
CS5371
Theory of Computation

Lecture 22: Complexity VII
(More NP-complete Problems)

•We shall continue to look at more NP-
complete problems:

–Directed Hamiltonian Path
–Hamiltonian Path
–SUBSET SUM
–PARTITION

•Some more if we have time today

Objectives

Directed HAMPATH

Theorem: D-HAMPATH is NP-complete.

Let G be a directed graph. A directed
Hamiltonian path in G is a path that visits
all the vertices of G once and only once.

Let D-HAMPATH be the language

{ G,s,t| G has a directed Hamiltonian
path from s to t }

D-HAMPATH is NP-complete (2)

Proof: First, D-HAMPATH is in NP (easy
to show). Then, we show it is NP-complete
by reduction from 3SAT.

To determine if Fis in 3SAT, we shall
construct G with two special vertices s, t
such that

F3SAT  G,s,tD-HAMPATH

D-HAMPATH is NP-complete (3)

Let x1, x2, …, xj be the variables in the
3cnf-formula F. For each variable xi, we
create a ‘diamond-shaped structure’that
contains a horizontal row of nodes:

xi …

D-HAMPATH is NP-complete (4)

Let C1, C2, …, Ck be the clauses in F. For
each clause Cm, we create a node:

Cm

Next slide shows the global structure of G.

It shows all the elements of G and their
relationship, except the relationship of the
variables to the clauses that contains them

C2

…

Ck

C3

C1



s

x1

…x2



…xj

t
High-level structure of G

Diamond Structure

Each diamond structure contains a
horizontal row of nodes connected by
edges running in both directions.

There are 3k+1 nodes in each row (in
addition to the two nodes on the end that
belongs to the diamond)

Diamond Structure
The nodes in the horizontal row are
grouped into adjacent pairs, one for each
clause, with extra separator nodes next to
the pair:

…

pairs
for C1

pairs
for C2

xi

Connection with Clauses

If variable xi appears in clause Cm, we add
the following two edges from the mth pair
in the xi’s diamond structure to node Cm

…

pairs
for Cm

xi
…

Cm

Connection with Clauses (2)

If :xi appears in clause Cm, we add the
following two edges from the mth pair in
the xi’s diamond structure to node Cm

…

pairs
for Cm

xi
…

Cm

Note the
direction change

D-HAMPATH is NP-complete (5)

After we add all the edges corresponding
to each occurrence of xi or : xi in each
clause, the construction of G is finished

We claim that this is our desired reduction:

(=>) Suppose that F is satisfiable. To
demonstrate an Hamiltonian path from s to
t in G, we first ignore the clause nodes

D-HAMPATH is NP-complete (6)

The path begins at s, goes through each
diamond in turn, and ends up at t

To hit the horizontal nodes in a diamond,
the path is either one of the following way:

… …

Left-to-Right Right-to-Left

D-HAMPATH is NP-complete (7)

If xi is assigned TRUE in the satisfying
assignment of F, we use Left-to-Right
method to traverse the corresponding
diamond. Otherwise, if xi is assigned
FALSE, we use the Right-to-Left method

So far, the path covers all the nodes in G
except the clause nodes. We can easily
include them by adding detours at the
horizontal node

D-HAMPATH is NP-complete (8)

In each clause, we select a literal that is
assigned TRUE in the satisfying assignment
of F

Suppose we select xi in clause Cm. Then, in
our current path, the horizontal nodes in xi
are from Left-to-Right. Also, by our
construction of edges in P. 11, we can see
that we can easily detour at the mth pair of
horizontal nodes, and cover Cm

D-HAMPATH is NP-complete (9)

Similarly, if we select : xi in clause Cm, then
in our current path, the horizontal nodes in
xi are from Right-to-Left. Also, by our
construction of edges in P. 12, we can see
that we can easily detour at the mth pair of
horizontal nodes, and cover Cm

Thus, if F is satisfiable, G has a Hamiltonian
path from s to t (proof of the => direction done)

D-HAMPATH is NP-complete (10)

(<=) For the other direction, if G has a
Hamiltonian path from s to t, we shall
demonstrate a satisfying assignment for F

Firstly, we take a look at the Hamiltonian
path. If it is “normal”--- that is, visiting
the diamonds in the order from top one to
the bottom one (excluding the detours to
clause nodes) --- we can obtain a satisfying
assignment as follows: (next slide)

D-HAMPATH is NP-complete (11)

•If the path is Left-to-Right in the
diamond for xi, we assign TRUE to xi

•If the path is Right-to-Left in the
diamond for xi, we assign FALSE to xi

Because each clause node is visited once in
the Hamiltonian path, by determining how
the detour is taken, we know that at least
one literal in each clause is TRUE

D-HAMPATH is NP-complete (12)

It remains to show is:

Hamiltonian path must be normal

We prove this by contradiction.

Suppose on the contrary that the path is
not normal. Then, the Hamiltonian path
must have entered a clause from one
diamond, but left the clause to another
diamond, as shown in next slide:

When Hamiltonian Path not Normal

…

…



Cm

a1 a2 a3

b

D-HAMPATH is NP-complete (13)

The Hamiltonian path goes from a1 to c but
instead of returning to a2, it goes to b in
a different diamond

However, in our graph G, a2 is connected to
at most three nodes: a1 , a3, and c (why?)

If a2 is a separator: connects to a1 and a3 only

Else: connects to a1, a3, and c only

D-HAMPATH is NP-complete (14)

In the current path, a1 and c have both been
visited now. So a2 cannot find two distinct
nodes (one incoming neighbor, one outgoing neighbor)
that connects it to the current path

Thus, current path is not Hamiltonian !!

and a contradiction occurs (where?)

So, all Hamiltonian path from s to t must be
normal. This implies that if such a path
exists, F is satisfiable (proof of <= direction done)

D-HAMPATH is NP-complete (15)

In conclusion, we have

F3SAT  G,s,tD-HAMPATH

As it is easy to see that the above reduction
from 3SAT to D-HAMPATH takes only
polynomial time, D-HAMPATH is therefore
NP-complete

Undirected HAMPATH

Theorem: HAMPATH is NP-complete.

Let HAMPATH be the language

{ G,s,t| G has a (undirected) Hamiltonian
path from s to t }

HAMPATH is NP-complete
We just give a sketch of the proof:

1. First, HAMPATH is in NP (easy to check).

2. Next, to see why it is NP-complete, we
reduce 3SAT to HAMPATH, using similar
construction as we use in D-HAMPATH.

However, the graph is now undirected.
Instead of using directed edges in the
reduction in D-HAMPATH before, we …

HAMPATH is NP-complete (2)
…replace every node u in previous graph by
3 nodes, uin, umid, uout, in the new graph

A directed edge from u to v in the previous
graph is now replaced by an undirected
edge joining uout and vin

This completes the reduction, and we can
show that this reduction works (exercise
at home!) and takes polynomial time

Thus, HAMPATH is NP-complete

How about HAM-CIRCUIT ?

Theorem: HAM-CIRCUIT is NP-complete.

Let HAM-CIRCUIT be the language

{ G| G has a Hamiltonian circuit }

HAMCIRCUIT is NP-complete (2)

Proof: First, HAMCIRCUIT is in NP (easy
to show). Then, we show it is NP-complete
by reduction from HAMPATH.

To determine if G,s,tis in HAMPATH, we
construct G’by adding to G a new vertex v,
and two edges {v,s} and {v,t}. Then it is
easy to see that:

G,s,tHAMPATH  G’HAMCIRCUIT

SUBSET-SUM is NP-Complete

Theorem: SUBSET-SUM is NP-complete.

Let S be a set of positive integers.

Let SUBSET-SUM be the language

{ S,t| S has a subset whose sum is t }

SUBSET-SUM is NP-complete (2)

Proof: First, SUBSET-SUM is in NP (easy
to show). We show it is NP-complete by
reduction from 3SAT

Let F be a Boolean formula in 3cnf-form.
Let x1, x2, …, xj be its variables and let C1,
C2, …, Ck be its clauses.

We transform F into a set S of 2j+2k (very
large) numbers, with each having j+k digits
(the first j digits corresponds to variables, and the
following k digits corresponds to clauses)

SUBSET-SUM is NP-complete (3)

For each variable xi, we create two numbers
yi and zi, such that their ith digit (corresponding
to xi) is set to 1. Also,

•if xi appears in Cm, set the (j+m)th digit
of yi (which corresponds to Cr) to 1

•if :xi appears in Cm, set the (j+m)th digit
of zi (which corresponds to Cm) to 1

The remaining digits of yi and zi are set to 0

Constructing the numbers in S

001000zj

101000yj


010010z2

100010y2

000001z1

010001y1

CkC2C1j321

Assume C1 = (x1 _ : x2 _ x3) and C2 = (x2 _ : x3 _ xj)

SUBSET-SUM is NP-complete (4)

In addition, S contains one pair of numbers,
gm and hm for each clause Cm

These two numbers are equal, with the
(j+m)th digit (which corresponds to Cm) set to 1
[Later, they are used as ‘fillers’to get a subset sum]

Let t = 1111 3333 [j 1s followed by k 3s]
be the target number. We shall show:

F is satisfiable a subset of S adds to t

SUBSET-SUM is NP-complete (5)

(=>) Suppose F is satisfiable. We select yi if
xi is set to TRUE. Else, we select zi

If we add the numbers selected so far,

1. Leftmost j digits are correct (why?)

2. Each of the remaining k digits is
between 1 and 3 (why?)

Now, we can select suitable gm or hm (or both)
to fill up the differences, thus getting t

SUBSET-SUM is NP-complete (6)

(<=) On the other hand, suppose a subset of
S adds up to t. Then, exactly one of the
yi or zi is in this subset (why?)

By setting xi to TRUE when yi is in the
subset, and FALSE when zi is in the
subset

We claim F is satisfied: Consider the
numbers in the subset whose (j+m)th bit
(corresponding to Cm) is 1

SUBSET-SUM is NP-complete (7)

There must be 3 such numbers (why?), so
one of them must be some yi or zi (why?)

•If it is yi, it means (i) Cm contains xi,
and (ii) we have assigned xi to TRUE

•If it is zi, it means (i) Cm contains : xi,
and (ii) we have assigned xi to FALSE

In both cases, Cm is satisfied

Thus, all clauses are satisfied, and so is F

SUBSET-SUM is NP-complete (8)

Now, we have shown that

F3SAT  S,tSUBSET-SUM

Also, it is easy to check that the above
reduction takes polynomial time (in terms
of the length of F).

Thus, SUBSET-SUM is NP-complete.

PARTITION is NP-Complete

Theorem: PARTITION is NP-complete.

Let S be a set of positive integers.

Let PARTITION be the language

{ S| S can be partitioned into two groups
such that the sum in each group is
the same }

PARTITION is NP-complete (2)

Proof: First, PARTITION is in NP (easy to
show). Then, we show it is NP-complete by
reduction from SUBSET-SUM.

To determine if S,k is in SUBSET-SUM, let
X = sum of values in S. We construct S’by
adding the two numbers 2X-k and X+k to S.
Then it is easy to see that (why??):

S,kSUBSET-SUM  S’PARTITION

Brain Teaser 1: HITTING SET

Theorem: HITTING-SET is NP-complete.

Let C be a collection of subsets of S. A set
of S’is called a hitting set for C if every
subset of C has at least one element in S’.

Let HITTING-SET be the language

{ C,k| C is a collection of subsets with a
hitting set of size k }

Brain Teaser 2:
SUBGRAPH ISOMORPHISM

Theorem: SUBGRAPH-ISO is NP-complete

We say two graph H=(V,E) and H’=(V’,E’)
are isomorphic if there exists a one-to-one
function f: V’ V such that

{ u,v } in E if and only if { f(u),f(v) } in E’

Let SUBGRAPH-ISO be the language

{ G,H| G has a subgraph isomorphic to H}

SUBGRAPH-ISO is NP-complete

Proof: First, SUBGRAPH-ISO is in NP
(easy to show). Then, we show it is NP-
complete by reduction from CLIQUE.

Given G,k, we construct G’,H’as follows:

Set G’= G. Set H’= k-clique. Then it is
easy to see that:

G,kCLIQUE G’,H’SUBGRAPH-ISO

Brain Teaser 3:
BOUNDED-DEG SPANTREE

Theorem: Bounded-Deg-ST is NP-complete

A spanning tree of a graph G=(V,E) is a
tree containing every vertex in G, and
whose edges are from E. A degree-k
spanning tree is a spanning tree such that
degree of each internal node is at most k

Let Bounded-Deg-ST be the language

{ G,k| G has a degree-k spanning tree }

Bounded-Deg-ST is NP-complete

Proof: First, Bounded-Deg-ST is in NP
(easy to show). Then, we show it is NP-
complete by reduction from HAMPATH

Hint: What is a degree-2 spanning tree?

A degree-2 spanning tree is a Hamiltonian
path in the graph!!!

Bounded-Deg-ST is NP-complete (2)

Now, given a graph G, we can transform G
into G’by adding two nodes, u and v, and
two edges, {u,s} and {v,t}. Then, we can see

G,s,tHAMPATH



G’,2Bounded-Deg-ST

So, Bounded-Deg-ST is NP-complete

Brain Teaser 4: KNAPSACK

Theorem: KNAPSACK is NP-complete.

Let S be a set of items, each item x in S
has a positive integral value v(x) and a
positive integral weight w(x).

Let KNAPSACK be the language

{ S,b,k| a subset of items in S of total
weight at most b, but whose total
value is at least k }

KNAPSACK is NP-complete
Proof: First, KNAPSACK is in NP (easy to
show). Then, we show it is NP-complete by
reduction from PARTITION

Let S = {s1,s2,…,sj} be a set of +ve integers.
We want to construct S’, b, and k such that

SPARTITION  S’,b,kKNAPSACK

The construction of S’is as follows:

KNAPSACK is NP-complete (2)
For each si in S, we create xi in S’such that

w(xi) = v(xi) = si

Also, set b = k = Y/2, where Y = s1+s2+…+sj

Now, if S has a partition, then a subset of
numbers in S adds up to Y/2. By choosing
the items of S’that corresponds to this
subset, the total weight b and the total
value k (why?)

Thus, SPARTITION  S’,b,kKNAPSACK

KNAPSACK is NP-complete (3)

On the other hand, if a subset of items of
S’have total weight b and total value k,
then the sum of the corresponding si in S
will be at most b and at least k (why?).

Since b = k = Y/2, we have the sum of
those items in S = Y/2
Thus, S’,b,kKNAPSACK  SPARTITION

As the reduction can be done in polynomial
time, KNAPSACK is NP-complete.

What we have learnt

• The class P, and the class NP
• Some problems in NP are the most

difficult ones in the set. We call them
NP-complete problems

• SAT is NP-complete
• Other problems in NP can be shown to be

NP-complete using polynomial time
reduction (from what to what?)

Next Time

• Chapter 8 (not in exam) or Revision?

Decision vs Optimization
• The problems we have seen so far are

called decision problems, because we want
to decide if a string is in a set or not

• For instance, in the vertex cover problem,
we have a language VERTEX-COVER

{ G,k| G is a graph with a vertex cover
of size k }

and our task is to decide if a string is in
the set or not

Decision vs Optimization
• For most decision problems we studied,

we can define its optimization version

• E.g, in vertex cover problem, we can ask:

Given a graph G, what is the minimum
subset of vertices that can cover G?

• For the above problem, we don’t want a
yes/no answer, but we want a specific
cover whose size is minimum

Decision vs Optimization

• Recall: VERTEX-COVER is NP-complete
 Unlikely to solve its optimization (min)

version in polynomial time

• Other than give up, we may find:
• Better exponential-time algorithm

• improve from O(2n) to O(1.28n)
• Approximation algorithm
• Randomized algorithm
• Simplified version

• restrict G to be bipartite

Approximation Algorithm?
• Algorithm with performance guarantee

• E.g., an algorithm that can always find a
cover whose size is at most k times the
optimal one

 We call this a k-approximation
algorithm for the vertex cover problem

Approximation Algorithm
• In general, a k-approximation algorithm

• for minimization problem guarantees a
solution at most k times the optimal
one; while

• for maximization problem (such as
finding a maximum clique in G)
guarantees a solution at least 1/k times
the optimal one

• smaller k = better guarantee

Approximation Algorithm
• For vertex cover, can we find a good

approximation algorithm?

• Good means:
• It runs fast (in polynomial time)
• It has small k

• Let us try to find a 2-approximation
algorithm for vertex cover

