to be in-
cremented. So, the successor of β has prefix succppredpxqq and that equals
x.

That means D contains a substring predpxqpk � 1qpx and thus contains
as a substring pk � 1qpx. But then D contains as a substring α because
α � pk� 1qpx.

Case 6: p ¡ 0, t � 1, y �� ε. Now α � pk� 1qpxy where p ¥ 1 and yx P L.
Let γ be the smallest circular shift of α in the lex order. We consider the
following distinct possibilities for γ that are exhaustive.

� γ � xypk� 1qp. In this case γ is a Lyndon word. We proceed exactly

14

as is Case 5 with the current xy substituted for x in Case 5.

� γ � ypk� 1qpx.

�� If γ is periodic then the periodic reduction must be ypk� 1qp and
γ � pypk�1qpqq, which means x � pypk�1qpqq�1. The algorithm
outputs predpyqpk � 1qn�|y|, followed by ypk � 1qp, followed by
pypk� 1qpqq�1Spypk� 1qpq. Then this is a substring of D:

predpyqpk� 1qn�|y| ypk� 1qppypk� 1qpqq�1Spypk� 1qpq

In this subcase we have

α � pk� 1qp pypk� 1qpqq�1looooooomooooooon
x

y

Clearly, D has α as a substring.

�� If γ is aperiodic then γ is output by the algorithm. The next
output has the form ypk � 1qpz. Then ypk � 1qpxypk � 1qpz is a
substring of D and so α is a substring of D.

Case 7: p ¡ 0, t ¡ 1, y � ε. Now α � pk � 1qpxt and x P L. Note that
β � predpxqpk� 1qn�|x| is a Lyndon word and, therefore, is found in D. Let

r � n mod |x| and m �
Y
n
|x|

]
.

� If r � 0 then |x| divides n. In this subcase the algorithm outputs x,
which is a Lyndon word, followed by xm�1Spxq. Then D contains the
following string:

predpxqpk� 1qn�|x| xxm�1Spxq

We see D has a copy of α in it.

� If r ¡ 0 then |x| does not divide n then succpβq, which is xmSpzq, is
a Lyndon word where z is the r-letter prefix of x. Since m ¥ t, the
string α occurs in D.

Case 8: p ¡ 0, t ¡ 1, y �� ε. Now α � pk� 1qppxyqt with p ¡ 0, t ¡ 1, and
yx P L. As is Case 7, let γ be the lexicographically smallest circular shift
of α. It must be the case that γ � ypxyqt�1pk � 1qpx and this is a Lyndon
word. The next output string is ypxyqt�1pk � 1qpSpxq—recall that x has a
letter smaller than pk� 1q. So, D contains this string as a substring:

ypxyqt�1pk� 1qpxypxyqt�1pk� 1qpSpxqx

Clearly, D has a copy of α in it. l

15

References

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics: A Foundation for Computer Science. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edi-
tion, 1994.

[Rus03] Frank Ruskey. Combinatorial generation, 2003.

16

	Preliminaries
	Lemmas and Theorems on Prenecklaces, Necklaces and Lyndon Words
	Theoretical Results on De Bruijn Sequences

