
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

VOLKER KAIBEL MATTHIAS A.F. PEINHARDT

On the Bottleneck Shortest Path Problem

Supported by the DFG Research Center MATHEON in Berlin

ZIB-Report 06-22 (May 2006)

ON THE BOTTLENECK SHORTEST PATH PROBLEM

VOLKER KAIBEL AND MATTHIAS A.F. PEINHARDT

Abstract. The Bottleneck Shortest Path Problem is a basic problem
in network optimization. The goal is to determine the limiting capaci-
ty of any path between two specified vertices of the network. This is
equivalent to determining the unsplittable maximum flow between the
two vertices. In this note we analyze the complexity of the problem, its
relation to the Shortest Path Problem, and the impact of the underlying
machine/computation model.

1. Introduction

The Bottleneck Shortest Path Problem (BSP) is at the core of a number
of network optimization problems. The performance of algorithms for it is
sometimes crucial for the running times of algorithms for higher level prob-
lems in which it occurs as a subproblem. Two examples are the k–splittable
flow problem [4] (where the running time of the underlying BSP algorithm
appears as a factor in the worst case running time bound of the presented
algorithm) and the Max Flow Problem [2, Chapter 7]. As outlined in [2], the
asymptotical worst case behaviour of the Edmonds–Karp algorithm cannot
be improved by using a BSP algorithm for finding augmenting paths, but it
might still improve the practical performance.

We start with a formal definition of the problem. Let G = (V,E) be a
graph, either directed or undirected, with integral edge weights ce ∈ N for
all edges e ∈ E. The capacity bp of a path p (viewed as a set of edges) is
given by bp := mine∈p ce. (For the empty path, we define b∅ = ∞.) With
respect to some fixed start vertex vertex s ∈ V , the bottleneck bv of a vertex
v ∈ V is bv := maxp bp, where p ranges over all (directed) paths starting
in s and ending in v. An edge that determines the capacity of a path or the
bottleneck of a vertex (i.e., an edge for which the corresponding minimum
is attained) is called critical for the path or vertex, respectively.

The Bottleneck Shortest Path Problem (BSP) is to determine, for a given
graph G = (V,E), edge weights ce ∈ N (e ∈ E), and a start vertex s ∈ V ,
the bottleneck bt of some specified target vertex t. If we are given the bottle-
neck bt of some vertex t then we can construct an s–t–path with capacity bt

in linear time by a simple search in the graph obtained by removing all edges
of capacity less than bt.

Viewing the BSP as the problem to find a maximal unsplittable s–t–flow,
it may not be too surprising that one has a duality relation via cuts: Given
a BSP instance with source s, target t, we have

max
p

bp = min
q

max
e∈q

ce,

Supported by the DFG Research Center Matheon in Berlin.

1

2 KAIBEL AND PEINHARDT

where p ranges over all s–t–paths and q over all s–t–cuts [8], see also [12,
Chap. 8].

Nevertheless, for our purposes it will turn out to be more important that
the BSP is closely related to the (Single Source) Shortest Path Problem
(SP) by replacing the capacity bp of a path p by the length `p =

∑
e∈p ce,

and, instead of maximizing bp, minimizing `p over all paths that connect s
and v. Indeed, a slightly modified Dijkstra algorithm solves the BSP in time
O(m + n log n) (i.e., as fast as the SP can be solved this way, see, e.g., [7,
Chap. 24.3]).

However, looking a bit more closely to the BSP one soon gets the impres-
sion that it should be solvable much easier (and faster?) than the SP. The
most intriguing reason is that it is trivial to solve the decision problem “Is
there an s–t–path of capacity at least k?” in linear time: Just remove all
edges with weights less than k and check whether there is any s–t–path left.
This is in contrast to the SP, for which it is not at all clear, why the decision
problem “Is there an s–t–path of length at most k?” should be easier than
SP itself.

We discuss a linear time algorithm for the BSP in undirected graphs in
Section 2. In Section 3, we describe an algorithm for the BSP in directed
graphs with m edges that runs in time O(m log log m). The role played by
the machine models in these discussions is treated briefly in Section 4.

2. The BSP in Undirected Graphs

It seems to be folklore for a long time that a linear time algorithm for
the BSP in undirected graphs exists. Nevertheless, we could not find any
explicit reference to that in the literature. Therefore, we describe such an
algorithm below (see Algorithm 1).

To fix some notation: For a subset S of nodes, we denote by δ(S) the
set of all edges with one end point in S and the other end point not in S.
For directed graphs we further distinguish the sets of outgoing edges δout(S)
and incoming edges δin(S). We also write δ(v) for a single vertex v meaning
δ({v}) Here are some remarks on Algorithm 1 some of which will also be
relevant later.

• We always assume that the graphs are given by means of adjacency
lists.
• We can assume that the edges have pairwise distinct weights; e.g., by

numbering the edges and breaking ties in favor of the lower numbers.
• It is well known (see, e.g. [5, 6]) that a median of m numbers (a

number k out of the given numbers with the property that bm/2c
numbers are less than or equal to k and m−bm/2c are greater than
or equal to k) can be found in linear time, i.e., in O(m) steps (see,
e.g., [7, Chap. 9.3]). This can be done both on a pointer machine as
well as on a RAM machine.
• Shrinking a set of nodes can be done in linear time. More precisely,

given a set S ⊆ V of nodes of an (undirected) graph G = (V,E), one
can construct in linear time another graph with nodes (V \S)∪{vnew}
(where vnew represents the shrunken set S), where v, w ∈ V \ S are
adjacent if and only if v and w are adjacent in G (in this case,

ON THE BOTTLENECK SHORTEST PATH PROBLEM 3

the edge keeps its weight), and vnew and w ∈ V \ S are adjacent
if and only if there is some v ∈ S such that v and w are adjacent
in G (in which case the edge receives the biggest weight of any edge
connecting S and w in G).

Algorithm 1 A BSP algorithm for undirected graphs

1: INPUT: an undirected graph G = (V,E) with edge weights ce ∈ N for
all e ∈ E,
and source and target vertices s, t ∈ V ;
w.l.o.g. all edge weights are different, and there is an s–t–path.

2: Initialize Iterationcount← 0
3: while Iterationcount < dlog me do
4: Determine the median value M of the edge weights of the edges cur-

rently in the graph.
5: Remove all edges e with small weight ce < M .
6: if the graph is not s–t–connected then
7: Let V1, . . . , Vq be the connected components.
8: Reinsert all edges removed in this iteration.
9: Shrink V1, . . . , Vq.

10: end if
11: Iterationcount← Iterationcount + 1
12: end while
13: OUTPUT: the last remaining edge as a critical edge

The correctness of Algorithm 1 (for undirected graphs) is rather obvious:
If in line 6 it turns out that the graph still is s–t–connected, than hiding the
edges of weights less than M in line 5 did not affect the optimal solution.
Otherwise, in each subgraph to be shrunken in line 9, every vertex can be
connected to every other one by a path with capacity at least M ; thus the
bottleneck of t (being smaller than M) will remain the same in the shrunken
graph.

Furthermore, the algorithm runs in time O(m), where m = |E| denotes
the number of edges: The crucial observation is that in every iteration of
the loop in lines 3–11 half of the edges are removed from the graph, either
by shrinking all “thick” edges (in line 9) or by dropping all “thin” edges (in
line 5). As all steps inside that loop can be done in linear time in the size
of the current graph, the total running time is bounded by

O(m + m
2 + m

4 + · · ·) = O(m) .

This shows the following result.

Theorem 1. Algorithm 1 solves the BSP in undirected graphs with m edges
in time O(m).

As mentioned above, the result described in this theorem apparently has
been known before, but it seems that it has not been stated explicitly in the
literature.

Comparing this simple algorithm to Thorup’s linear time algorithms for
SP in undirected graphs [14, 15], we observe that the BSP algorithm even

4 KAIBEL AND PEINHARDT

works on simple machine models like comparison machines, while Thorup’s
algorithm heavily uses the capabilities of the more powerful RAM model.
Additionally, Thorup’s algorithm utilizes complicated data structures, e.g.,
multilevel buckets, while the above algorithm for the BSP is very basic.

Of course, one can easily adapt Algorithm 1 to work also for directed
graphs. However, in order to guarantee correctness, in line 7 we then have
to choose V1, . . . , Vq as the strongly connected components of the graph
(after hiding the “thin” edges in line 5), because we need to ensure that
every vertex in some component can be reached from every other vertex of
the same component by a directed path using “thick” edges only. This yields
a correct algorithm. But, unfortunately, we do not achieve a similar bound
on the running time, because, in general, the shrinking step in line 9 will not
significantly reduce the number of edges, since it needs not to be true that
every “thick” edge is contained in some strongly connected component. In
fact, it is even possible that the shrinking operations in line 9 do not have
any effect, because the strongly connected components might well be single
vertices only.

Thus, the crucial problem remains to find a linear time algorithm for BSP
in directed graphs, or, at least, to find an algorithm that runs faster than
the obvious adaption of Dijkstra’s method does. We are going to address
this issue in the following section.

For the special case of planar directed graphs, one obtains a linear time
algorithm by adapting ideas of Klein, Rao, Rauch, and Subramanian [10].
They use the fact that planar graphs have small separators, i.e., small node
sets that separate the graph. They actually develop a shortest path algo-
rithm for (directed) planar graphs running in linear time, provided that all
arc weights/capacities are positive. In case that negative arc lengths occur,
they give an O(n4/3 log nL) algorithm, where L is the largest absolute value
of the a negative edge-length. Fortunately, we can check planarity in linear
time, see, e.g., [13]. The idea of breaking the graph into pieces and following
a divide-and-conquer mechanism applies to more than just planar graphs.
The key point to obtain fast algorithms is that the pieces should be rather
balanced in size, and that the extra work to connect pieces should not be
too large. For planar graphs, the latter requirement is met by the fact that
planar graphs have O(

√
n)-size separators. As pointed out in [10], sepa-

rators of size O(n1−ε) suffice for the application of their algorithm. Thus
their algorithm can as well be applied to graphs with bounded genus [3] or
graphs with excluded shallow minors [11]. The crucial point here is that the
separation can be found in linear time, too.

3. The BSP in Directed Graphs

In this section we present an algorithm that solves the BSP for directed
graphs. The algorithm relies on the availability and efficiency of a bucketing
structure, for which we need direct addressing (see, e.g, [7, Chap. 11.1]).

The first observation is that we can solve the BSP in directed graphs
in linear time (on machines that provide direct addressing) if an ordering
of the edge weights is known, see, e.g., [2, Chapter 4]. For edge weights
c ∈ NE , a c-ordering ` : E → {1, . . . ,m} of the edges has the property

ON THE BOTTLENECK SHORTEST PATH PROBLEM 5

that `(e1) > `(e2) implies ce1 ≥ ce2 . For convenience, we state such an
algorithm as Algorithm 2. It is a reformulation of Dijkstra’s algorithm.
Algorithm 2 takes as input the BSP instance, a c-ordering ` of the edges,
and an associated value table T : `(E)→ N such that T (`(e)) = ce. As the
algorithm works with order numbers only, the value table T is used to map
back those order numbers to the original capacities.

Algorithm 2 A linear time algorithm for BSP with sorted edge weights
1: INPUT: BSP instance with c-ordering `, and value table T
2: Initialize empty buckets B1, . . . , Bm

3: Initialize b(v)← 0 for all v ∈ V , the bucket index of vertex v
4: Initialize flags that denote fixed vertex labels, i.e., vertices removed from

the buckets: f(v)← 0,∀v 6= s, f(s)← 1
5: for all sv ∈ δout(s) do
6: B`(sv) ← B`(sv) ∪ {v}
7: b(v)← `(sv)
8: end for
9: Set U ← m

10: while U ≥ 0 do
11: while BU 6= ∅ do
12: Choose v ∈ BU

13: BU ← BU \ {v}
14: f(v)← 1
15: if v = t then
16: STOP: T (b(t)) is the bottleneck between s and t
17: else
18: for all vw ∈ δout(v) with f(w) = 0 do
19: Calculate k ← min{b(v), `(vw)}
20: if k > b(w) then
21: Bb(w) ← Bb(w) \ {w}, Bk ← Bk ∪ {w}, b(w)← k
22: end if
23: end for
24: end if
25: end while
26: U ← U − 1
27: end while

Algorithm 3 uses Algorithm 2 in order to solve the BSP (without having
a c-ordering at hands). Its correctness follows from the fact that throughout
the algorithm, the edge set E′ contains an optimal path, whose capacity can-
not exceed U . The running time of Algorithm 3 depends on some function
s(w), where lines 3-12 altogether need O(m log s(m)) steps. As the number
of edges in E′ with weights at most U is halved in each iteration, we have
t = O(m

s(m)). Thus, if we sort N keys in O(N log N) time, the running time
spent in line 13 is O(m

s(m) log m
s(m)). Line 14 thus needs O(m) steps. By

setting s(m) = log m we obtain an O(m log log m) algorithm for the BSP in
directed graphs.

6 KAIBEL AND PEINHARDT

Algorithm 3 A BSP algorithm for directed graphs

1: INPUT: A (possibly directed) graph G = (V,E) with m = |E| and edge
weights ce ∈ N for all e ∈ E, source and target vertices s, t ∈ V , a
number s(m);
w.l.o.g. all edge weights are different, and there is some s–t–path in G.

2: Initialize Iterationcount← 0, E′ ← E,L← mine∈E ce, U = maxe∈E ce

3: while Iterationcount < log s(m) do
4: Determine the median M of {ce : e ∈ E′, ce ≤ U}.
5: T := {e ∈ E′ : ce ≤M}, F := {e ∈ E′ : ce > M}
6: if (V, F) is s–t–connected then
7: E′ ← F,L←M
8: else
9: U ←M

10: end if
11: Iterationcount← Iterationcount + 1
12: end while
13: Number the t edges in {e ∈ E′ : ce ≤ U} according to increasing

weights: e1, . . . , et

14: Solve the instance by Algorithm 2 with the following c-ordering:

`(e) =

1 if ce ≤ L

i + 1 if e ∈ E′, e = ei

t + 2 if ce > U

If we use the more sophisticated priority queue of [16] that performs
sorting N keys in O(N log log N) time, we end up with an O(m log log log m)
time algorithm for BSP. In general, we have:

Theorem 2. If A is a sorting algorithm, whose running time is bounded
by O(N · s(N)), then employing A in Algorithm 3 yields a BSP-algorithm
for directed graphs, whose running time is bounded by O(m log s(m)). This
holds on every RAM model of computing.

As proven in [16, Theorem 1.4] sorting N w–bit keys on a RAM in time
N ·s(N) (with a decreasing function s(·)), implies and requires the existence
of a monotone priority queue with constant time search for the minimum key
and extraction of the minimum key in s(N)+O(1) time. Thus, as long as the
fastest algorithm for SP is a Dijkstra–type algorithm utilizing a monotone
priority queue (and s(N) = O(1) is impossible), the BSP in directed graphs
can be solved faster than SP by Algorithm 3 on graphs with O(n) edges
(where n is the number of vertices). Note that for graphs with Ω(n log n)
edges Dijkstra’s algorithm already yields a linear time method for both SP
and BSP.

4. Discussion

In this section we briefly comment on machine models relevant for the
different results concerning sorting, (monotone) priority queues, and SP.

There are a number of machine models considered in literature, reflecting
the evolution of computers as well as the desire to incorporate different

ON THE BOTTLENECK SHORTEST PATH PROBLEM 7

model allowed operations further characteristics
Pointer Ma-
chine

comparison, conditional
jumps, indirect addressing

equivalent to the Turing
machine

RAM standard AC0 operations:
conditional jumps, direct
and indirect addressing,
comparison, shift, bit–
wise Boolean operations,
addition, subtraction

storage is divided in w–
bit word; constant number
of registers; addresses are
themselves words (thus w ≥
log(input size))

strong RAM arbitrary AC0 operations,
i.e., any operation that can
be computed in O(1) time
on a polynomial sized cir-
cuit

many variants with non–
standard AC0 operation set
known

Table 1. Summary of capabilities of different computing models

aspects of real world machines. A short survey is given in Table 1. For
further introduction, see e.g.[1].

Our Algorithm 3 works in the RAM model of computation, in particular
it needs bucket processing or more specifically direct addressing. However,
it does not need any sophisticated AC0 operations, but can be implemented
with the standard set of these operations. Thus, depending on the capabil-
ities of a given RAM, we can choose the fastest sorting algorithm for this
model. Although not possible on pointer machines, the use of buckets is
computationally reasonable, see, e.g., the satisfying computational studies
of elaborated codes for SP by Goldberg [9].

The linear time algorithm for SP by Thorup for undirected graphs can
be implemented with AC0 instructions only, although not all of them are
considered standard as they are not available on todays hardware. The
priority queue of [16] however either uses superlinear space, non–standard
AC0 instructions, or randomization.

Finally, we do not need any restrictions on the word size w of the RAM
besides the usual assumption that the input data can be represented in single
words, i.e., log m, log U ≤ w. This is due to the fact that no intermediate
data exceeds the size of the input data.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of
computer algorithms., Addison-Wesley Series in Computer Science and Information
Processing. Reading, Mass. etc.: Addison-Wesley Publishing Company. X, 470 p.,
1974.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algo-
rithms, and Applications, Prentice Hall, New Jersey, 1993.

[3] L. Aleksandrov and H. Djidjev, Linear algorithms for partitioning embedded
graphs of bounded genus, SIAM Journal on Discrete Mathematics 9, no. 1 (1996),
pp. 129–150.

[4] G. Baier, E. Köhler, and M. Skutella, On the k-splittable flow problem, in
Algorithms - ESA 2002. 10th annual European symposium, Rome, Italy, September

8 KAIBEL AND PEINHARDT

17-21, 2002. Proceedings, R. M. (ed.) et al., ed., no. 2461 in Lect. Notes Comput.
Sci., Berlin, 2002, Springer, pp. 101–113.

[5] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Linear time
bounds for median computations., in Proc. 4th ann. ACM Symp. Theory Comput.,
Denver 1972, 1972, pp. 119–124.

[6] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time
bounds for selection., J. Comput. Syst. Sci. 7 (1973), pp. 448–461.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. 2nd ed., Cambridge, MA: MIT Press., 2001.

[8] D. R. Fulkerson, Flow networks and combinatorial operations research, The Amer-
ican Mathematical Monthly 73 (1966), pp. 115–138.

[9] A. V. Goldberg, Shortest Path Algorithms: Engineering Aspects, in Eades, Peter
(ed.) et al., Algorithms and computation. 12th international symposium, ISAAC 2001,
Christchurch, New Zealand, December 19-21, 2001. Proceedings. Berlin: Springer.
Lect. Notes Comput. Sci. 2223, 502-513 , 2001.

[10] P. Klein, S. Rao, M. Rauch, and S. Subramanian, Faster shortest-path algo-
rithms for planar graphs, in Proc. 26th ACM Symp. on Theory of Computing, 1994,
pp. 27–37.

[11] Plotkin, Rao, and Smith, Shallow excluded minors and improved graph decompo-
sitions, in SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on
Theoretical and Experimental Analysis of Discrete Algorithms), 1994.

[12] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, no. 24 in Al-
gorithms and Combinatorics, Springer, 2003.

[13] W.-K. Shih and W.-L. Hsu, A new planarity test., Theor. Comput. Sci. 223, no. 1-2
(1999), pp. 179–191.

[14] M. Thorup, Undirected Single Source Shortest Paths in Linear Time, in 38th Annual
Symposium on Foundations of Computer Science, Miami Beach, Florida, USA, oct
1997, pp. 12–21.

[15] M. Thorup, Floats, integers, and single source shortest paths., J. Algorithms 35,
no. 2 (2000), pp. 189–201.

[16] M. Thorup, On RAM priority queues, SIAM J. Comput. 30, no. 1 (2000), pp. 86–
109.

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
E-mail address: [kaibel,peinhardt]@zib.de

