
Bottleneck Spanning Trees

Ahmad Traboulsi

November 17, 2014

1

1 Minimum Bottleneck Spanning Trees

1.1 Minimum Bottleneck Spanning Trees

Let G = (V, E) be an undirected connected graph with a cost function w mapping
edges to positive real numbers. A spanning tree is a tree connecting all vertices of
G. The bottleneck edge of a spanning tree is the edge with the highest cost among
all edges of that tree, there might be more than one bottleneck edge in a spanning
tree in which they all have the same cost. A spanning tree T is called a minimum
bottleneck spanning tree (MBST) if its bottleneck edge cost is minimum among all
possible spanning trees. It is easy to see that a graph may have many MBSTs (e.g.
consider a graph where all edges’ costs are the same, then all the spanning trees of
that graph have same bottleneck edge cost and ̸ ∃ spanning tree with a bottleneck
edge cost lower than any other spanning tree , therefore any spanning tree of such
graph is a MBST.

The well known problem Minimum Spanning Tree (MST) is related to MBST in
which the Former is necessary an MBST while the opposite is not true. Therefore
any algorithm that get an MST is also an algorithm to get an MBST. However we
will see in the upcoming section an algorithm to get an MBST in O(E) time com-
plexity

Most of the upcoming algorithms in this chapter try to get a MBST by achieving
a unique partitioning of the Edges in the Graph G=(V,E) into two sets A* and B*
such that:

• ∀ek ∈ A∗ and ∀eh ∈ B∗ w(ek) ≥ w(eh)

• the deletion of any edge in A∗ will never disconnect G. Moreover the deletion
of all edges in A∗ will never disconnect G.

• The Graph GB∗ = (V,B∗) has the following properties:
any spanning tree of GB∗ is an MBST of G Let K be equal to the cost of the
highest edge cost in set B∗. If an edge with the cost k is deleted the graph GB∗

might get disconnected, but if all edges of cost k were deleted then Graph GB∗

will get disconnected

2

1.2 Camerini’s algorithm for finding an MBST in a con-
nected undirected Graph

Cameron’s algorithm for finding an MBST is based on partitioning the set of edges
E into two sets A and B and then checking if the current partition B of the edges in
the graph G is enough to have a spanning tree of G or not, if yes then the objective
now is to get the MBST of the graph GB in which again we do the partitioning and
ask the same question. If the edges in B did not form a spanning tree of G then
we consider the forest formed along with the MBST of the Graph GA collapsed into
η where η here is the set of components formed by the maximal forest of GB. We
define the following functions and sets which will we see in the algorithm:

1. A= UH(E) // Function UH takes E set of edges in G and returns A ⊂ E such
that:

(a) |A| =
⌊
|E|
2

⌋

(b) ∀ek ∈ A and ∀eh ∈ (E − A) w(ek) ≥ w(eh)

2. Let B = E − A

3. F= FOREST(GB) // where GB = (V,B) and FOREST returns F such that:

(a) F the maximal forest of GB = (V,B)

4. η = {N1,, Nc} where Ni is the i−th component of F

Now for the function UH we are actually computing the median and then go through
the set of edges E, any edge greater than the median we put it in set A. Then if

|A| ̸=
⌊
|E|
2

⌋
we keep adding the edges with the cost equal to median until |A| =

⌊
|E|
2

⌋
.

Now the rest of the edges we put them in B. While the Function forest is implemented
utilizing DFS.

1.2.1 Theorem 1

(a)If F is a spanning tree of G then an MBST of G is given by the MBST of GB

(b)If F is not a spanning tree of G then an MBST of G is given by F ∪ any MBST
of Graph G′ . Where G′ is Graph GA Collapsed into η

3

Proof

In theorem 1 (a) it can be clearly seen that ∀eh ∈ B ≤ ∀ek ∈ A this implies
that the maximum weight of edges in spanning tree of G is not less that GB. In part
(b) of the theorem, consider S an MBST of G, modify S such that if eh ∈ B − S
creates a cycle in S + ek that contains an edge ek ∈ A then replace ek by eh, by the
end of all of these substitution you will have S=F+S’ where S’ is the spanning tree
of G’

The following algorithm suggested by Camerini:

Algorithm 1 Compute a MBST of Graph G
1: procedure MBST(G,w)
2: Let E be the set of edges of G
3: if |E| = 1 then
4: Return E;
5: else
6: A← UH(E,w);
7: B ← E − A
8: F ← FOREST (GB)
9: Let η = {N1, N2,, NC} where Ni(i = 1, 2,, c) is the set of nodes

of the i− th component of F ;
10: if c = 1 then
11: Return MBST (GB, w);
12: else
13: Return F ∪ MBST ((GA)η, w);
14: end if
15: end if
16: end procedure

4

The time Complexity analysis of the above algorithm is as follow:

UH, FOREST, GB, (GA)η all require O(m2i) at the i − th iteration, where m is the
number of edges at the first call. Since UH is similar to finding the median and then
splitting the edges of E with respect to that median and finding the median can be
done in O(m) time ref.[6], FOREST can be computed using DFS, and finally GB,
(GA)η since it only consist of building the adjacency list which contains O(m2i) edges
at iteration i.

Therefore runs in O(m+ m
2 + m

4 ++ 1) = O(m)

Description of the illustration below showing an example of running the MBST al-
gorithm

MBST was called for 4 times as follow:

• 1st time was called for the original Graph G → F was not a spanning tree
therefore return F ∪ MBST(GA)η

• 2nd time was called for the Graph (GA)η F ′ of G′
B is a spanning tree of (GA)η

therefore return MBST(G′
B)

• 3rd time was called for the Graph GB′

F ′′ of GB′′ is not a spanning tree of G′
B therefore return F ′′ ∪ MBST((GA′′)α)

• 4th time was called for the Graph (GA′′)α

5

Figure 1: Disconnected Components in F

Figure 2: Recursive Call for MBST on (GA)η

6

Figure 3: Recursive Call for MBST on GB′ and then (GA′′)α

Figure 4: Finally MBST of G

7

1.3 MBST in Directed Graphs (MBSA)

Given a directed graph G = (V,E) with a cost function w mapping edges to positive
real numbers. An arborescence of G is a directed tree of G which contains a directed
path from a specified, say node L, to each node of a subset V ′ of V − {L}. Node L
is called the root of arborescence.
An arborescence is a spanning arborescence if V ′ = V − {L}. An MBST in this case
is called a Minimum Bottleneck Spanning Arborescence (MBSA).

1.3.1 Camerini’s algorithm for finding MBSA

For a directed graph Camerini’s algorithm focus on finding the set of edges that
would have its maximum cost as the bottleneck cost of the MBSA. This is done by
partitioning the set of edges E into two sets A and B and maintaining the set T
that is the set in which it is known that GT does not have a spanning arborescence,
increasing T by B whenever the maximal arborescence of G(B∪T) is not a spanning
arborescence of G, otherwise we decrease E by A. Below we define the functions and
sets required in the algorithm of camerini for MBSA. In the directed graph G=(V,E),
it is assumed to have a spanning arborescence rooted at node L. We define the follow

1. A= UH(E-T) // Function UH takes (E-T) set of edges in G and returns A ⊂
(E-T) such that:

(a) |A| =
⌊
(|E−T |)

2

⌋

(b) ∀ek ∈ A and ∀eh ∈ ((E − T)− A) w(ek) ≥ w(eh)

2. T a subset of E for which it is know that GT does not contain any spanning
arborescence rooted at node L. Initially T=∅

3. Let B = (E − T)− A

4. F= BUSH(GB∪T) // where GB∪T = (V,B∪T) and BUSH returns F such that:

(a) F the maximal arborescence of GB∪T rooted at L.

8

The function UH is same us the one utilized in the previous algorithm while
BUSH is also similar to FOREST in which it is implemented using DFS.
There are two cases in which algorithm 3 is build upon. The cases are

(a) If F was a spanning arborescence of G then MBSA of G is given by MBSA
of G(B ∪ T)

(b) If F was not a spanning arborescence of G then T is increased by B then compute
A,B and F again.

Algorithm 2 Main call
1: procedure MBSA-MAIN(G,w, T)
2: S ← BUSH(G);
3: T=∅;
4: MBSA(G,w,T);
5: Return S;
6: end procedure

Algorithm 3 Compute a MBSA of A Directed Graph G
1: procedure MBSA(G,w, T)
2: Let E be the set of edges of G
3: if |E − T | > 1 then
4: A ← UH(E-T);
5: B ← (E-T)-A;
6: F ← BUSH(GB∪T);
7: if F is a spanning arborescence of G then S ← F; MBSA((GB∪T , w, T);
8: else
9: MBSA(G,w, T ∪ B);
10: end if
11: end if
12: end procedure

Fig 5 shows how the search space of the MBSA is changing during a run of the
algorithm.

9

Figure 5: Search Space

The Time Complexity analysis of algorithm 3 is as follow:

• UH requires O(m)

• BUSH requires O(m) at each execution , implemented using DFS.

• The number of these executions is O(logm) since |E − T | is being halved at
each call of MBSA

Total total time complexity is O(mlogm)

10

1.3.2 Gabow and Tarjan algorithm for MBSA

Gabow and Tarjan noticed that if Dijkstras single-source shortest path algorithm
ref.[2] was modified slightly it will produce an MBSA. Their modified algorithm is
shown below:
In the directed graph G=(V,E) let c(u,v) denote the cost of the edge (u,v). s is a
distinguished root vertex that has a path to all nodes in G. Let p(v) denote the parent
of v in the tree. F contains a collection of vertices along with their corresponding
inclusion cost c(v). Initially F contains node s the distinguished root vertex with
c(s) = −∞

Algorithm 4
1: procedure MBSA-GT(G,w, T)
2: for |V | times do
3: Select v with minimum c(v) from F
4: Delete it from F
5: for ∀edge(v, w) do
6: if w ̸∈F or ̸∈ Tree then
7: add w to F
8: c(w)=c(v, w)
9: p(w)=v
10: else
11: if w ∈ F AND c(w) > c(v, w) then
12: c(w) = c(v, w)
13: p(w) = v
14: end if
15: end if
16: end for
17: end for
18: end procedure

11

The above algorithm runs in O(|V |log|V |+ |E|) time if Fibonacci heap ref.[4] was
used to implement F.
Below a table showing the operations on fibonacci heap time complexity taken from
http://en.wikipedia.org/wiki/Fibonacci_heap

Figure 6: Operations Time Complexity

The Total edges visited are |E| and we are iterating in the outer for loop for |V | times
the operation done inside the inner loop are in O(log|V |), therefore time complexity
is O(|V |log|V |+ |E|)

1.3.3 Gabow and Tarjan Finding λ∗

Another approach proposed by Tarjan and Gabow with bound of O(mlog ∗ n) for
sparse graphs, in which it is very similar to Camerini’s algorithm for MBSA, but
rather than partitioning the Set of edges into two sets per each iteration, K(i) was
introduced in which i is the number of splits that has taken place or in another words
the iteration number, and K(i) an increasing function that denotes the number of
partitioned sets that we should have per iteration. K(i) = 2k(i−1) with k(1) = 2.
The algorithm finds λ∗ in which it is the value of the bottleneck edge in any MBSA.
After λ∗ is found any spanning arborescence in G(λ∗) is an MBSA in which G(λ∗) is
the Graph where all its edge’s costs are ≤ λ∗. The algorithm to find λ∗ is presented
below.

12

Algorithm 5
1: procedure MBSA-KPartitioning(G,w)
2: λ1= c(u, v) where c(u, v) ≤ c(x, y) ∀(x, y) ∈ E // λ1 be the minimum edge

cost in E
3: λ2= c(u, v) where c(u, v) ≥ c(x, y) ∀(x, y) ∈ E // λ2 be the maximum edge

cost in E
4: i=0;
5: Step 1:
6: i ← i+ 1;
7: Let S0 ⊂ E such that ∀ek ∈S0 c(ek) ≤ λ1

8: Let E1 ⊂ E such that ∀eh ∈E1 λ1 < c(eh) ≤ λ2

9: Step 2:
10: Partition E1 into k(i) subsets such that S1, S2, S3,,S(k(i))

11: and ∀er ∈ Si and ∀ep ∈ Si+1 er ≤ ep
12: and the size of each subset is ⌈ |E1|

K(i)⌉ or ⌊
|E1|
K(i)⌋

13: Step 3:
14: Find minimum j such that G(j) = (V, S0 ∪ S1 ∪ S2 · · · ∪ Sj)
15: and in G(j) ∀v ∈ V ∃ path from s to v where s is the distinguished
16: root
17: Step 4:
18: if (j=0)
19: λ∗=λ1 Terminate;
20: Else
21: λ1= c(u, v) where c(u, v) ≤ c(x, y) ∀(x, y) ∈ Sj

22: // λ1 be the minimum edge cost in Sj

23: λ2= c(u, v) where c(u, v) ≥ c(x, y) ∀(x, y) ∈ Sj

24: // λ2 be the maximum edge cost in Sj

25: Go to Step 1
26: end procedure

Complexity analysis of the above algorithm

Step 3 takes O(|E|) using incremental search ref.[3]. Step 1 and step 4 take O(|E|)
each. And Step 2 is similar to finding the median however you have to find the
median logk(i) times takes O(|E1|logK(i)) but since K(i) = 2K(i−1) and at the i-th
iteration |E1|=O(|E|

k(i−1)) therefore it runs in O(|E|)
The total time per iteration is O(|E|) and the number of iterations is O(log∗K)
giving an overall time O(|E|log∗K)

13

The below figures illustrate the partitioning of the Gabow and Tarjan second
algorithm.

Figure 7:
Figure 8:

Figure 9:
Figure 10:

14

Exercises

1. Give a linear time algorithm to determine if a graph G = (V,E) contains a
MBST with its maximum edge ≤ b, where b is a given constant.

2. Show that a MST is always a MBST while MBST is not always an MST.

15

References

[1]P.M. Camerini, The Min-Max Spanning Tree Problem And Some Ex- tensions,
Information Processing Letters, Vol. 7, Num. 1, January 1978

[2]E. W. Dijkstra, A note on two problems in conexxion with graphs, Numer. Math.
1 (1959), 269-271.

[3]H.N. Gabow, R.E. Tarjan, Algorithms for Two Bottleneck Optimization Prob-
lems, Journal Of Algorithms 9 (1988) 411-417

[4]M. L. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in network optimiza-
tion, J. Assoc. Comput. Mach. 34 (1987), 596-615.

[5]Minimax and applications by Du, Dingzhu; Pardalos, P. M Nonconvex optimiza-
tion and its applications, 1995

[6]Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E. (August
1973). ”Time bounds for selection”. Journal of Computer and System Sciences 7
(4): 448461

[7] http://flashing-thoughts.blogspot.ru/2010/06/everything-about-bottleneck-spanning.html

16

