
OOADSS 1. OO Modelling and Software 1

Object-Oriented

Modeling and Software

Introduction to modeling

Visual modeling

OO modeling

Software complexity

Software architecture

OOADSS 1. OO Modelling and Software 2

Model
 Model: textual or graphical description of a system or

process (existing or such to be created); in

http://en.wikipedia.org/wiki/Model

OOADSS 1. OO Modelling and Software 3

The Role of a Model
 Models in human life and

engineering activities

 History of modeling –
drawings describing static
character of an object/a
system, and its behavior
(dynamics character)

 Role of modeling at:

 Planning of activities

 Project evaluation – as
time and money

 Work load distribution and
allocation of resources

Early humans brainstorming on a proto-

whiteboard (by Tom Gullion)

OOADSS 1. OO Modelling and Software 4

Model and Modeling

 Model: (mathematical) presentation of

structure and processes of a given system

(used for analysis and planning)

 Modeling: process of describing of the

system by means of its model (mathematical

or based on imitation) and simulation of

system activities by means of applying the

model on a data set

OOADSS 1. OO Modelling and Software 5

Modeling

 Phases in model development

 Iterations in model development

 Requirements to the end product – about

functionality, external design, performance and

reliability

 Models are not final – usually, they change

during the project time in order to reflect new

approaches and experiences

OOADSS 1. OO Modelling and Software 6

Types of Models

 Static models – describe system structure, e.g. E/R
data model. Data types – analogues, discrete, or
hybrid data.

 Dynamic models – describe system behavior. They
depending on the chosen apparatus and can be:

 Analytical – describe by differential equations

 Imitation models – usually, they are built by a
visual language such as Petri nets, OMT,
OBLOG, UML, etc. We cannot describe all the
system details visually. Thus, we have to look for
a balance between visual and textual description.

OOADSS 1. OO Modelling and Software 7

Appliance of Models

 Practical models should be:

 describing the system in a correct way

 consistent – different views should not

describe things being in conflict each other

 easy to be explained to and understood by

other people – as simple as possible but not

simplified

 easy for updates and maintenance

 in a form suitable for transfer to other people

OOADSS 1. OO Modelling and Software 8

A Visual Model

Visual modeling:

· a way of thinking about problems using practical and
graphical models derived by ideas of the real world

· graphical modeling presenting treated system in two-
and three dimensional way.

Visual modeling language – manipulates visual information,
i.e. presents systems through graphical (icon-based) and
textual expressions according given dimensional
grammar1. Visual languages for specification and for
programming.

1 Microsoft Visual Basic and Visual C++ are not visual
languages

OOADSS 1. OO Modelling and Software 9

Visual Models

 Graphical abstractions describe the essence of a
complex problem or of a structure by filtering immaterial
details. In such a way, they do the problem easier for
understanding and presentation. We can compare them
with the architectural approach – drawn models.
 When building a complex system, developers should
do:

 Extract different views about the system

 Build models using precise symbols (notations)

 Verify/validate that the models satisfy system
requirements

 Add details in order to transform models into
implementation, step by step

OOADSS 1. OO Modelling and Software 10

Modeling Method

A method is a generic guideline for realization of

modeling; contains specific knowledge for

various cases such as patterns and conventions.

A method is a mixed bag of guidelines and rules,

including the following components (Dr. James

Roumbaugh, 1995):

 modeling concepts

 views and notations

 development process

 hints and rules-of-thumb

OOADSS 1. OO Modelling and Software 11

More precisely, a method has to include:

 A set of fundamental modeling concepts for capturing semantic

knowledge about a problem and its solution. The modeling concepts

are independent of how they are visualized. They are the inputs for

semantic tools, such as code generators, semantic checkers, and

traceability tools.

 A set of views and notations for presenting the underlying

modeling information to human beings which allow them to examine

and modify it. Normally the views are graphic, but multimedia

interfaces are feasible with current technology. Graphic views use

geometric arrangement and graphic markers to highlight portions of

the semantic information. Usually each view shows only a part of the

entire semantic model.

OOADSS 1. OO Modelling and Software 12

• A step-by-step iterative development process for

constructing models and implementations of them. The

process may be described at various levels of detail, from the

overall project management down to the specific steps to

build low-level models. The process describes which models

to construct and how to construct them. It may also specify

measures of goodness for evaluating proposed designs.

• A collection of hints and rules-of-thumb for performing

development. These are not organized into steps. They may

be applied wherever they make sense. The concept of

patterns is an attempt to describe case-based experience in

a uniform way. Patterns represent specific design solutions to

recurring problems. These may apply at various levels of

detail, from large-scale architecture down to low-level data

structures and algorithms.

OOADSS 1. OO Modelling and Software 13

Why do we model?

 Models help in organizing, visualizing,

understanding and creation of complex

information systems.

 Two challenges for software developers:

 Business environment is highly concurrent and

dynamic

 Increasing system complexity

 Models help meeting them.

1. OO Modelling and Software 14 OOADSS

Object-Oriented Programming

and Modelling

 Language Level Definition
 Class

 Object

 Inheritance

 Conceptual Level Definition
 Abstraction

 Delegation

 Encapsulation

 Information Hiding

 Hierarchy

1. OO Modelling and Software 15 OOADSS

Language Level Definition of

OOP : Object

ID

1. OO Modelling and Software 16 OOADSS

Language Level Definition of

OOP : Class

1. OO Modelling and Software 17 OOADSS

The God Class Problem

 [Roger Whitney] (1/2)

 Distribute system intelligence horizontally as uniformly as
possible, that is, the top-level classes in a design should
share the work uniformly.

 Do not create god classes/objects in your system. Be very
suspicious of a class whose name contains Driver,
Manager, System, or Subsystem

 Beware of classes that have too much non-communicating
behavior, that is, methods that operate on a subset of the
data members of a class. God classes often exhibit much
non-communicating behavior.

1. OO Modelling and Software 18 OOADSS

The God Class Problem

 [Roger Whitney] (2/2)

solution ->

1. OO Modelling and Software 19 OOADSS

Language Level Definition of

OOP : Inheritance

1. OO Modelling and Software 20 OOADSS

Sub-typing vs. implementation

inheritance
We can distinguish two broad classes of inheritance:

 Sub-typing
 A logical classification of B as a subtype of A. Also called

interface inheritance. The is-a argument is straightforward. A is
usually an abstract class (or an interface in Java). All (or almost
all) the operations of A are applicable to B. We expect to use Bs
in mixed collections of As etc. We may often inherit some
implementation at the same time.

 Implementation inheritance
 Using the implementation of A for convenience in B. The is-a

argument may take some ingenuity. A is often concrete. Only
some the operations of the operations of A are applicable to B.
We probably won't use Bs in place of As.

 Sub-typing is almost always OK, provided the classification is
valid. Implementation inheritance is controversial.

1. OO Modelling and Software 21 OOADSS

Conceptual Level Definition of

OOP: Abstraction
 "Extracting the essential details about an item or group of

items, while ignoring the unessential details."
Edward Berard

 "The process of identifying common patterns that have
systematic variations; an abstraction represents the
common pattern and provides a means for specifying which
variation to use."
Richard Gabriel

Example

 Pattern: Priority queue

 Essential Details:
 length

 items in queue

 operations to add/remove/find item

 Variation: link list vs. array implementation; stack, queue

1. OO Modelling and Software 22 OOADSS

Conceptual Level Definition of

OOP: Delegation

Three ways of reusing classes:

 Generalize A, usually by parameterization, so that it does the

what you want as well as what it originally did.

 Create a new class B which delegates operations to A,

usually by having an object of class A as an instance variable

and calling methods on that object. B is then a client of A.

 Create a new class B which inherits from A. B is then a

subclass of A.

 Open discussion – pro’s and con’s?

1. OO Modelling and Software 23 OOADSS

Conceptual Level Definition of OOP:

Encapsulation, Information Hiding

 Encapsulation - Enclosing all parts of an
abstraction within a class container

 Information Hiding - Hiding parts of the
abstraction within an object

 Example

1. OO Modelling and Software 24 OOADSS

Conceptual Level Definition of OOP:

Hierarchy

 Abstractions arranged in order of rank or level

Class Hierarchy Object Hierarchy

1. OO Modelling and Software 25 OOADSS

The OO Design and Coupling

 Decomposable system - One or more of the
components of a system have no interactions or other
interrelationships with any of the other components at the
same level of abstraction within the system

 A nearly decomposable system - Every component of
the system has a direct or indirect interaction or other
interrelationship with every other component at the same
level of abstraction within the same system

 Design Goal - The interaction or other interrelationship
between any two components at the same level of
abstraction within the system be as weak as possible

1. OO Modelling and Software 26 OOADSS

Measure of the modular

interdependence

 Unnecessary object coupling:

 needlessly decreases the reusability of the coupled

objects

 increases the chances of system corruption when

changes are made to one or more of the coupled

objects

1. OO Modelling and Software 27 OOADSS

Types of Modular Coupling

In order of desirability

Cure:

Decompose

the operation

into multiple

primitive

operations

 Data Coupling (weakest most desirable) - output from one
module is the input to another

 Control Coupling - passing control flags between modules
so that one module controls the sequencing of the
processing steps in another module.

 Global Data Coupling - two or more modules share the
same global data structures

 Internal Data Coupling (strongest least desirable) - one
module directly modifies local data of another module (like
C++ Friends)

 Content Coupling (unrated) - some or all of the contents of
one module are included in the contents of another (like
C/C++ header files)

1. OO Modelling and Software 28 OOADSS

Cohesion

 "Cohesion is the degree to which the tasks performed by a single
module are functionally related.“ IEEE, 1983

 "A software component is said to exhibit a high degree of cohesion
if the elements in that unit exhibit a high degree of functional
relatedness. This means that each element in the program unit
should be essential for that unit to achieve its purpose.“
Sommerville, 1989

 Types of Module Cohesion
 Coincidental (worst)

 Logical

 Temporal

 Procedural

 Communication

 Sequential

 Functional (best)

Source: 1) Object Coupling and Object

Cohesion, chapter 7 of Essays on Object-

Oriented Software Engineering, Vol 1, Berard,

Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

1. OO Modelling and Software 29 OOADSS

Coincidental Module Cohesion
 Little or no constructive relationship among the elements of

the module

 Common Object Occurrence:
 Object does not represent any single object-oriented concept

 Collection of commonly used source code as a class inherited via
multiple inheritance

 Example:

class Rous {
public static int findPattern(String text, String pattern) {

 // blah

}

public static int average(Vector numbers) {

 // blah

}

public static OutputStream openFile(String fileName) {

 // blah

}

}

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

1. OO Modelling and Software 30 OOADSS

Logical Module Cohesion
 Module performs a set of related functions, one of which is

selected via function parameter when calling the module

 Similar to control coupling

 Cure: isolate each function into separate operations
public void sample(int flag) {

switch (flag) {

case ON:

 // bunch of on stuff

 break;

case OFF:

 // bunch of off stuff

 break;

case CLOSE:

 // bunch of close stuff

 break;

}

}

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

1. OO Modelling and Software 31 OOADSS

Temporal Module Cohesion
 Elements are grouped into a module as they are all processed

within the same limited time period

 Common example:
 "Initialization" modules that provide default values for objects

 "End of Job" modules that clean up

procedure initializeData() {

font = "times"; windowSize = "200,400";

foo.name = "Not Set"; foo.size = 12;

foo.location = "/usr/local/lib/java";

}

 Cure: Each object should have a constructor and destructor

class foo {

public foo() {

foo.name = "Not Set";

foo.size = 12;

foo.location = "/usr/local/lib/java";

}

}

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

Call these constructors/

destructors from a non-object

oriented routine that performs a

single, cohesive task

1. OO Modelling and Software 32 OOADSS

Procedural Module Cohesion

 Associates processing elements on the basis of their
procedural or algorithmic relationships

 Procedural modules are application specific

 In context the module seems reasonable

 Removed from the context these modules seem strange and
very hard to understand

 BUT:
 Cannot understand module without understanding the program

and the conditions existing when module is called

 Makes module hard to modify and understand

 Cure: redesign the system

 Class Builder verse Program writer

 If a module is necessary, remove it from objects

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

1. OO Modelling and Software 33 OOADSS

Communication

Module Cohesion

 Operations of a module all operate upon the
same input data set
 and/or
produce the same output data

Cure:

 Isolate each element into a separate modules

 Rarely occurs in object-oriented systems due to
polymorphism

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

1. OO Modelling and Software 34 OOADSS

Sequential (Pipeline)

Module Cohesion

 Sequential association the type in which the
output data from one processing element serve
as input data for the next processing element

 A module that performs multiple sequential
functions where the sequential relationship
among all of the functions is implied by the
problems or application statement and where
there is a data relationship among all of the
functions

Cure:

 Decompose into smaller modules

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

1. OO Modelling and Software 35 OOADSS

Functional Module Cohesion

 If the operations of a module can be collectively
described as a single specific function in a
coherent way, the module has functional
cohesion

 If not, the module has lower type of cohesion

 In an object-oriented system:
 Each operation in public interface of an object should

be functional cohesive

 Each object should represent a single cohesive
concept

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

 2) SDSU & Roger Whitney;

OOADSS 1. OO Modelling and Software 36

Conceptual diagrams

help software development

 By OO modeling, we can represent visually using
industry-standard diagrams many issues of
software development:

 Overall architecture of the system

 Business requirements

 System boundaries and dependencies

 System complexity

 Flow of information through a system

 Data model organization and structure

OOADSS 1. OO Modelling and Software 37

OOADSS 1. OO Modelling and Software 38

Software Architecture

 Complexity determines the software architecture –
a set of important decisions about software system
organization.

 Choice of structural elements and interfaces for
system composition

 Behavior – determined by elements’ collaboration

 Composition of the chosen structural elements and
their behavior into a larger system

 Architectural style

OOADSS 1. OO Modelling and Software 39

Software Architecture – issues

Moreover, the software architecture determines:

1. Usability

2. Functionality

3. Performance

4. Flexibility

5. Reusability

6. Portability

7. …
Economical and technical restrictions and their
balance – “good, fast, cheap – choose only two!”

OOADSS 1. OO Modelling and Software 40

Architectural Style

- Defines a family of systems by means of
pattern for structural organization. In other
words, it defines:

 Component dictionary and types of
connecting elements

 Set of restrictions and how we can combine
them

 One or more semantic models specifying how
to determine common system properties
based on the properties of its building blocks.

OOADSS 1. OO Modelling and Software 41

