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1. INTRODUCTION

Richard Feynman observed in the early 1980’s [Feynman 1982]that certain quantum me-
chanical effects cannot be simulated efficiently on a classical computer. This observation
led to speculation that perhaps computation in general could be done more efficiently if it
made use of these quantum effects. But building quantum computers, computational ma-
chines that use such quantum effects, proved tricky, and as no one was sure how to use the
quantum effects to speed up computation, the field developedslowly. It wasn’t until 1994,
when Peter Shor surprised the world by describing a polynomial time quantum algorithm
for factoring integers [Shor 1994; Shor 1997], that the fieldof quantum computing came
into its own. This discovery prompted a flurry of activity, both among experimentalists try-
ing to build quantum computers and theoreticians trying to find other quantum algorithms.
Additional interest in the subject has been created by the invention of quantum key distri-
bution and, more recently, popular press accounts of experimental successes in quantum
teleportation and the demonstration of a three-bit quantumcomputer.

The aim of this paper is to guide computer scientists and other non-physicists through
the conceptual and notational barriers that separate quantum computing from conventional
computing and to acquaint them with this new and exciting field. It is important for the
computer science community to understand these new developments since they may radi-
cally change the way we have to think about computation, programming, and complexity.

Classically, the time it takes to do certain computations can be decreased by using paral-
lel processors. To achieve an exponential decrease in time requires an exponential increase
in the number of processors, and hence an exponential increase in the amount of physical
space needed. However, in quantum systems the amount of parallelism increases expo-
nentially with the size of the system. Thus, an exponential increase in parallelism requires
only a linear increase in the amount of physical space needed. This effect is called quantum
parallelism [Deutsch and Jozsa 1992].

There is a catch, and a big catch at that. While a quantum system can perform massive
parallel computation, access to the results of the computation is restricted. Accessing the
results is equivalent to making a measurement, which disturbs the quantum state. This
problem makes the situation, on the face of it, seem even worse than the classical situation;
we can only read the result of one parallel thread, and because measurement is probabilis-
tic, we cannot even choose which one we get.

But in the past few years, various people have found clever ways of finessing the mea-
surement problem to exploit the power of quantum parallelism. This sort of manipulation
has no classical analog, and requires non-traditional programming techniques. One tech-
nique manipulates the quantum state so that a common property of all of the output values
such as the symmetry or period of a function can be read off. This technique is used in
Shor’s factorization algorithm. Another technique transforms the quantum state to increase
the likelihood that output of interest will be read. Grover’s search algorithm makes use of
such an amplification technique. This paper describes quantum parallelism in detail, and
the techniques currently known for harnessing its power.

Section 2, following this introduction, explains of the basic concepts of quantum me-
chanics that are important for quantum computation. This section cannot give a compre-
hensive view of quantum mechanics. Our aim is to provide the reader with tools in the form
of mathematics and notation with which to work with the quantum mechanics involved in
quantum computation. We hope that this paper will equip readers well enough that they
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can freely explore the theoretical realm of quantum computing.
Section 3 defines the quantum bit, or qubit. Unlike classicalbits, a quantum bit can

be put in a superposition state that encodes both0 and 1. There is no good classical
explanation of superpositions: a quantum bit representing0 and1 can neither be viewed
as “between”0 and1 nor can it be viewed as a hidden unknown state that representseither
0 or 1 with a certain probability. Even single quantum bits enableinteresting applications.
We describe the use of a single quantum bit for secure key distribution.

But the real power of quantum computation derives from the exponential state spaces of
multiple quantum bits: just as a single qubit can be in a superposition of0 and1, a register
of n qubits can be in a superposition of all2n possible values. The “extra” states that
have no classical analog and lead to the exponential size of the quantum state space are the
entangled states, like the state leading to the famous EPR1 paradox (see section 3.4).

We discuss the two types of operations a quantum system can undergo: measurement
and quantum state transformations. Most quantum algorithms involve a sequence of quan-
tum state transformations followed by a measurement. For classical computers there are
sets of gates that are universal in the sense that any classical computation can be per-
formed using a sequence of these gates. Similarly, there aresets of primitive quantum state
transformations, called quantum gates, that are universalfor quantum computation. Given
enough quantum bits, it is possible to construct a universalquantum Turing machine.

Quantum physics puts restrictions on the types of transformations that can be done. In
particular, all quantum state transformations, and therefore all quantum gates and all quan-
tum computations, must be reversible. Yet all classical algorithms can be made reversible
and can be computed on a quantum computer in comparable time.Some common quantum
gates are defined in section 4.

Two applications combining quantum gates and entangled states are described in section
4.2: teleportation and dense coding. Teleportation is the transfer of a quantum state from
one place to another through classical channels. That teleportation is possible is surprising
since quantum mechanics tells us that it is not possible to clone quantum states or even
measure them without disturbing the state. Thus, it is not obvious what information could
be sent through classical channels that could possibly enable the reconstruction of an un-
known quantum state at the other end. Dense coding, a dual to teleportation, uses a single
quantum bit to transmit two bits of classical information. Both teleportation and dense
coding rely on the entangled states described in the EPR experiment.

It is only in section 5 that we see where an exponential speed-up over classical computers
might come from. The input to a quantum computation can be putin a superposition
state that encodes all possible input values. Performing the computation on this initial
state will result in superposition of all of the corresponding output values. Thus, in the
same time it takes to compute the output for a single input state on a classical computer,
a quantum computer can compute the values for all input states. This process is known
as quantum parallelism. However, measuring the output states will randomly yield only
one of the values in the superposition, and at the same time destroy all of the other results
of the computation. Section 5 describes this situation in detail. Sections 6 and 7 describe
techniques for taking advantage of quantum parallelism inspite of the severe constraints
imposed by quantum mechanics on what can be measured.

Section 6 describes the details of Shor’s polynomial time factoring algorithm. The fastest

1EPR = Einstein, Podolsky and Rosen
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known classical factoring algorithm requires exponentialtime and it is generally believed
that there is no classical polynomial time factoring algorithm. Shor’s is a beautiful al-
gorithm that takes advantage of quantum parallelism by using a quantum analog of the
Fourier transform.

Lov Grover developed a technique for searching an unstructured list of n items in
O(

√
n) steps on a quantum computer. Classical computers can do no better thanO(n),

so unstructured search on a quantum computer is provably more efficient than search on a
classical computer. However, the speed-up is only polynomial, not exponential, and it has
been shown that Grover’s algorithm is optimal for quantum computers. It seems likely that
search algorithms that could take advantage of some problemstructure could do better. Tad
Hogg, among others, has explored such possibilities. We describe various quantum search
techniques in section 7.

It is as yet unknown whether the power of quantum parallelismcan be harnessed for a
wide variety of applications. One tantalizing open question is whether quantum computers
can solve NP complete problems in polynomial time.

Perhaps the biggest open question is whether useful quantumcomputers can be built.
There are a number of proposals for building quantum computers using ion traps, nuclear
magnetic resonance (NMR), optical and solid state techniques. All of the current proposals
have scaling problems, so that a breakthrough will be neededto go beyond tens of qubits
to hundreds of qubits. While both optical and solid state techniques show promise, NMR
and ion trap technologies are the most advanced so far.

In an ion trap quantum computer [Cirac and Zoller 1995; Steane 1996] a linear sequence
of ions representing the qubits are confined by electric fields. Lasers are directed at indi-
vidual ions to perform single bit quantum gates. Two-bit operations are realized by using
a laser on one qubit to create an impulse that ripples througha chain of ions to the second
qubit where another laser pulse stops the rippling and performs the two-bit operation. The
approach requires that the ions be kept in extreme vacuum andat extremely low tempera-
tures.

The NMR approach has the advantage that it will work at room temperature, and that
NMR technology in general is already fairly advanced. The idea is to use macroscopic
amounts of matter and encode a quantum bit in the average spinstate of a large number of
nuclei. The spin states can be manipulated by magnetic fieldsand the average spin state can
be measured with NMR techniques. The main problem with the technique is that it doesn’t
scale well; the measured signal scales as1/2n with the number of qubitsn. However,
a recent proposal [Schulman and Vazirani 1998] has been madethat may overcome this
problem. NMR computers with three qubits have been built successfully [Cory et al. 1998;
Vandersypen et al. 1999; Gershenfeld and Chuang 1997; Laflamme et al. 1997]. This
paper will not discuss further the physical and engineeringproblems of building quantum
computers.

The greatest problem for building quantum computers is decoherence, the distortion of
the quantum state due to interaction with the environment. For some time it was feared
that quantum computers could not be built because it would beimpossible to isolate them
sufficiently from the external environment. The breakthrough came from the algorithmic
rather than the physical side, through the invention of quantum error correction techniques.
Initially people thought quantum error correction might beimpossible because of the im-
possibility of reliably copying unknown quantum states, but it turns out that it is possible
to design quantum error correcting codes that detect certain kinds of errors and enable the
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reconstruction of the exact error-free quantum state. Quantum error correction is discussed
in section 8.

Appendices provide background information on tensor products and continued fractions.

2. QUANTUM MECHANICS

Quantum mechanical phenomena are difficult to understand since most of our everyday
experiences are not applicable. This paper cannot provide adeep understanding of quantum
mechanics (see [Feynman et al. 1965; Liboff 1997; Greenstein and Zajonc 1997] for
expositions of quantum mechanics). Instead, we will give some feeling as to the nature
of quantum mechanics and some of the mathematical formalisms needed to work with
quantum mechanics to the extent needed for quantum computing.

Quantum mechanics is a theory in the mathematical sense: it is governed by a set of
axioms. The consequences of the axioms describe the behavior of quantum systems. The
axioms lead to several apparent paradoxes: in the Compton effect it appears as if an action
precedes its cause; the EPR experiment makes it appear as if action over a distance faster
than the speed of light is possible. We will discuss the EPR experiment in detail in section
3.4. Verification of most predictions is indirect, and requires careful experimental design
and specialized equipment. We will begin, however, with an experiment that requires only
readily available equipment and that will illustrate some of the key aspects of quantum
mechanics needed for quantum computation.

2.1 Photon Polarization

Photons are the only particles that we can directly observe.The following simple experi-
ment can be performed with minimal equipment: a strong lightsource, like a laser pointer,
and three polaroids (polarization filters) that can be picked up at any camera supply store.
The experiment demonstrates some of the principles of quantum mechanics through pho-
tons and their polarization.

2.1.1 The Experiment.A beam of light shines on a projection screen. FiltersA, B, and
C are polarized horizontally, at45o, and vertically, respectively, and can be placed so as to
intersect the beam of light.

First, insert filterA. Assuming the incoming light is randomly polarized, the intensity
of the output will have half of the intensity of the incoming light. The outgoing photons
are now all horizontally polarized.

A

The function of filterA cannot be explained as a “sieve” that only lets those photonspass
that happen to be already horizontally polarized. If that were the case, few of the randomly
polarized incoming electrons would be horizontally polarized, so we would expect a much
larger attenuation of the light as it passes through the filter.

Next, when filterC is inserted the intensity of the output drops to zero. None ofthe
horizontally polarized photons can pass through the vertical filter. A sieve model could
explain this behavior.
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A C

Finally, after filterB is inserted betweenA andC, a small amount of light will be visible
on the screen, exactly one eighth of the original amount of light.

A B C

Here we have a nonintuitive effect. Classical experience suggests that adding a filter should
only be able to decrease the number of photons getting through. How can it increase it?

2.1.2 The Explanation.A photon’s polarization state can be modelled by a unit vector
pointing in the appropriate direction. Any arbitrary polarization can be expressed as a
linear combinationa|↑〉+b|→〉 of the two basis vectors2 |→〉 (horizontal polarization) and
|↑〉 (vertical polarization).

Since we are only interested in the direction of the polarization (the notion of “magni-
tude” is not meaningful), the state vector will be a unit vector, i.e., |a|2 + |b|2 = 1. In
general, the polarization of a photon can be expressed asa|↑〉 + b|→〉 wherea andb are
complex numbers3 such that|a|2 + |b|2 = 1. Note, the choice of basis for this representa-
tion is completely arbitrary: any two orthogonal unit vectors will do (e.g.{|տ〉, |ր〉}).

The measurement postulate of quantum mechanics states thatany device measuring a2-
dimensional system has an associated orthonormal basis with respect to which the quantum
measurement takes place. Measurement of a state transformsthe state into one of the
measuring device’s associated basis vectors. The probability that the state is measured as
basis vector|u〉 is the square of the norm of the amplitude of the component of the original
state in the direction of the basis vector|u〉. For example, given a device for measuring
the polarization of photons with associated basis{|↑〉, |to〉}, the stateψ = a|↑〉 + b|→〉 is
measured as|↑〉 with probability|a|2 and as|→〉 with probability|b|2 (see Figure 1). Note
that different measuring devices with have different associated basis, and measurements
using these devices will have different outcomes. As measurements are always made with
respect to an orthonormal basis, throughout the rest of thispaper all bases will be assumed
to be orthonormal.

Furthermore, measurement of the quantum state will change the state to the result of the
measurement. That is, if measurement ofψ = a|↑〉 + b|→〉 results in|↑〉, then the state
ψ changes to|↑〉 and a second measurement with respect to the same basis will return|↑〉
with probability1. Thus, unless the original state happened to be one of the basis vectors,
measurement will change that state, and it is not possible todetermine what the original
state was.

2The notation|→〉 is explained in section 2.2.
3Imaginary coefficients correspond to circular polarization.
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a

b|↑〉

|→〉

|ψ〉

Fig. 1. Measurement is a projection onto the basis

Quantum mechanics can explain the polarization experimentas follows. A polaroid
measures the quantum state of photons with respect to the basis consisting of the vector
corresponding to its polarization together with a vector orthogonal to its polarization. The
photons which, after being measured by the filter, match the filter’s polarization are let
through. The others are reflected and now have a polarizationperpendicular to that of the
filter. For example, filterA measures the photon polarization with respect to the basis
vector|→〉, corresponding to its polarization. The photons that pass through filterA all
have polarization|→〉. Those that are reflected by the filter all have polarization|↑〉.

Assuming that the light source produces photons with randompolarization, filterA will
measure50% of all photons as horizontally polarized. These photons will pass through
the filter and their state will be|→〉. Filter C will measure these photons with respect to
|↑〉. But the state|→〉 = 0|↑〉 + 1|→〉 will be projected onto|↑〉 with probability0 and no
photons will pass filterC.

Finally, filterB measures the quantum state with respect to the basis

{ 1√
2
(|↑〉 + |→〉), 1√

2
(|↑〉 − |→〉)}

which we write as{|ր〉, |տ〉}. Note that|→〉 = 1√
2
(|ր〉 − |տ〉) and|↑〉 = 1√

2
(|ր〉 +

|տ〉). Those photons that are measured as|ր〉 pass through the filter. Photons passing
throughA with state|→〉 will be measured byB as|ր〉 with probability1/2 and so50%
of the photons passing throughA will pass throughB and be in state|ր〉. As before, these
photons will be measured by filterC as|↑〉 with probability1/2. Thus only one eighth of
the original photons manage to pass through the sequence of filtersA, B, andC.

2.2 State Spaces and Bra/Ket Notation

The state space of a quantum system, consisting of the positions, momentums, polariza-
tions, spins, etc. of the various particles, is modelled by aHilbert space of wave functions.
We will not look at the details of these wave functions. For quantum computing we need
only deal with finite quantum systems and it suffices to consider finite dimensional com-
plex vector spaces with an inner product that are spanned by abstract wave functions such
as|→〉.

Quantum state spaces and the tranformations acting on them can be described in terms
of vectors and matrices or in the more compact bra/ket notation invented by Dirac [Dirac
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1958]. Kets like|x〉 denote column vectors and are typically used to describe quantum
states. The matching bra,〈x|, denotes the conjugate transpose of|x〉. For example, the
orthonormal basis{|0〉, |1〉} can be expressed as{(1, 0)T , (0, 1)T }. Any complex linear
combination of|0〉 and|1〉, a|0〉 + b|1〉, can be written(a, b)T . Note that the choice of the
order of the basis vectors is arbitrary. For example, representing|0〉 as(0, 1)T and|1〉 as
(1, 0)T would be fine as long as this is done consistently.

Combining〈x| and|y〉 as in〈x||y〉, also written as〈x|y〉, denotes the inner product of
the two vectors. For instance, since|0〉 is a unit vector we have〈0|0〉 = 1 and since|0〉
and|1〉 are orthogonal we have〈0|1〉 = 0.

The notation|x〉〈y| is the outer product of|x〉 and〈y|. For example,|0〉〈1| is the trans-
formation that maps|1〉 to |0〉 and|0〉 to (0, 0)T since

|0〉〈1||1〉 = |0〉〈1|1〉 = |0〉
|0〉〈1||0〉 = |0〉〈1|0〉 = 0|0〉 =

(

0
0

)

.

Equivalently,|0〉〈1| can be written in matrix form where|0〉 = (1, 0)T , 〈0| = (1, 0),
|1〉 = (0, 1)T , and〈1| = (0, 1). Then

|0〉〈1| =

(

1
0

)

(0, 1) =

(

0 1
0 0

)

.

This notation gives us a convenient way of specifying transformations on quantum states
in terms of what happens to the basis vectors (see section 4).For example, the transforma-
tion that exchanges|0〉 and|1〉 is given by the matrix

X = |0〉〈1| + |1〉〈0|.

In this paper we will prefer the slightly more intuitive notation

X : |0〉 → |1〉
|1〉 → |0〉

that explicitly specifies the result of a transformation on the basis vectors.

3. QUANTUM BITS

A quantum bit, or qubit, is a unit vector in a two dimensional complex vector space for
which a particular basis, denoted by{|0〉, |1〉}, has been fixed. The orthonormal basis|0〉
and|1〉 may correspond to the|↑〉 and|→〉 polarizations of a photon respectively, or to the
polarizations|ր〉 and|տ〉. Or |0〉 and|1〉 could correspond to the spin-up and spin-down
states of an electron. When talking about qubits, and quantum computations in general, a
fixed basis with respect to which all statements are made has been chosen in advance. In
particular, unless otherwise specified, all measurements will be made with respect to the
standard basis for quantum computation,{|0〉, |1〉}.

For the purposes of quantum computation, the basis states|0〉 and|1〉 are taken to repre-
sent the classical bit values0 and1 respectively. Unlike classical bits however, qubits can
be in a superposition of|0〉 and|1〉 such asa|0〉+ b|1〉 wherea andb are complex numbers
such that|a|2 + |b|2 = 1. Just as in the photon polarization case, if such a superposition is
measured with respect to the basis{|0〉, |1〉}, the probability that the measured value is|0〉
is |a|2 and the probability that the measured value is|1〉 is |b|2.
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Even though a quantum bit can be put in infinitely many superposition states, it is only
possible to extract a single classical bit’s worth of information from a single quantum bit.
The reason that no more information can be gained from a qubitthan in a classical bit is
that information can only be obtained by measurement. When aqubit is measured, the
measurement changes the state to one of the basis states in the way seen in the photon
polarization experiment. As every measurement can result in only one of two states, one of
the basis vectors associated to the given measuring device,so, just as in the classical case,
there are only two possible results. As measurement changesthe state, one cannot measure
the state of a qubit in two different bases. Furthermore, as we shall see in the section 4.1.2,
quantum states cannot be cloned so it is not possible to measure a qubit in two ways, even
indirectly by, say, copying the qubit and measuring the copyin a different basis from the
original.

3.1 Quantum Key Distribution

Sequences of single qubits can be used to transmit private keys on insecure channels. In
1984 Bennett and Brassard described the first quantum key distribution scheme [Bennett
and Brassard 1987; Bennett et al. 1992]. Classically, public key encryption techniques,
e.g. RSA, are used for key distribution.

Consider the situation in which Alice and Bob want to agree ona secret key so that they
can communicate privately. They are connected by an ordinary bi-directional open channel
and a uni-directional quantum channel both of which can be observed by Eve, who wishes
to eavesdrop on their conversation. This situation is illustrated in the figure below. The
quantum channel allows Alice to send individual particles (e.g. photons) to Bob who can
measure their quantum state. Eve can attempt to measure the state of these particles and
can resend the particles to Bob.

quantum channel

classical channel

Eve

BobAlice

To begin the process of establishing a secret key, Alice sends a sequence of bits to Bob
by encoding each bit in the quantum state of a photon as follows. For each bit, Alice
randomly uses one of the following two bases for encoding each bit:

0 → |↑〉
1 → |→〉
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or

0 → |տ〉
1 → |ր〉.

Bob measures the state of the photons he receives by randomlypicking either basis. After
the bits have been transmitted, Bob and Alice communicate the basis they used for en-
coding and decoding of each bit over the open channel. With this information both can
determine which bits have been transmitted correctly, by identifying those bits for which
the sending and receiving bases agree. They will use these bits as the key and discard all
the others. On average, Alice and Bob will agree on50% of all bits transmitted.

Suppose that Eve measures the state of the photons transmitted by Alice and resends new
photons with the measured state. In this process she will usethe wrong basis approximately
50% of the time, in which case she will resend the bit with the wrong basis. So when
Bob measures a resent qubit with the correct basis there willbe a25% probability that he
measures the wrong value. Thus any eavesdropper on the quantum channel is bound to
introduce a high error rate that Alice and Bob can detect by communicating a sufficient
number of parity bits of their keys over the open channel. So,not only is it likely that
Eve’s version of the key is25% incorrect, but the fact that someone is eavesdropping will
be apparent to Alice and Bob.

Other techniques for exploiting quantum effects for key distribution have been proposed.
See, for example, Ekert [Ekert et al. 1992], Bennett [Bennett 1992] and Lo and Chau [Lo
and Chau 1999]. But none of the quantum key distribution techniques are substitutes for
public key encryption schemes. Attacks by eavesdroppers other than the one described
here are possible. Security against all such schemes are discussed in both Mayers [Mayers
1998] and Lo and Chau [Lo and Chau 1999].

Quantum key distribution has been realized over a distance of 24 km using standard fiber
optical cables [Hughes et al. 1997] and over 0.5 km through the atmosphere [Hughes et al.
1999].

3.2 Multiple Qubits

Imagine a macroscopic physical object breaking apart and multiple pieces flying off in
different directions. The state of this system can be described completely by describing the
state of each of its component pieces separately. A surprising and unintuitive aspect of the
state space of ann particle quantum system is that the state of the system cannot always
be described in terms of the state of its component pieces. Itis when examining systems
of more than one qubit that one first gets a glimpse of where thecomputational power of
quantum computers could come from.

As we saw, the state of a qubit can be represented by a vector inthe two dimensional
complex vector space spanned by|0〉 and|1〉. In classical physics, the possible states of
a system ofn particles, whose individual states can be described by a vector in a two
dimensional vector space, form a vector space of2n dimensions. However, in a quantum
system the resulting state space is much larger; a system ofn qubits has a state space of2n

dimensions.4 It is this exponential growth of the state space with the number of particles
that suggests a possible exponential speed-up of computation on quantum computers over
classical computers.

4Actually, as we shall see, the state space is the set of normalized vectors in this2n dimensional space, just as
the statea|0〉 + b|1〉 of a qubit is normalized so that|a|2 + |b|2 = 1.
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Individual state spaces ofn particles combine classically through the cartesian product.
Quantum states, however, combine through the tensor product. Details on properties of
tensor products and their expression in terms of vectors andmatrices is given in Appendix
A. Let us look briefly at distinctions between the cartesian product and the tensor product
that will be crucial to understanding quantum computation.

Let V andW be two 2-dimensional complex vector spaces with bases{v1, v2} and
{w1, w2} respectively. The cartesian product of these two spaces cantake as its basis the
union of the bases of its component spaces{v1, v2, w1, w2}. Note that the order of the basis
was chosen arbitrarily. In particular, the dimension of thestate space of multiple classical
particles grows linearly with the number of particles, since dim(X × Y ) = dim(X) +
dim(Y ). The tensor product ofV andW has basis{v1 ⊗w1, v1 ⊗w2, v2 ⊗w1, v2 ⊗w2}.
Note that the order of the basis, again, is arbitrary5. So the state space for two qubits,
each with basis{|0〉, |1〉}, has basis{|0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉} which can be
written more compactly as{|00〉, |01〉, |10〉, |11〉}. More generally, we write|x〉 to mean
|bnbn−1 . . . b0〉 wherebi are the binary digits of the numberx.

A basis for a three qubit system is

{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}

and in general ann qubit system has2n basis vectors. We can now see the exponential
growth of the state space with the number of quantum particles. The tensor productX⊗Y
has dimensiondim(X) × dim(Y ).

The state|00〉+ |11〉 is an example of a quantum state that cannot be described in terms
of the state of each of its components (qubits) separately. In other words, we cannot find
a1, a2, b1, b2 such that(a1|0〉 + b1|1〉) ⊗ (a2|0〉 + b2|1〉) = |00〉 + |11〉 since

(a1|0〉 + b1|1〉) ⊗ (a2|0〉 + b2|1〉) = a1a2|00〉 + a1b2|01〉 + b1a2|10〉 + b1b2|11〉

anda1b2 = 0 implies that eithera1a2 = 0 or b1b2 = 0. States which cannot be decom-
posed in this way are called entangled states. These states represent situations that have
no classical counterpart, and for which we have no intuition. These are also the states that
provide the exponential growth of quantum state spaces withthe number of particles.

Note that it would require vast resources to simulate even a small quantum system on
traditional computers. The evolution of quantum systems isexponentially faster than their
classical simulations. The reason for the potential power of quantum computers is the
possibility of exploiting the quantum state evolution as a computational mechanism.

3.3 Measurement

The experiment in section 2.1.2 illustrates how measurement of a single qubit projects the
quantum state on to one of the basis states associated with the measuring device. The result
of a measurement is probabilistic and the process of measurement changes the state to that
measured.

Let us look at an example of measurement in a two qubit system.Any two qubit state can
be expressed asa|00〉+b|01〉+c|10〉+d|11〉, wherea, b, c andd are complex numbers such
that|a|2 + |b|2 + |c|2 + |d|2 = 1. Suppose we wish to measure the first qubit with respect

5It is only when we use matrix notation to describe state transformations that the order of basis vectors becomes
relevant.
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to the standard basis{|0〉, |1〉}. For convenience we will rewrite the state as follows:

a|00〉 + b|01〉 + c|10〉 + d|11〉
= |0〉 ⊗ (a|0〉 + b|1〉) + |1〉 ⊗ (c|0〉 + d|1〉)
= u|0〉 ⊗ (a/u|0〉+ b/u|1〉) +

v|1〉 ⊗ (c/v|0〉 + d/v|1〉).

For u =
√

|a|2 + |b|2 andv =
√

|c|2 + |d|2 the vectorsa/u|0〉 + b/u|1〉 andc/v|0〉 +
d/v|1〉 are of unit length. Once the state has been rewritten as above, as a tensor prod-
uct of the bit being measured and a second vector of unit length, the probabalistic result
of a measurement is easy to read off. Measurement of the first bit will with probabil-
ity u2 = |a|2 + |b|2 return |0〉 projecting the state to|0〉 ⊗ (a/u|0〉 + b/u|1〉) or with
probabilityv = |c|2 + |d|2 yield |1〉 projecting the state to|1〉 ⊗ (c/v|0〉 + d/v|1〉). As
|0〉 ⊗ (a/u|0〉 + b/u|1〉) and|1〉 ⊗ (c/v|0〉 + d/v|1〉) are both unit vectors, no scaling is
necessary. Measuring the second bit works similarly.

For the purposes of quantum computation, multi-bit measurement can be treated as a
series of single-bit measurements in the standard basis. Other sorts of measurements are
possible, like measuring whether two qubits have the same value without learning the
actual value of the two qubits. But such measurements are equivalent to unitary transfor-
mations followed by a standard measurement of individual qubits, and so it suffices to look
only at standard measurements.

In the two qubit example, the state space is a cartesian product of the subspace consisting
of all states whose first qubit is in the state|0〉 and the orthogonal subspace of states whose
first qubit is in the state|1〉. Any quantum state can be written as the sum of two vectors,
one in each of the subspaces. A measurement ofk qubits in the standard basis has2k

possible outcomesmi. Any device measuringk qubits of ann-qubit system splits of the
2n-dimensional state spaceH into a cartesian product of orthogonal subspacesS1, . . . , S2k

with H = S1 × . . . × S2k , such that the value of thek qubits being measured ismi and
the state after measurement is in space the spaceSi for somei. The device randomly
chooses one of theSi’s with probability the square of the amplitude of the component of
ψ in Si, and projects the state into that component, scaling to givelength1. Equivalently,
the probability that the result of the measurement is a givenvalue is the sum of the squares
of the the absolute values of the amplitudes of all basis vectors compatible with that value
of the measurement.

Measurement gives another way of thinking about entangled particles. Particles are not
entangled if the measurement of one has no effect on the other. For instance, the state
1√
2
(|00〉 + |11〉) is entangled since the probability that the first bit is measured to be|0〉

is 1/2 if the second bit has not been measured. However, if the second bit had been
measured, the probability that the first bit is measured as|0〉 is either1 or 0, depending on
whether the second bit was measured as|0〉 or |1〉 respectively. Thus the probable result
of measuring the first bit is changed by a measurement of the second bit. On the other
hand, the state1√

2
(|00〉+ |01〉) is not entangled: since1√

2
(|00〉+ |01〉) = |0〉 ⊗ 1√

2
(|0〉+

|1〉), any measurement of the first bit will yield|0〉 regardless of whether the second bit
was measured. Similarly, the second bit has a fifty-fifty chance of being measured as|0〉
regardless of whether the first bit was measured or not. Note that entanglement, in the
sense that measurement of one particle has an effect on measurements of another particle,
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is equivalent to our previous definition of entangled statesas states that cannot be written
as a tensor product of individual states.

3.4 The EPR Paradox

Einstein, Podolsky and Rosen proposed a gedanken experiment that uses entangled parti-
cles in a manner that seemed to violate fundamental principles relativity. Imagine a source
that generates two maximally entangled particles1√

2
|00〉 + 1√

2
|11〉, called an EPR pair,

and sends one each to Alice and Bob.

source
EPR

BobAlice

Alice and Bob can be arbitrarily far apart. Suppose that Alice measures her particle and
observes state|0〉. This means that the combined state will now be|00〉 and if now Bob
measures his particle he will also observe|0〉. Similarly, if Alice measures|1〉, so will Bob.
Note that the change of the combined quantum state occurs instantaneously even though
the two particles may be arbitrarily far apart. It appears that this would enable Alice and
Bob to communicate faster than the speed of light. Further analysis, as we shall see, shows
that even though there is a coupling between the two particles, there is no way for Alice or
Bob to use this mechanism to communicate.

There are two standard ways that people use to describe entangled states and their mea-
surement. Both have their positive aspects, but both are incorrect and can lead to misun-
derstandings. Let us examine both in turn.

Einstein, Podolsky and Rosen proposed that each particle has some internal state that
completely determines what the result of any given measurement will be. This state is,
for the moment, hidden from us, and therefore the best we can currently do is to give
probabilistic predictions. Such a theory is known as a localhidden variable theory. The
simplest hidden variable theory for an EPR pair is that the particles are either both in
state|0〉 or both in state|1〉, we just don’t happen to know which. In such a theory no
communication between possibly distant particles is necessary to explain the correlated
measurements. However, this point of view cannot explain the results of measurements
with respect to a different basis. In fact, Bell showed that any local hidden variable theory
predicts that certain measurements will satisfy an inequality, known as Bell’s inequality.
However, the result of actual experiments performing thesemeasurements show that Bell’s
inequality is violated. Thus quantum mechanics cannot be explained by any local hidden
variable theory. See [Greenstein and Zajonc 1997] for a highly readable account of Bell’s
theorem and related experiments.

The second standard description is in terms of cause and effect. For example, we said
earlier that a measurement performed by Alice affects a measurement performed by Bob.
However, this view is incorrect also, and results, as Einstein, Podolsky and Rosen recog-
nized, in deep inconsistencies when combined with relativity theory. It is possible to set
up the EPR scenario so that one observer sees Alice measure first, then Bob, while another
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observer sees Bob measure first, then Alice. According to relativity, physics must equally
well explain the observations of the first observer as the second. While our terminology of
cause and effect cannot be compatible with both observers, the actual experimental values
are invariant under change of observer. The experimental results can be explained equally
well by Bob’s measuring first and causing a change in the stateof Alice’s particle, as the
other way around. This symmetry shows that Alice and Bob cannot, in fact, use their EPR
pair to communicate faster than the speed of light, and thus resolves the apparent paradox.
All that can be said is that Alice and Bob will observe the samerandom behavior.

As we will see in the section on dense coding and teleportation, EPR pairs can be used
to aid communication, albeit communication slower than thespeed of light.

4. QUANTUM GATES

So far we have looked at static quantum systems which change only when measured. The
dynamics of a quantum system, when not being measured, are governed by Schrödinger’s
equation; the dynamics must take states to states in a way that preserves orthogonality.
For a complex vector space, linear transformations that preserve orthogonality are unitary
transformations, defined as follows. Any linear transformation on a complex vector space
can be described by a matrix. LetM∗ denote the conjugate transpose of the matrixM .
A matrix M is unitary (describes a unitary transformation) ifMM∗ = I. Any unitary
transformation of a quantum state space is a legitimate quantum transformation, and vice
versa. One can think of unitary transformations as being rotations of a complex vector
space.

One important consequence of the fact that quantum transformations are unitary is that
they are reversible. Thus quantum gates must be reversible.Bennett, Fredkin, and Toffoli
had already looked at reversible versions of standard computing models showing that all
classical computations can be done reversibly. See Feynman’s Lectures on Computation
[Feynman 1996] for an account of reversible computation andits relation to the energy of
computation and information.

4.1 Simple Quantum Gates

The following are some examples of useful single-qubit quantum state transformations.
Because of linearity, the transformations are fully specified by their effect on the basis
vectors. The associated matrix, with{|0〉, |1〉} as the preferred ordered basis, is also shown.

I : |0〉 → |0〉
|1〉 → |1〉

(

1 0
0 1

)

X : |0〉 → |1〉
|1〉 → |0〉

(

0 1
1 0

)

Y : |0〉 → −|1〉
|1〉 → |0〉

(

0 1
−1 0

)

Z : |0〉 → |0〉
|1〉 → −|1〉

(

1 0
0 −1

)

The names of these transformations are conventional.I is the identity transformation,X
is negation,Z is a phase shift operation, andY = ZX is a combination of both. TheX
transformation was discussed previously in section 2.2. Itcan be readily verified that these
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gates are unitary. For example

Y Y ∗ =

(

0 −1
1 0

) (

0 1
−1 0

)

= I.

The controlled-NOT gate,Cnot, operates on two qubits as follows: it changes the second
bit if the first bit is 1 and leaves this bit unchanged otherwise. The vectors|00〉, |01〉,
|10〉, and|11〉 form an orthonormal basis for the state space of a two-qubit system, a4-
dimensional complex vector space. In order to represent transformations of this space in
matrix notation we need to choose an isomorphism between this space and the space of
complex four tuples. There is no reason, other than convention, to pick one isomorphism
over another. The one we use here associates|00〉, |01〉, |10〉, and|11〉 to the standard 4-
tuple basis(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T and(0, 0, 0, 1)T , in that order. TheCnot

transformation has representations

Cnot : |00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

The transformationCnot is unitary sinceC∗
not = Cnot andCnotCnot = I. TheCnot gate

cannot be decomposed into a tensor product of two single-bittransformations.
It is useful to have graphical representations of quantum state transformations, especially

when several transformations are combined. The controlled-NOT gateCnot is typically
represented by a circuit of the form

b

×
.

The open circle indicates the control bit, and the× indicates the conditional negation of the
subject bit. In general there can be multiple control bits. Some authors use a solid circle to
indicate negative control, in which the subject bit is toggled when the control bit is0.

Similarly, the controlled-controlled-NOT, which negates the last bit of three if and only
if the first two are both1, has the following graphical representation.

b

b

×

Single bit operations are graphically represented by appropriately labelled boxes as
shown.

Z

Y
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4.1.1 The Walsh-Hadamard Transformation.Another important single-bit transforma-
tion is the Hadamard Transformation defined by

H : |0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

The transformationH has a number of important applications. When applied to|0〉, H
creates a superposition state1√

2
(|0〉 + |1〉). Applied ton bits individually,H generates a

superposition of all2n possible states, which can be viewed as the binary representation of
the numbers from0 to 2n − 1.

(H ⊗H ⊗ . . .⊗H)|00 . . . 0〉

=
1√
2n

((|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ . . .⊗ (|0〉 + |1〉))

=
1√
2n

2n−1
∑

x=0

|x〉.

The transformation that appliesH ton bits is called the Walsh, or Walsh-Hadamard, trans-
formationW . It can be defined as a recursive decomposition of the form

W1 = H,Wn+1 = H ⊗Wn.

4.1.2 No Cloning. The unitary property implies that quantum states cannot be copied or
cloned. The no cloning proof given here, originally due to Wootters and Zurek [Wootters
and Zurek 1982], is a simple application of the linearity of unitary transformations.

Assume thatU is a unitary transformation that clones, in thatU(|a0〉) = |aa〉 for all
quantum states|a〉. Let |a〉 and|b〉 be two orthogonal quantum states. SayU(|a0〉) = |aa〉
andU(|b0〉) = |bb〉. Consider|c〉 = (1/

√
2)(|a〉 + |b〉). By linearity,

U(|c0〉) = 1√
2
(U(|a0〉) + U(|b0〉))

= 1√
2
(|aa〉 + |bb〉).

But if U is a cloning transformation then

U(|c0〉) = |cc〉 = 1/2(|aa〉 + |ab〉 + |ba〉 + |bb〉),

which is not equal to(1/
√

2)(|aa〉 + |bb〉). Thus there is no unitary operation that can
reliably clone unknown quantum states. It is clear that cloning is not possible by using
measurement since measurement is both probabalistic and destructive of states not in the
measuring device’s associated subspaces.

It is important to understand what sort of cloning is and isn’t allowed. It is possible to
clone a known quantum state. What the no cloning principle tells us is that it is impossible
to reliably clone an unknown quantum state. Also, it is possible to obtainn particles
in an entangled statea|00 . . .0〉 + b|11 . . . 1〉 from an unknown statea|0〉 + b|1〉. Each
of these particles will behave in exactly the same way when measured with respect to
the standard basis for quantum computation{|00 . . .0〉, |00 . . . 01〉, . . . , |11 . . .1〉}, but not
when measured with respect to other bases. It is not possibleto create then particle state
(a|0〉 + b|1〉) ⊗ . . .⊗ (a|0〉 + b|1〉) from an unknown statea|0〉 + b|1〉.
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4.2 Examples

The use of simple quantum gates can be studied with two simpleexamples: dense coding
and teleportation.

Dense coding uses one quantum bit together with an EPR pair toencode and transmit
two classical bits. Since EPR pairs can be distributed aheadof time, only one qubit (parti-
cle) needs to be physically transmitted to communicate two bits of information. This result
is surprising since, as was discussed in section 3, only one classical bit’s worth of informa-
tion can be extracted from a qubit. Teleportation is the opposite of dense coding, in that
it uses two classical bits to transmit a single qubit. Teleportation is surprising in light of
the no cloning principle of quantum mechanics, in that it enables the transmission of an
unknown quantum state.

The key to both dense coding and teleportation is the use of entangled particles. The
initial set up is the same for both processes. Alice and Bob wish to communicate. Each is
sent one of the entangled particles making up an EPR pair,

ψ0 =
1√
2
(|00〉 + |11〉).

Say Alice is sent the first particle, and Bob the second. So until a particle is transmit-
ted, only Alice can perform transformations on her particle, and only Bob can perform
transformations on his.

4.2.1 Dense Coding

Alice

Encoder

Bob

Decoder

EPR
source

Alice. Alice receives two classical bits, encoding the numbers0 through3. Depending
on this number Alice performs one of the transformations{I,X, Y, Z} on her qubit of the
entangled pairψ0. Transforming just one bit of an entangled pair means performing the
identity transformation on the other bit. The resulting state is shown in the table.

Value Transformation New state
0 ψ0 = (I ⊗ I)ψ0

1√
2
(|00〉 + |11〉)

1 ψ1 = (X ⊗ I)ψ0
1√
2
(|10〉 + |01〉)

2 ψ2 = (Y ⊗ I)ψ0
1√
2
(−|10〉 + |01〉)

3 ψ3 = (Z ⊗ I)ψ0
1√
2
(|00〉 − |11〉)

Alice then sends her qubit to Bob.

Bob. Bob applies a controlled-NOT to the two qubits of the entangled pair.
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Initial state Controlled-NOT First bit Second bit
ψ0 = 1√

2
(|00〉 + |11〉) 1√

2
(|00〉 + |10〉) 1√

2
(|0〉 + |1〉) |0〉

ψ1 = 1√
2
(|10〉 + |01〉) 1√

2
(|11〉 + |01〉) 1√

2
(|1〉 + |0〉) |1〉

ψ2 = 1√
2
(−|10〉 + |01〉) 1√

2
(−|11〉 + |01〉) 1√

2
(−|1〉 + |0〉) |1〉

ψ3 = 1√
2
(|00〉 − |11〉) 1√

2
(|00〉 − |10〉) 1√

2
(|0〉 − |1〉) |0〉

Note that Bob can now measure the second qubit without disturbing the quantum state.
If the measurement returns|0〉 then the encoded value was either0 or 3, if the measurement
returns|1〉 then the encoded value was either1 or 2.

Bob now appliesH to the first bit:

Initial state First bit H(First bit)
ψ0

1√
2
(|0〉 + |1〉) 1√

2

(

1√
2
(|0〉 + |1〉) + 1√

2
(|0〉 − |1〉)

)

= |0〉
ψ1

1√
2
(|1〉 + |0〉) 1√

2

(

1√
2
(|0〉 − |1〉) + 1√

2
(|0〉 + |1〉)

)

= |0〉
ψ2

1√
2
(−|1〉 + |0〉) 1√

2

(

− 1√
2
(|0〉 − |1〉) + 1√

2
(|0〉 + |1〉)

)

= |1〉
ψ3

1√
2
(|0〉 − |1〉) 1√

2

(

1√
2
(|0〉 + |1〉) − 1√

2
(|0〉 − |1〉)

)

= |1〉

Finally, Bob measures the resulting bit which allows him to distinguish between0 and
3, and1 and2.

4.2.2 Teleportation.The objective is to transmit the quantum state of a particle using
classical bits and reconstruct the exact quantum state at the receiver. Since quantum state
cannot be copied, the quantum state of the given particle will necessarily be destroyed. Sin-
gle bit teleportation has been realized experimentally [Bouwmeester et al. 1997; Nielsen
et al. 1998; Boschi et al. 1998].

Alice Bob

Decoder Encoder

EPR

source

Alice. Alice has a qubit whose state she doesn’t know. She wants to send the state of ths
qubit

φ = a|0〉 + b|1〉
to Bob through classical channels. As with dense coding, Alice and Bob each possess one
qubit of an entangled pair

ψ0 =
1√
2
(|00〉 + |11〉).
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Alice applies the decoding step of dense coding to the qubitφ to be transmitted and her
half of the entangled pair. The starting state is quantum state

φ⊗ ψ0 =
1√
2

(

a|0〉 ⊗ (|00〉 + |11〉) + b|1〉 ⊗ (|00〉 + |11〉)
)

=
1√
2

(

a|000〉 + a|011〉 + b|100〉 + b|111〉
)

,

of which Alice controls the first two bits and Bob controls thelast one. Alice now applies
Cnot ⊗ I andH ⊗ I ⊗ I to this state:

(H ⊗ I ⊗ I)(Cnot ⊗ I)(φ⊗ ψ0)

= (H ⊗ I ⊗ I)(Cnot ⊗ I)
1√
2

(

a|000〉 + a|011〉 + b|100〉 + b|111〉
)

= (H ⊗ I ⊗ I)
1√
2

(

a|000〉 + a|011〉 + b|110〉 + b|101〉
)

=
1

2

(

a(|000〉 + |011〉 + |100〉 + |111〉) + b(|010〉 + |001〉 − |110〉 − |101〉)
)

=
1

2

(

|00〉(a|0〉 + b|1〉) + |01〉(a|1〉 + b|0〉) + |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)
)

Alice measures the first two qubits to get one of|00〉, |01〉, |10〉, or |11〉 with equal prob-
ability. Depending on the result of the measurement, the quantum state of Bob’s qubit is
projected toa|0〉 + b|1〉, a|1〉 + b|0〉, a|0〉 − b|1〉, or a|1〉 − b|0〉 respectively. Alice sends
the result of her measurement as two classical bits to Bob.

Note that when she measured it, Alice irretrievably alteredthe state of her original qubit
φ, whose state she is in the process of sending to Bob. This lossof the original state is the
reason teleportation does not violate the no cloning principle.

Bob. When Bob receives the two classical bits from Alice he knows how the state of his
half of the entangled pair compares to the original state of Alice’s qubit.

bits received state decoding
00 a|0〉 + b|1〉 I
01 a|1〉 + b|0〉 X
10 a|0〉 − b|1〉 Z
11 a|1〉 − b|0〉 Y

Bob can reconstruct the original state of Alice’s qubit,φ, by applying the appropriate
decoding transformation to his part of the entangled pair. Note that this is the encoding
step of dense coding.

5. QUANTUM COMPUTERS

This section discusses how quantum mechanics can be used to perform computations and
how these computations are qualitatively different from those performed by a conventional
computer. Recall from section 4 that all quantum state transformations have to be re-
versible. While the classicalNOT gate is reversible,AND, OR and NAND gates are not.
Thus it is not obvious that quantum transformations can carry out all classical computa-
tions. The first subsection describes complete sets of reversible gates that can perform any
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classical computation on a quantum computer. Furthermore,it describes sets of gates with
which all quantum computations can be done. The second subsection discusses quantum
parallelism.

5.1 Quantum Gate Arrays

The bra/ket notation is useful in defining complex unitary operations. For two arbitrary
unitary transformationsU1 andU2, the “conditional” transformation|0〉〈0|⊗U1+ |1〉〈1|⊗
U2 is also unitary. The controlled-NOT gate can defined by

Cnot = |0〉〈0| ⊗ I + |1〉〈1| ⊗X.

The three-bit controlled-controlled-NOT gate or Toffoli gate of section 4 is also an in-
stance of this conditional definition:

T = |0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ Cnot.

The Toffoli gateT can be used to construct complete set of boolean connectives, as can
be seen from the fact that it can be used to construct theAND andNOT operators in the
following way:

T |1, 1, x〉 = |1, 1,¬x〉
T |x, y, 0〉 = |x, y, x ∧ y〉

TheT gate is sufficient to construct arbitrary combinatorial circuits.
The following quantum circuit, for example, implements a 1 bit full adder using Toffoli

and controlled-NOT gates:

|c〉 b b b |c〉

|x〉 b b b |x〉

|y〉 b b b |y〉

|0〉 × × × |s〉

|0〉 × × × |c′〉

wherex andy are the data bits,s is their sum (modulo2), c is the incoming carry bit, and
c′ is the new carry bit. Vedral, Barenco and Ekert [Vedral et al.1996] define more complex
circuits that include in-place addition and modular addition.

The Fredkin gate is a “controlled swap” and can be defined as

F = |0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ S

whereS is the swap operation

S = |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|.

The reader can verify thatF , like T , is complete for combinatorial circuits.



Introduction to Quantum Computing · 21

Deutsch has shown [Deutsch 1985] that it is possible to construct reversible quantum
gates for any classically computable function. In fact, it is possible to conceive of a univer-
sal quantum Turing machine [Bernstein and Vazirani 1997]. In this construction we must
assume a sufficient supply of bits that correspond to the tapeof a Turing machine.

Knowing that an arbitrary classical functionf with m input andk output bits can be im-
plemented on quantum computer, we assume the existence of aquantum gatearrayUf that
implementsf . Uf is am + k bit transformation of the formUf : |x, y〉 → |x, y ⊕ f(x)〉
where⊕ denotes the bitwise exclusive-OR6. Quantum gate arraysUf , defined in this way,
are unitary for any functionf . To computef(x) we applyUf to |x〉 tensored withk
zores|x, 0〉. Sincef(x) ⊕ f(x) = 0 we haveUfUf = I. Graphically the transformation
Uf : |x, y〉 → |x, y ⊕ f(x)〉 is depicted as

Uf

|x〉

|y〉

|x〉

|y ⊕ f(x)〉.

While theT andF gates are complete for combinatorial circuits, they cannotachieve ar-
bitrary quantum state transformations. In order to realizearbitrary unitary transformations7,
single bit rotations need to be included. Barenco et. al. [Barenco et al. 1995] show that
Cnot together with all 1-bit quantum gates is a universal gate set. It suffices to include the
following one-bit transformations

(

cosα sinα
− sinα cosα

)

,

(

eiα 0
0 e−iα

)

for all 0 ≤ α ≤ 2π together with theCnot to obtain a universal set of gates. As we shall
see, such non-classical transformations are crucial for exploiting the power of quantum
computers.

5.2 Quantum Parallelism

What happens ifUf is applied to input which is in a superposition? The answer iseasy
but powerful: sinceUf is a linear transformation, it is applied to all basis vectors in the
superposition simultaneously and will generate a superposition of the results. In this way,
it is possible to computef(x) for n values ofx in a single application ofUf . This effect is
called quantum parallelism.

The power of quantum algorithms comes from taking advantageof quantum parallelism
and entanglement. So most quantum algorithms begin by computing a function of interest
on a superposition of all values as follows. Start with ann-qubit state|00 . . .0〉. Apply the

6⊕ is not the direct sum of vectors.
7More precisely, we mean arbitrary unitary transformationsup to a constant phase factor. A constant phase shift
of the state has no physical, and therefore no computational, significance.
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Walsh-Hadamard transformationW of section 4.1.1 to get a superposition

1√
2n

(|00 . . . 0〉 + |00 . . . 1〉 + . . .+ |11 . . . 1〉) =
1√
2n

2n−1
∑

x=0

|x〉

which should be viewed as the superposition of all integers0 ≤ x < 2n. Add ak-bit
register|0〉 then by linearity

Uf (
1√
2n

2n−1
∑

x=0

|x, 0〉) =
1√
2n

2n−1
∑

x=0

Uf (|x, 0〉)

=
1√
2n

2n−1
∑

x=0

|x, f(x)〉

wheref(x) is the function of interest. Note that sincen qubits enable working simultane-
ously with2n states, quantum parallelism circumvents the time/space trade-off of classical
parallelism through its ability to provide an exponential amount of computational space in
a linear amount of physical space.

Consider the trivial example of a controlled-controlled-NOT (Toffoli) gate,T , that com-
putes the conjunction of two values:

|x〉 b |x〉

|y〉 b |y〉

|0〉 × |x ∧ y〉

Now take as input a superposition of all possible bit combinations ofx andy together
with the necessary0:

H |0〉 ⊗H |0〉 ⊗ |0〉 =
1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 + |1〉) ⊗ |0〉

=
1

2
(|000〉 + |010〉 + |100〉 + |110〉).

Apply T to the superposition of inputs to get a superposition of the results, namely

T (H |0〉 ⊗H |0〉 ⊗ |0〉) =
1

2
(|000〉 + |010〉 + |100〉 + |111〉).

The resulting superposition can be viewed as a truth table for the conjunction, or more
generally as the graph of a function. In the output the valuesof x, y, andx ∧ y are
entangled in such a way that measuring the result will give one line of the truth table, or
more generally one point of graph of the function. Note that the bits can be measured
in any order: measuring the result will project the state to asuperposition of the set of all
input values for whichf produces this result and measuring the input will project the result
to the corresponding function value.
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Measuring at this point gives no advantage over classical parallelism as only one result
is obtained, and worse still one cannot even choice which result one gets. The heart of
any quantum algorithm is the way in which it manipulates quantum parallelism so that
desired results will be measured with high probability. This sort of manipulation has no
classical analog, and requires non-traditional programming techniques. We list a couple of
the techniques currently known.

—Amplify output values of interest. The general idea is to transform the state in such a way
that values of interest have a larger amplitude and therefore have a higher probability of
being measured. Examples of this approach will be describedin section 7.

—Find common properties of all the values off(x). This idea is exploited in Shor’s
algorithm which uses a quantum Fourier transformation to obtain the period off .

6. SHOR’S ALGORITHM

In 1994, inspired by work of Daniel Simon (later published in[Simon 1997]), Peter Shor
found a bounded probability polynomial time algorithm for factoringn-digit numbers on
a quantum computer. Since the 1970’s people have searched for efficient algorithms for
factoring integers. The most efficient classical algorithmknown today is that of Lenstra and
Lenstra [Lenstra and Lenstra 1993] which is exponential in the size of the input. The input
is the list of digits ofM , which has sizen ∼ logM . People were confident enough that
no efficient algorithm existed, that the security of cryptographic systems, like the widely
used RSA algorithm, depend on the difficulty of this problem.Shor’s result surprised the
community at large, prompting widespread interest in quantum computing.

Most factoring algorithms, including Shor’s, use a standard reduction of the factoring
problem to the problem of finding the period of a function. Shor uses quantum parallelism
in the standard way to obtain a superposition of all the values of the function in one step. He
then computes the quantum Fourier transform of the function, which like classical Fourier
transforms, puts all the amplitude of the function into multiples of the reciprocal of the
period. With high probability, measuring the state yields the period, which in turn is used
to factor the integerM .

The above description captures the essence of the quantum algorithm, but is something
of an oversimplification. The biggest complication is that the quantum Fourier transform is
based on the fast Fourier transform and thus gives only approximate results in most cases.
Thus extracting the period is trickier than outlined above,but the techniques for extracting
the period are classical.

We will first describe the quantum Fourier transform and thengive a detailed outline of
Shor’s algorithm.

6.1 The Quantum Fourier Transform

Fourier transforms in general map from the time domain to thefrequency domain. So
Fourier transforms map functions of periodr to functions which have non-zero values only
at multiples of the frequency2π

r . Discrete Fourier transform (DFT) operates onN equally
spaced samples in the interval[0, 2π) for someN and outputs a function whose domain is
the integers between0 andN−1. The discrete Fourier transform of a (sampled) function of
periodr is a function concentrated near multiples ofN

r . If the periodr dividesN evenly,
the result is a function that has non-zero values only at multiples of N

r . Otherwise, the
result will approximate this behavior, and there will be non-zero terms at integers close to
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multiples of N
r .

The Fast Fourier transform (FFT) is a version of DFT whereN is a power of 2. The
quantum Fourier transform (QFT) is a variant of the discreteFourier transform which, like
FFT, uses powers of 2. The quantum Fourier transform operates on the amplitude of the
quantum state, by sending

∑

x

g(x)|x〉 →
∑

c

G(c)|c〉

whereG(c) is the discrete Fourier transform ofg(x), andx and c both range over the
binary representations for the integers between0 andN − 1. If the state were measured
after the Fourier transform was performed, the probabilitythat the result was|c〉 would be
|G(c)|2. Note that the quantum Fourier transform does not output a function the way the
Uf transformation does; no output appears in an extra register.

Applying the quantum Fourier transform to a periodic function g(x) with periodr, we
would expect to end up with

∑

cG(c)|c〉, whereG(c) is zero except at multiples ofNr .
Thus, when the state is measured, the result would be a multiple of N

r , sayjN
r . But as

described above, the quantum Fourier transform only gives approximate results for periods
which are not a power of two, i.e. do not divideN . However the larger the power of
two used as a base for the transform, the better the approximation. The quantum Fourier
transformUQFT with baseN = 2m is defined by

UQFT : |x〉 → 1√
2m

2m−1
∑

c=0

e
2πicx
2m |c〉.

In order for Shor’s algorithm to be a polynomial algorithm, the quantum Fourier trans-
form must be efficiently computable. Shor shows that the quantum Fourier transform with
base2m can be constructed using onlym(m+1)

2 gates. The construction makes use of two
types of gates. One is a gate to perform the familiar HadamardtransformationH . We will
denote byHj the Hadamard transformation applied to thejth bit. The other type of gate
performs two-bit transformations of the form

Sj,k =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθk−j









whereθk−j = π/2k−j . This transformation acts on thekth andjth bits of a larger register.
The quantum Fourier transform is given by

H0S0,1 . . . S0,m−1H1 . . . Hm−3Sm−3,m−2Sm−3,m−1Hm−2Sm−2,m−1Hm−1

followed by a bit reversal transformation. If FFT is followed by measurement, as in Shor’s
algorithm, the bit reversal can be performed classically. See [Shor 1997] for more details.

6.2 A Detailed Outline of Shor’s algorithm

The detailed steps of Shor’s algorithm are illustrated witha running example where we
factorM = 21.

Step 1. Quantum parallelism.Choose an integera arbitrarily. If a is not relatively prime
toM , we have found a factor ofM . Otherwise apply the rest of the algorithm.
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Letm be such thatM2 ≤ 2m < 2M2. [This choice is made so that the approximation
used in Step 3 for functions whose period is not a power of2 will be good enough for the
rest of the algorithm to work.] Use quantum parallelism as described in 5.2 to compute
f(x) = ax modM for all integers from0 to 2m − 1. The function is thus encoded in the
quantum state

1√
2m

2m−1
∑

x=0

|x, f(x)〉. (1)

Example.Supposea = 11 were randomly chosen. SinceM2 = 441 ≤ 29 < 882 =
2M2 we findm = 9. Thus, a total of14 quantum bits,9 for x and5 for f(x) are required
to compute the superposition of equation 1.

Step 2. A state whose amplitude has the same period asf . The quantum Fourier trans-
form acts on the amplitude function associated with the input state. In order to use the
quantum Fourier transform to obtain the period off , a state is constructed whose ampli-
tude function has the same period asf .

To construct such a state, measure the last⌈log2M⌉ qubits of the state of equation 1 that
encodef(x). A random valueu is obtained. The valueu is not of interest in itself; only the
effect the measurement has on our set of superpositions is ofinterest. This measurement
projects the state space onto the subspace compatible with the measured value, so the state
after measurement is

C
∑

x

g(x)|x, u〉,

for some scale factorC where

g(x) =

{

1 if f(x) = u
0 otherwise.

Note that thex’s that actually appear in the sum, those withg(x) 6= 0, differ from each
other by multiples of the period, thusg(x) is the function we are looking for. If we could
measure two successivex’s in the sum, we would have the period. Unfortunately the laws
of quantum physics permit only one measurement.

Example.Suppose that random measurement of the superposition of equation 1 pro-
duces8. The state after this measurement8 (Figure 2) clearly shows the periodicity of
f .

Step 3. Applying a quantum Fourier transform.The|u〉 part of the state will not be used,
so we will no longer write it. Apply the quantum Fourier transform to the state obtained in
Step 2.

UQFT :
∑

x

g(x)|x〉 →
∑

c

G(c)|c〉

Standard Fourier analysis tells us that when the periodr of the functiong(x) defined in
Step 2 is a power of two, the result of the quantum Fourier transform is

∑

j

cj |j
2m

r
〉,

8Only the9 bits ofx are shown in Figure 2; the bits off(x) are known from the measurement.
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Fig. 2. Probabilities for measuringx when measuring the stateC
∑

x∈X
|x, 8〉 obtained in Step 2, where

X = {x|211x mod21 = 8}}
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Fig. 3. Probability distribution of the quantum state afterFourier Transformation.

where the amplitude is0 except at multiples of2m/r. When the periodr does not divide
2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of2

m

r .

Example.Figure 3 shows the result of applying the quantum Fourier Transform to the
state obtained in Step 2. Note that Figure 3 is the graph of thefast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide2m.

Step 4. Extracting the period.Measure the state in the standard basis for quantum com-
putation, and call the resultv. In the case where the period happens to be a power of2,
so that the quantum Fourier transform gives exactly multiples of2m/r, the period is easy
to extract. In this case,v = j 2m

r for somej. Most of the timej andr will be relatively
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prime, in which case reducing the fractionv2m (= j
r ) to its lowest terms will yield a frac-

tion whose denominatorq is the periodr. The fact that in general the quantum Fourier
transform only approximately gives multiples of the scaledfrequency complicates the ex-
traction of the period from the measurement. When the periodis not a power of2, a good
guess for the period can be obtained using the continued fraction expansion of v

2m . This
classical technique is described in Appendix B.

Example.Say that measurement of the state returnsv = 427. Sincev and2m are rela-
tive prime the periodr will most likely not divide2m and the continued fraction expansion
described in Appendix B needs to be applied. The following isa trace of the algorithm
described in Appendix B:

i ai pi qi ǫi
0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5

which terminates with6 = q2 < M ≤ q3. Thus,q = 6 is likely to be the period off .

Step 5. Finding a factor ofM . When our guess for the period,q, is even, use the Eu-
clidean algorithm to efficiently check whether eitheraq/2 + 1 or aq/2 − 1 has a non-trivial
common factor withM .

The reason whyaq/2 + 1 or aq/2 − 1 is likely to have a non-trivial common factor with
M is as follows. Ifq is indeed the period off(x) = ax modM , thenaq = 1 modM since
aqax = ax modM for all x. If q is even, we can write

(aq/2 + 1)(aq/2 − 1) = 0 modM.

Thus, so long as neitheraq/2+1 noraq/2−1 is a multiple ofM , eitheraq/2+1 oraq/2−1
has a non-trivial common factor withM .

Example.Since6 is even eithera6/2 − 1 = 113 − 1 = 1330 or a6/2 + 1 = 113 + 1 =
1332 will have a common factor withM . In this particular example we find two factors
gcd(21, 1330) = 7 and gcd(21, 1332) = 3.

Step 6. Repeating the algorithm, if necessary.Various things could have gone wrong so
that this process does not yield a factor ofM :
(1) The valuev was not close enough to a multiple of2m

r .
(2) The periodr and the multiplierj could have had a common factor so that the denom-

inatorq was actually a factor of the period not the period itself.
(3) Step 5 yieldsM asM ’s factor.
(4) The period off(x) = ax modM is odd.
Shor shows that few repetitions of this algorithm yields a factor ofM with high probability.

6.2.1 A Comment on Step 2 of Shor’s Algorithm.The measurement in Step 2 can be
skipped entirely. More generally Bernstein and Vazirani [Bernstein and Vazirani 1997]
show that measurements in the middle of an algorithm can always be avoided. If the
measurement in Step 2 is omitted, the state consists of a superpositions of several periodic
functions all of which have the same period. By the linearityof quantum algorithms, apply-
ing the quantum Fourier transformation leads to a superposition of the Fourier transforms
of these functions, each of which is entangled with the correspondingu and therefore do
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not interfere with each other. Measurement gives a value from one of these Fourier trans-
forms. Seeing how this argument can be formalized illustrates some of the subtleties of
working with quantum superpostions. Apply the quantum Fourier transform tensored with
the identity,UQFT ⊗ I, toC

∑2n−1
x=0 |x, f(x)〉 to get

C′
2n−1
∑

x=0

2m−1
∑

c=0

e
2πixc
2m |c, f(x)〉,

which is equal to

C′
∑

u

∑

x|f(x)=u

∑

c

e
2πixc
2m |c, u〉

for u in the range off(x). What results is a superposition of the results of Step 3 for
all possibleu’s. The quantum Fourier transform is being applied to a family of separate
functionsgu indexed byu where

gu =

{

1 if f(x) = u
0 otherwise,

all with the same period. Note that the amplitudes in states with differentu’s never interfere
(add or cancel) with each other. The transformUQFT ⊗ I as applied above can be written

UQFT ⊗ I : C
∑

u∈R

2n−1
∑

x=0

gu(x)|x, f(x)〉 → C′
∑

u∈R

2n−1
∑

x=0

2n−1
∑

c=0

Gu(c)|c, u〉,

whereGu(c) is the discrete Fourier transform ofgu(x) andR is the range off(x).
Measurec and run Steps 4 and 5 as before.

7. SEARCH PROBLEMS

A large class of problems can be specified as search problems of the form “find somex in
a set of possible solutions such that statementP (x) is true.” Such problems range from
database search to sorting to graph coloring. For example, the graph coloring problem can
be viewed as a search for an assignment of colors to vertices so that the statement “all
adjacent vertices have different colors” is true. Similarly, a sorting problem can be viewed
as a search for a permutation for which the statement “the permutationx takes the initial
state to the desired sorted state” is true.

An unstructuredsearch problem is one where nothing is know (or no assumptionare
used) about the structure of the solution space and the statementP . For example, deter-
miningP (x0) provides no information about the possible value ofP (x1) for x0 6= x1. A
structuredsearch problem is one where information about the search space and statement
P can be exploited.

For instance, searching an alphabetized list is a structured search problem and the struc-
ture can be exploited to construct efficient algorithms. In other cases, like constraint sat-
isfaction problems such as 3-SAT or graph colorability, theproblem structure can be ex-
ploited for heuristic algorithms that yield efficient solution for some problem instances.
But in the general case of an unstructured problem, randomlytesting the truth of state-
mentsP (xi) one by one is the best that can be done classically. For a search space of
sizeN , the general unstructured search problem requiresO(N) evaluations ofP . On a
quantum computer, however, Grover showed that the unstructured search problem can be
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solved with bounded probability withinO(
√
N) evaluations ofP . Thus Grover’s search

algorithm [Grover 1996] is provably more efficient than any algorithm that could run on a
classical computer.

While Grover’s algorithm is optimal [Bennett et al. 1997; Boyer et al. 1996; Zalka 1997]
for completely unstructured searches, most search problems involve searching a structured
solution space. Just as there are classical heuristic algorithms that exploit problem struc-
ture, one would expect that there are more efficient quantum algorithms for certain struc-
tured problem instances. Grover et.al. [Cerf et al. 1998] uses Grover’s search algorithm
in place of classical searches within a heuristic algorithmto show that a quadratic speed-
up is possible over a particularly simple classical heuristic for solving NP-hard problems.
Brassard et.al. [Brassard et al. 1998], using the techniques of Grover’s search algorithm
in a less obvious way, show that general heuristic searches have quantum analogs with
quadratic speed-up.

There is hope that for certain structured problems a speed-up greater than quadratic is
possible. Such algorithms will likely require new approaches that are not merely quantum
implementations of classical algorithms. Shor’s algorithm, when viewed as a search for
factors, is an example of an algorithm that achieves exponential speed-up by using problem
structure (number theory) in new ways unique to quantum computation.

Tad Hogg has developed heuristic quantum search algorithmsthat exploit problem struc-
ture. His approach is distincly non-classical and uses unique properties of quantum com-
putation. One problem with this approach is that, like most heuristic algorithms, the use
of problem structure is complicated enough that it is hard todetermine the probability that
a single iteration of an algorithm will give a correct answer. Therefore it is unknown how
efficient Hogg’s algorithms are. Classically the efficiencyof heuristic algorithms is esti-
mated by empirically testing the algorithm. But as there is an exponential slow down when
simulating a quantum computer on a classical one, empiricaltesting of quantum algorithms
is currently infeasible except in small cases. Small cases indicate that Hogg’s algorithms
are more efficient than Grover’s algorithm applied to structured search problems, but that
the speed-up is likely to be only polynomial. While less interesting theoretically, even a
small polynomial speed-up on average for these computational difficult problems is of sig-
nificant practical interest. Until sufficiently large quantum computers are built, or better
techniques for analyzing such algorithms are found, the efficiency cannot be determined
for sure.

7.1 Grover’s Search Algorithm

Grover’s algorithm searches an unstructured list of sizeN for anx that makes a statement
true. Letn be such that2n ≥ N , and letUp be the quantum gate that implements the
classical functionP (x) that tests the truth of the statement, where true is encoded as1.

UP : |x, 0〉 → |x, P (x)〉
The first step is the standard one for quantum computing described in section 5.2. Compute
P for all possible inputsxi, by applyingUP to a register containing the superposition

1√
2n

∑n−1
x=0 |x〉 of all 2n possible inputsx together with a register set to0, leading to the

superposition

1√
2n

n−1
∑

x=0

|x, P (x)〉. (2)
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The difficult step is to obtain a useful result from this superposition.
For anyx0 such thatP (x0) is true, |x0, 1〉 will be part of the superposition of Eq. 2.

Since the amplitude of such a state is1√
2n

, the probability that a random measurement

of the superposition producesx0 is only 2−n. The trick is to change the quantum state
in Eq. 2 so as to greatly increase the amplitude of vectors|x0, 1〉 for whichP is true and
decrease the amplitude of vectors|x, 0〉 for whichP is false.

Once such a transformation of the quantum state has been performed, one can simply
measure the last qubit of the quantum state which representsP (x). Because of the am-
plitude change, there is a high probability that the result will be 1. If this is the case, the
measurement has projected the state of Eq. 2 onto the subspace 1√

2k

∑k
i=1 |xi, 1〉 where

k is the number of solutions. Further measurement of the remaining bits will provide one
of these solutions. If the measurement of qubitP (x) yields0, then the whole process is
started over and the superposition of Eq. 2 must be computed again.

Grover’s algorithm then consists of the following steps:

(1) Prepare a register containing a superposition of all possible valuesxi ∈ [0 . . . 2n − 1].
(2) ComputeP (xi) on this register.
(3) Change amplitudeaj to −aj for xj such thatP (xj) = 1. An efficient algorithm for

changing selected signs is described in section 7.1.2. A plot of the amplitudes after
this step is shown here.

average

0

(4) Apply inversion about the average to increase amplitudeof xj with P (xj) = 1. The
quantum algorithm to efficiently perform inversion about the average is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, where the amplitude of all thexi’s
with P (xi) = 0 have been diminished imperceptibly.

average

0

(5) Repeat steps 2 through 4π
4

√
2n times.

(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analysisof the performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimal upto a constant factor; no quan-
tum algorithm can perform an unstructured search faster. They also show that if there is
only a singlex0 such thatP (x0) is true, then afterπ8

√
2n iterations of steps 2 through 4 the

failure rate is0.5. After iteratingπ
4

√
2n times the failure rate drops to2−n. Interestingly,

additional iterations will increase the failure rate. For example, afterπ2
√

2n iterations the
failure rate is close to1.

There are many classical algorithms in which a procedure is repeated over and over again
for ever better results. Repeating quantum procedures may improve results for a while, but
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after a sufficient number of repetitions the results will getworse again. Quantum proce-
dures are unitary transformations, which are rotations of complex space, and thus while a
repeated applications of a quantum transform may rotate thestate closer and closer to the
desired state for a while, eventually it will rotate past thedesired state to get farther and
farther from the desired state. Thus to obtain useful results from a repeated application of
a quantum transformation, one must know when to stop. Brassard et.al. [Brassard et al.
1998] describe an extension of Grover’s algorithm that usesFourier Transforms to deter-
mine the number of solutions and the optimal number of iterations. The extension does not
increase the overall complexity of the algorithm.

Grover has extended his algorithm to achieve quadratic speed-up for other non-search
problems such as computing the mean and median of a function [Grover 1998]. Using
similar techniques grover has also shown that certain search problems that classically run
in O(logN) can be solved inO(1) on a quantum computer. Grover’s search can used as
a subroutine in other quantum computations since Biron et.al. [Biron et al. 1998] show
how the technique can be used with arbitrary initial amplitude distributions, while still
maintainingO(

√
N) complexity.

7.1.1 Inversion about the Average.To perform inversion about the average on a quan-
tum computer the inversion must be a unitary transformation. Furthermore, in order for
the algorithm as a whole to solve the problem inO(

√
N) time, the inversion must be able

to be performed efficiently. As will be shown shortly, the inversion can be accomplished
with O(n) = O(log(N)) quantum gates.

It is easy to see that the transformation

N−1
∑

i=0

ai|xi〉 →
N−1
∑

i=0

(2A− ai)|xi〉,

whereA denotes the average of theai’s, is performed by theN ×N matrix

D =









2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
. . . . . . . . . . . .
2
N

2
N . . . 2

N − 1









.

SinceDD∗ = I,D is unitary and is therefore a possible quantum state transformation.
We now turn to the question of how efficiently the transformation can be performed,

and show that it can be decomposed intoO(n) = O(log(N)) elementary quantum gates.
Following Grover,D can be defined asD = WRW whereW is the Walsh-Hadamard
transform defined in section 4 and

R =









1 0 . . . 0
0 −1 0 . . .
0 . . . . . . 0
0 . . . 0 −1









.

To see thatD = WRW , considerR = R′ − I whereI is the identity and

R′ =









2 0 . . . 0
0 0 0 . . .
0 . . . . . . 0
0 . . . 0 0









.
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NowWRW = W (R′ − I)W = WR′W − I. It is easily verified that

WR′W =









2
N

2
N . . . 2

N
2
N

2
N

2
N . . .

2
N . . . . . . 2

N
2
N . . . 2

N
2
N









and thusWR′W − I = D.

7.1.2 Changing the Sign.We still have to explain how to invert the amplitude of the
desired result. We show, more generally, a surprising simple way to invert the amplitude
of exactly those states withP (x) = 1 for a generalP .

Let UP be the gate array that performs the computationUP : |x, b〉 → |x, b⊕ P (x)〉.
Apply UP to the superposition|ψ〉 = 1√

2n

∑n−1
x=0 |x〉 and chooseb = 1√

2
|0〉 − |1〉 to end

up in a state where the sign of allx with P (x) = 1 has been changed, andb is unchanged.
To see this, letX0 = {x|P (x) = 0} andX1 = {x|P (x) = 1} and consider the

application ofUP .

UP (|ψ, b〉)

=
1√

2n+1
UP (

∑

x∈X0

|x, 0〉 +
∑

x∈X1

|x, 0〉 −
∑

x∈X0

|x, 1〉 −
∑

x∈X1

|x, 1〉)

=
1√

2n+1
(

∑

x∈X0

|x, 0 ⊕ 0〉 +
∑

x∈X1

|x, 0 ⊕ 1〉 −
∑

x∈X0

|x, 1 ⊕ 0〉 −
∑

x∈X1

|x, 1 ⊕ 1〉)

=
1√

2n+1
(

∑

x∈X0

|x, 0〉 +
∑

x∈X1

|x, 1〉 −
∑

x∈X0

|x, 1〉 −
∑

x∈X1

|x, 0〉)

=
1√
2n

(
∑

x∈X0

|x〉 −
∑

x∈X1

|x〉) ⊗ b

Thus the amplitude of the states inX1 have been inverted as desired.

7.2 Heuristic Search

7.2.1 A Note on the Walsh-Hadamard Transform.There is another representation for
the Walsh-Hadamard transformation of section 4.1.1 that isuseful for understanding how
to use the Walsh-Hadamard transformation in constructing quantum algorithms. Then bit
Walsh-Hadamard transformation is a2n×2n matrixW with entriesWrs where bothr and
s range from0 to 2n − 1. We will show that

Wrs =
1√
2n

(−1)r·s

wherer · s is the number of common1 bits in the the binary representations ofr ands.
To see this equality, note that

W (|r〉) =
∑

s

Wrs|s〉.

Let rn−1 . . . r0 be the binary representation ofr, andsn−1 . . . s0 be the binary representa-
tion of s.

W (|r〉) = (H ⊗ . . .⊗H)(|rn−1〉 ⊗ . . .⊗ |r0〉)
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Fig. 4. Lattice of variable assignments in a CSP

=
1√
2n

(|0〉 + (−1)rn−1 |1〉) ⊗ . . .⊗ (|0〉 + (−1)r0 |1〉)

=
1√
2n

2n−1
∑

s=0

(−1)sn−1rn−1 |sn−1〉 ⊗ . . .⊗ (−1)s0r0 |s0〉

=
1√
2n

2n−1
∑

s=0

(−1)s·r|s〉.

7.2.2 Overview of Hogg’s algorithms.A constraint satisfaction problem (CSP) hasn
variablesV = {v1, . . . , vn} which can takem different valuesX = {x1, . . . , xm} subject
to certain constraintsC1, . . . , Cl. Solutions to a constraint satisfaction problem lie in the
space of assignments ofxi’s to vj ’s, V ×X . There is a natural lattice structure on this space
given by set containment. Figure 4 shows the assignment space and its lattice structure for
n = 2, m = 2, x1 = 0, andx2 = 1. Note that the lattice includes both incomplete and
inconsistent assignments.

Using the standard correspondence between sets of enumerated elements and binary
sequences, in which a1 in thenth place corresponds to inclusion of thenth element and a
0 corresponds to exclusion, standard basis vectors for a quantum state space can be put in
one to one correspondence with the sets. For example, Figure5 shows the lattice of Figure
4 rewritten in ket notation where the elementsv1 = 0, v1 = 1, v2 = 0 andv2 = 1 have
been enumerated in that order.

If a state violates a constraint, then so do all states above it in the lattice. The approach
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|0000〉

|1000〉 |0100〉 |0010〉 |0001〉
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Fig. 5. Lattice of variable assignments in ket form

Hogg takes in designing quantum algorithms for constraint satisfaction problems is to be-
gin with all the amplitude concentrated in the|0 . . . 0〉 state and to iteratively move ampli-
tude up the lattice from sets to supersets and away from sets that violate the constraints.
Note that this algorithm begins differently than Shor’s algorithm and Grover’s algorithm,
which both begin by computing a function on a superposition of all the input values at
once.

Hogg gives two ways [Hogg 1996; Hogg 1998] of constructing a unitary matrix for
moving amplitude up the lattice. We will describe both methods, and then describe how he
moves amplitude away from bad sets.

Moving amplitude up: Method 1. There is an obvious transformation that moves
amplitude from sets to supersets. Any amplitude associatedto the empty set is evenly
distributed among all sets with a single element. Any amplitude associated to a set with a
single element is evenly distributed among all two element sets which contain that element
and so on. For the lattice of a three element set

|111〉

����� HHHHH
|011〉 |101〉 |110〉

HHHHH����� HHHHH�����

|001〉 |010〉 |100〉
HHHHH �����

|000〉

We want to transform

|000〉 → 1/
√

3(|001〉 + |010〉 + |100〉
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|001〉 → 1/
√

3(|011〉 + |110〉 + |101〉
. . .

The complete matrix for this transformation looks like (as usual the basis vectors are or-
dered according to their binary representation)





























0 0 0 0 0 0 0 1
1√
3

0 0 0 0 0 0 0
1√
3

0 0 0 0 0 0 0

0 1√
2

1√
2

0 0 0 0 0
1√
3

0 0 0 0 0 0 0

0 1√
2

0 0 1√
2

0 0 0

0 0 1√
2

0 1√
2

0 0 0

0 0 0 1 0 1 1 0





























Unfortunately this transformation is not unitary. Hogg [Hogg 1996] uses the fact that
the closest (in a suitable metric) unitary matrixUM to an arbitrary matrixM can be found
usingM ’s singular value decompositionM = UDV T whereD is a diagonal matrix, and
U andV are unitary matrices. The productUM = UV T gives the closest unitary matrix
toM . Provided thatUM is sufficiently close toM , UM will behave in a similar way toM
and will therefore do a reasonably job of moving amplitude from sets to their supersets.

Moving amplitude up: Method 2.The second approach [Hogg 1998] uses the Walsh-
Hadamard transformation. Hogg assumes that the desired matrix has formWDW where
W is the Walsh-Hadamard transformation andD is a diagonal matrix whose entries de-
pend only on the size of the sets. Hogg calculates the entriesfor D which maximize the
movement of amplitude from a set to its supersets. This calculation exploits the property

Wrs =
1√
N

(−1)|r·s| =
1√
N

(−1)|r∩s|

shown in section 7.2.1.
Moving amplitude away from bad sets. To effect moving amplitude away from sets

that violate the constraints, Hogg suggests adjusting the phases of the sets, depending on
the extent to which they violate the constraints, in such a way that amplitude distributed
to sets that have bad subsets cancels, where as the amplitudedistributed to sets from all
good subsets adds. Different choices here will work more or less effectively depending
on the particular problem. One choice he suggests is inverting the phase of all bad sets
which will result in some cancelation in the amplitude of supersets between the amplitude
coming from good subsets and bad subsets. This phase inversion can be done as in Grover’s
algorithm (7.1.2) with aP that tests whether a given state satisfies all of the constraints or
not. Another suggestion is to give random phases to the bad sets so that on average the
contribution to the amplitude of a superset from bad subsetsis zero. Other choices are
possible.

Because the canceling resulting from the phase changes varies from problem to prob-
lem, the probability of obtaining a solution is difficult to analyse. A few small experiments
have been done and the guess is that the cost of the search still grows exponentially, but
considerably more slowly than in the unstructured case. Butuntil sufficiently large quan-
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tum computers are built, or better techniques for analyzingsuch algorithms are found, the
efficiency cannot be determined for sure.

8. QUANTUM ERROR CORRECTION

One fundamental problem in building quantum computers is the need to isolate the quan-
tum state. An interaction of particles representing qubitswith the external environment
disturbs the quantum state, and causes it to decohere, or transform in an unintended and
often non-unitary fashion.

Steane [Steane 1998] estimates that the decoherence of any system likely to be built is
107 times too large to be able to run Shor’s algorithm as it standson a130 digit number.
However, adding error correction algorithms to Shor’s algorithm mitigates the effect of
decoherence, making it again look possible that a system could be built on which Shor’s
algorithm could be run for large numbers.

On the surface quantum error correction is similar to classical error correcting codes in
that redundant bits are used to detect and correct errors. But the situation for quantum
error correction is somewhat more complicated than in the classical case since we are not
dealing with binary data but with quantum states.

Quantum error correction must reconstruct the exact encoded quantum state. Given the
impossibility of cloning or copying the quantum state, thisreconstruction appears harder
than in the classical case. However, it turns out that classical techniques can be modified
to work for quantum systems.

8.1 Characterization of Errors

In the following it is assumed that all errors are the result of quantum interaction between a
set of qubits and the environment. The possible errors for each single qubit considered are
linear combinations of no errors (I), bit flip errors (X), phase errors (Z), and bit flip phase
errors (Y ). A general single bit error is thus a transformatione1I + e2X + e3Y + e4Z.
Interaction with the environment transforms single qubitsaccording to

|ψ〉 → (e1I + e2X + e3Y + e4Z)|ψ〉 =
∑

i

eiEi|ψ〉.

For the general case of quantum registers, possible errors are expressed as linear com-
binations of unitary error operatorsEi. These could be combinations of single bit errors,
like tensor products of the single bit error transformations {I,X, Y, Z}, or more general
multi-bit transformations. In any case, an error can be written as

∑

i eiEi for some error
operatorsEi and coefficientsei.

8.2 Recovery of Quantum State

An error correcting code for a set of errorsEi consists of a mappingC that embedsn data
bits inn+ k code bits together with a syndrome extraction operatorsSC that mapsn+ k
code bits to the set of indices of correctable errorsEi such thati = SC(Ei(C(x))). If
y = Ej(C(x)) for some unknown but correctable error, then errorSC(y) can be used to
recover a properly encoded valueC(x), i.e.E−1

SC(y)(y) = C(x).
Now consider the case of a quantum register. First, the stateof the register can be in a

superposition of basis vectors. Furthermore, the error canbe a combination of correctable
error operatorsEi. It turns out that it is still possible to recover the encodedquantum state.
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Given an error correcting codeC with syndrome extraction operatorSC , ann-bit quan-
tum state|ψ〉 is encoded in an+k bit quantum state|φ〉 = C|ψ〉. Assume that decoherence
leads to an error state

∑

i eiEi|φ〉 for some combination of correctable errorsEi. The orig-
inal encoded state|φ〉 can be recovered as follows:

(1) Apply the syndrome extraction operatorSC to the quantum state padded with suffi-
cient|0〉 bits:

SC(
∑

i

eiEi|φ〉) ⊗ |0〉 =
∑

i

ei(Ei|φ〉 ⊗ |i〉).

Quantum parallelism gives a superposition of different errors each associated with
their respective error indexi.

(2) Measure the|i〉 component of the result. This yields some (random) valuei0 and
projects the state to

Ei0 |φ, i0〉
(3) Apply the inverse error transformationE−1

i0
to the firstn + k qubits ofEi0 |φ, i0〉 to

get the corrected state|φ〉.
Note that step 2 projects a superposition of multiple error transformations into a single

error. Consequently, only one inverse error transformation is required in step 3.

8.3 Error Correction Example

Consider the trivial error correcting codeC that maps|0〉 → |000〉 and|1〉 → |111〉. C
can correct single bit flip errors

E = {I ⊗ I ⊗ I,X ⊗ I ⊗ I, I ⊗X ⊗ I, I ⊗ I ⊗X}.
The syndrome extraction operator is

S : |x0, x1, x2, 0, 0, 0〉 → |x0, x1, x2, x0 xorx1, x0 xorx2, x1 xorx2〉,
with the corresponding error correction operators shown inthe table. Note thatEi = E−1

i

for this example.

Bit flipped Syndrome Error correction
none |000〉 none

0 |110〉 X ⊗ I ⊗ I
1 |101〉 I ⊗X ⊗ I
2 |011〉 I ⊗ I ⊗X

Consider the quantum bit|ψ〉 = 1√
2
(|0〉 − |1〉) that is encoded as

C|ψ〉 = |φ〉 =
1√
2
(|000〉 − |111〉)

and the error

E =
4

5
X ⊗ I ⊗ I +

3

5
I ⊗X ⊗ I.

The resulting error state is

E|φ〉 = (
4

5
X ⊗ I ⊗ I +

3

5
I ⊗X ⊗ I)(

1√
2
(|000〉 − |111〉))
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=
4

5
X ⊗ I ⊗ I(

1√
2
(|000〉 − |111〉)) +

3

5
I ⊗X ⊗ I(

1√
2
(|000〉 − |111〉))

=
4

5
√

2
X ⊗ I ⊗ I(|000〉 − |111〉) +

3

5
√

2
I ⊗X ⊗ I(|000〉 − |111〉)

=
4

5
√

2
(|100〉 − |011〉) +

3

5
√

2
(|010〉 − |101〉)

Next apply the syndrome extraction to(E|φ〉) ⊗ |000〉 as follows:

SC((E|φ〉) ⊗ |000〉)

= SC(
4

5
√

2
(|100000〉 − |011000〉) +

3

5
√

2
(|010000〉 − |101000〉))

=
4

5
√

2
(|100110〉 − |011110〉) +

3

5
√

2
(|010101〉 − |101101〉)

=
4

5
√

2
(|100〉 − |011〉) ⊗ |110〉 +

3

5
√

2
(|010〉 − |101〉) ⊗ |101〉

Measuring the last three bits of this state yields either|110〉 or |101〉. Assuming the mea-
surement produces the former, the state becomes

1√
2
(|100〉 − |011〉) ⊗ |110〉.

The measurement has the almost magical effect of causing allbut one summand of the
error to disappear. The remaining part of the error can be removed by applying the inverse
error operatorX⊗ I⊗ I, corresponding to the measured value|110〉, to the first three bits,
to produce

1√
2
(|000〉 − |111〉) = C|ψ〉 = |φ〉.

9. CONCLUSIONS

Quantum computing is a new, emerging field that has the potential to dramatically change
the way we think about computation, programming and complexity. The challenge for
computer scientists and others is to develop new programming techniques appropriate for
quantum computers. Quantum entanglement and phase cancellation introduce a new di-
mension to computation. Programming no longer consists of merely formulating step-by-
step algorithms but requires new techniques of adjusting phases, and mixing and diffusing
amplitudes to extract useful output.

We have tried to give an accurate account of the state-of-the-art of quantum computing
for computer scientists and other non-physicists. We have described some of the quantum
mechanical effects, like the exponential state space, the entangled states, and the linearity
of quantum state transformations, that make quantum parallelism possible. Even though
quantum computations must be linear and reversible, any classical algorithm can be imple-
mented on a quantum computer. But the real power of these new machines, the exponential
parallelism, can only be exploited using new, innovative programming techniques. People
have only recently begun to research such techniques.
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We have described Shor’s polynomial-time factorization algorithm that stimulated the
field of quantum computing. Given a practical quantum computer, Shor’s algorithm would
make many present cryptographic methods obsolete. Grover’s search algorithm, while only
providing a polynomial speed-up, proves that quantum computers are strictly more pow-
erful than classical ones. Even though Grover’s algorithm has been shown to be optimal,
there is hope that faster algorithms can be found by exploiting properties of the problem
structure. We have described one such approach taken by Hogg.

There are a few other known quantum algorithms that we did notdiscuss. Jones and
Mosca [Jones and Mosca 1998] describe the implementation ona 2-bit quantum computer
of a constant time algorithm [Deutsch and Jozsa 1992] that can distinguish whether a func-
tion is balanced or constant. Grover [Grover 1998] describes an efficient algorithm for
estimating the median of a set of values and both Grover [Grover 1998] and Terhal and
Smolin [Terhal and Smolin 1997] using different methods cansolve the coin weighing
problem in a single step.

Beyond these algorithms not much more is known about what could be done with a
practical quantum computer. It is an open question whether or not we can find quantum
algorithms that provide exponential speed-up for problemsother than factoring. There is
some speculation among physicists that quantum transformations might be slightly non-
linear. So far all experiments that have been done are consistent with the standard linear
quantum mechanics, but a slight non-linearity is still possible. Abrams and Lloyd [Abrams
and Lloyd 1998] show that even a very slight non-linearity could be exploited to solve
all NP hard problems on a quantum computer in polynomial time. This result further
highlights the fact that computation is fundamentally a physical process, and that what can
be computed efficiently may depend on subtle issues in physics.

The unique properties of quantum computers give rise to new kinds of complexity
classes. For instance, BQP is the set of all languages accepted by a quantum Turing ma-
chine in polynomial time with bounded probability. Detailsof the extensive research done
in the field of quantum complexity theory is beyond the scope of this paper. The interested
reader may start by consulting [Bennett et al. 1997] and [Watrous 1998] respectively for
analyses of time and space complexity of quantum computation. [Williams and Clearwater
1998] contains an introduction to early results in quantum complexity.

Of course, there are daunting physical problems that must beovercome if anyone is ever
to build a useful quantum computer. Decoherence, the distortion of the quantum state due
to interaction with the environment, is a key problem. A big breakthrough for dealing with
decoherence came from the algorithmic, rather than the physical, side of the field with
the development of quantum error correction techniques. Wehave described some of the
principles involved. Further advances in quantum error correction and the development of
robust algorithms will be as important for the development of practical quantum computers
as advances in the hardware side.

9.1 Further Reading

Andrew Steane’s survey article “Quantum computing” [Steane 1998] is aimed at physicists.
We recommend reading his paper for his viewpoint on this subject, particularly for his
description of connections between information theory andquantum computing and for
his discussion of error correction, of which he was one of themain developers. He also has
an overview of the physics involved in actually building quantum computers, and a survey
of what had been done up to July 1997. His article contains a more detailed history of



40 · E. Rieffel and W. Polak

the ideas related to quantum computing than the present paper, and has more references as
well. Another shorter and very readable tutorial can be found in [Berthiaume 1997].

Richard Feynman’sLectures on Computation[Feynman 1996] contains a reprint of the
lecture “Quantum Mechanical Computers” [Feynman 1985] which began the whole field.
It also discusses the thermodynamics of computations whichis closely tied with reversible
computing and information theory.

Colin Williams and Scott Clearwater’s bookExplorations in Quantum Computing[Williams
and Clearwater 1998] comes with software, in the form of Mathematica notebooks, that
simulates some quantum algorithms like Shor’s algorithm.

The second half of the October 1997 issue of the SIAM Journal of Computing contains
six seminal articles on quantum computing, including four we have already cited [Bennett
et al. 1997] [Bernstein and Vazirani 1997] [Shor 1997] [Simon 1997].

Most of the articles referenced in this paper, and many more,can be found at the Los
Alamos preprint server:http://xxx.lanl.gov/archive/quant-ph. Links to
research projects and other information about quantum computing can be found on our
web sitehttp://www.pocs.com/qc.html.
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APPENDIX

A. TENSOR PRODUCTS

The tensor product (⊗) of an-dimensional and ak-dimensional vector is ank-dimensional
vector. Similarly, ifA andB are transformations onn-dimensional and ak-dimensional
vectors respectively, thenA⊗B9 is a transformation onnk-dimensional vectors.

The exact mathematical details of tensor products are beyond the scope of this paper
(see [Hungerford 1974] for a comprehensive treatment). Forour purposes the following
algebraic rules are sufficient to calculate with tensor products. For matricesA,B,C,D, U ,
vectorsu, x, y, and scalarsa, b the following hold:

(A⊗B)(C ⊗D) = AC ⊗BD

(A⊗B)(x⊗ y) = Ax⊗By

(x+ y) ⊗ u = x⊗ u+ y ⊗ u

u⊗ (x+ y) = u⊗ x+ u⊗ y

ax⊗ by = ab(x⊗ y)

(

A B
C D

)

⊗ U =

(

A⊗ U B ⊗ U
C ⊗ U D ⊗ U

)

,

which specialized for scalarsa, b, c, d to
(

a b
c d

)

⊗ U =

(

aU bU
cU dU

)

.

The conjugate transpose distributes over tensor products,i.e.

(A⊗B)∗ = A∗ ⊗B∗.

A matrixU is unitary if its conjugate transpose its inverse:U∗U = I.
The tensor product of several matrices is unitary if and onlyif each one of the matrices

is unitary up to a constant. LetU = A1⊗A2⊗ . . .⊗An. ThenU is unitary ifA∗
iAi = kiI

andΠiki = 1.

U∗U = (A∗
1 ⊗A∗

2 ⊗ . . .⊗A∗
n)(A1 ⊗A2 ⊗ . . .⊗ An)

= A∗
1A1 ⊗A∗

2A2 ⊗ . . .⊗A∗
nAn

= k1I ⊗ . . . knI

= I

where eachI refers to the identity matrix of appropriate dimension.
For example, the distributive law allows computations of the form:

(a0|0〉 + b0|1〉) ⊗ (a1|0〉 + b1|1〉)

9Technically, this is a right Kronecker product.
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= (a0|0〉 ⊗ a1|0〉) + (b0|1〉 ⊗ a1|0〉) + (a0|0〉 ⊗ b1|1〉) + (b0|1〉 ⊗ b1|1〉)
= a0a1((|0〉 ⊗ |0〉) + b0a1(|1〉 ⊗ |0〉) + a0b1(|0〉 ⊗ |1〉) + b0b1(|1〉 ⊗ |1〉)
= a0a1(|00〉 + b0a1|10〉 + a0b1|01〉 + b0b1|11〉

B. CONTINUED FRACTIONS AND EXTRACTING THE PERIOD FROM THE MEA-
SUREMENT IN SHOR’S ALGORITHM

In the general case where the periodr does not divide2m, the valuev measured in step 4
of Shor’s algorithm will be, with high probability, close tosome multiple of2

m

r , sayj 2m

r .
The aim is to extract the periodr from the measured valuev. Shor shows that, with high

probability,v is within 1
2 of somej 2m

r . Thus
∣

∣

∣

∣

v − j
2m

r

∣

∣

∣

∣

<
1

2

for somej, which implies that
∣

∣

∣

∣

v

2m
− j

r

∣

∣

∣

∣

<
1

2 · 2m
<

1

2M2
.

The difference between two distinct fractionsp
q and p′

q′
with denominators less thanM is

bounded
∣

∣

∣

∣

p

q
− p′

q′

∣

∣

∣

∣

=

∣

∣

∣

∣

pq′ − p′q

qq′

∣

∣

∣

∣

>
1

M2
.

Thus there is at most one fractionp
q with denominatorq < M such that

∣

∣

∣

v
2m − p

q

∣

∣

∣ < 1
M2 .

In the high probability case thatv is within 1
2 of j 2m

r , this fraction will bej
r .

The unique fraction with denominator less than M that is within 1
M2 of v

2m can be ob-
tained efficiently from the continued fraction expansion ofv

2m as follows. Using the se-
quences

a0 =
[ v

2m

]

ǫ0 =
v

2m
− a0

an =

[

1

ǫn−1

]

ǫn =
1

ǫn−1
− an

p0 = a0

p1 = a1a0 + 1

pn = anpn−1 + pn−2

q0 = 1

q1 = a1

qn = anqn−1 + qn−2

compute the first fractionpn

qn
such thatqn < M ≤ qn+1. See any standard number theory

text, like Hardy and Wright [Hardy and Wright 1979], for why this procedure works.
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In the high probability case whenv2m is within 1
M2 of a multiple j

r of 1
r , the fraction

obtained from the above procedure isj
r as it has denominator less thanM . We take the

denominatorq of the obtained fraction as our guess for the period, which will work when
j andr are relatively prime.


