
OOADSS 2. Object-Oriented Modelling with UML 1

Object-Oriented Modelling

with UML
(Unified Modeling Language)

Objects and Systems

UML History

Language Objectives

UML Goals

OOADSS 2. Object-Oriented Modelling with UML 2

What is an object?

 An atomic unit formed from the union of a state and a

behavior

 The encapsulation ensures the internal cohesion and the

weak coupling with the outside.

 Object = Identity + Behavior + State

 A visible behavior

 Data, internal behavior, hidden. Example for J. Bush:

BANG !
The nice guy The bad guy The nice guy The bad guy

A state

(data)

A state

(data)

A behavior

(methods)

Call

Return

ID

OOADSS 2. Object-Oriented Modelling with UML 3

What is a system?

 A system is a group of objects which co-operate, having a

structure and constituting an organic set.

 It is a device made of related elements constituting a

coherent set.

 A collection of units connected and organized in order to

accomplish a specific goal.

OOADSS 2. Object-Oriented Modelling with UML 4

What is a model?

 A system can be described by one or more

Models, i.e. from different points of view.

 Model :

 Represents a view of part of the system

 Is formalized (construction rules)

 Is based on a certain number of concepts

 May be shown graphically

UML

 Unified

 Modeling

 Language

OOADSS 2. Object-Oriented Modelling with UML 5

OOADSS 2. Object-Oriented Modelling with UML 6

UML is an OO language for:
 specifying,

 visualizing,

 constructing, and

 documenting

the artifacts of software systems, as well as for business

modeling and other non-software systems.

As a modeling language UML includes:

• Model elements — fundamental modeling concepts and

semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage

OOADSS 2. Object-Oriented Modelling with UML 7

 Provide users with a ready-to-use, expressive visual
modeling language to develop and exchange
meaningful models.

 Furnish extensibility and specialization mechanisms to
extend the core concepts:

1. build models using core concepts without using
extension mechanisms for most normal applications,

2. add new concepts and notations for issues not
covered by the core,

3. choose among variant interpretations of existing
concepts, when there is no clear consensus,

4. specialize the concepts, notations, and constraints for
particular application domains.

Goals of UML

OOADSS 2. Object-Oriented Modelling with UML 8

Goals of the UML (cont.)
 Support specifications that are independent of

particular programming languages and development
processes.

 Provide a formal basis for understanding the modeling
language.

 Encourage the growth of the object tools market.

 Support higher-level development concepts such as
components, collaborations, frameworks and patterns.

 Integrate best practices.

OOADSS 2. Object-Oriented Modelling with UML 9

Scope of the UML

 UML fuses the concepts of Booch, OMT, and OOSE, in a
single, common, and widely usable modeling language.

 UML pushes the envelope of what can be done with existing
methods (UML authors targeted the modeling of concurrent,
distributed systems).

 UML focuses on a standard modeling language, not a
standard process.

The 4 objectives of UML Authors

 Represent whole systems by object concepts

 Establish an explicit link between concepts and executables

 Take in mind the scale factors inherent in complex systems

 Create a useful language for humans and machines.

OOADSS 2. Object-Oriented Modelling with UML 10

Outside the scope of the UML

 Programming Languages - the UML is a visual modeling language
(for visualizing, specifying, constructing, and documenting the
artifacts), but not a visual programming language.

 Tools - the UML defines a semantic metamodel, not a tool interface,
storage, or run-time model.

 A process :

• provides guidance as to the order of a team’s activities,

• specifies what artifacts should be developed,

• directs the tasks of individual developers and the team as a whole, and

• offers criteria for monitoring and measuring a project’s products and
activities.

UML is process-independent

OOADSS 2. Object-Oriented Modelling with UML 11

UML: History and Future

 BOOCH 1991, 1993

 OMT, OMT2

 OOSE

 Unified Method V0.8

 Use cases - Jacobson

 UML V0.9, UML V1.0

 Others

Submission to OMG (Object Management Group) - 16/01/1997

o UML V1.1: world standard (15/11/1997)

o Previous version: UML V1.5 (01/03/2003)

o UML 2.4.1 – August 2011 http://www.omg.org/spec/UML/2.4.1

o UML 2.5 – August 2015

http://www.omg.org/spec/UML/2.4.1

OOADSS 2. Object-Oriented Modelling with UML 12

Language architecture –

four-layer metamodel architecture
(from OMG UML 1.5 spec.)

OOADSS 2. Object-Oriented Modelling with UML 13

Language architecture –

four-layer metamodel architecture
(from OMG UML 1.5 spec.)

OOADSS 2. Object-Oriented Modelling with UML 14

Example of the four-layer metamodel hierarchy (source: OMG UML Infrasructure Ver. 2.3)

MOF = Meta Object Facility, Core, v2.0

OOADSS 2. Object-Oriented Modelling with UML 15

Source: OMG website

 UML Description *:
A specification defining a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of
distributed object systems.

 UML Keywords *:
abstraction, action sequence, action state, activity graph,
architecture, association, class diagram, collaboration
diagram, component diagram, control flow, data flow,
deployment diagram, execution, implementation, pins,
procedure

OOADSS 2. Object-Oriented Modelling with UML 16

Good UML tools:

 Have to be UML compliant – UML diagram support

 Continuously synchronize models and code

 Provide team-work features - direct access to a Source
Code Management (SCM) system

 Refactoring support - means for changing SW
organization

 Design patterns support1

 Reverse engineering tools

 Documentation generation

 Integration with IDE’s

 More…

1 See “Design Patterns”, by Erich Gamma, Richard Helm, et al. (Addison-Wesley, 1995).

OOADSS 2. Object-Oriented Modelling with UML 17

UML compliance:

Use case diagrams

Define

system

behavior

without

specifying

how it works.

Often used in

requirements

specification

and analysis.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 18

UML compliance:

Class diagrams

Defines the

static

organization

or structure

of software.

Helps explain

hierarchical

and

collaborative

relationships

between

classes and

objects.
Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 19

UML compliance:

Interaction (sequence/communication)

diagrams

Represents

active

interaction

and

communi-

cation

between two

or

more objects.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 20

UML compliance:

State diagrams

Define

how states of

objects or

systems

change

as events

occur.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 21

UML compliance:

Activity diagrams

Describe

sequencing

of activities.

Supports

conditional

and parallel

behavior.

Useful for

analysis,

workflow,

parallel

processes.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 22

UML compliance:

Component diagrams

Define

high-level

configurations

of the software

system in one

of its deployed

state.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 23

UML compliance:

Component & deployment diagrams

Define

high-level

configurations

of the software

system in one

of its deployed

state.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 24

UML compliance:

Package diagrams

Organize

groups of

classes or use

cases and

describe

overall

behavior of the

system.

Diagrams from CashSales sample project of Together Architect®

OOADSS 2. Object-Oriented Modelling with UML 25

UML 1.5 models/diagrams

Models and Diagrams

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

State
DiagramsState

DiagramsComponent
Diagrams

Component
DiagramsComponent

DiagramsDeployment
Diagrams

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsStatechart
Diagrams

Use Case
DiagramsUse Case

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Activity
Diagrams

A model is a complete

description of a system

from a particular

perspective

Models

OOADSS 2. Object-Oriented Modelling with UML 26

UML Architectural Views

 user model view (use cases, scenario view)

 structural model view (static – class diagram)

 behavioral model view: dynamic –

statechart/activity/interactions (sequence, collaboration)

diagrams

 implementation model view (realization structure –

component diagram)

 environment model view (deployment)

UML artifacts – packages, diagrams

OOADSS 2. Object-Oriented Modelling with UML 27

Models and views in UML 1.5

OOADSS 2. Object-Oriented Modelling with UML 28

Upgrading UML to Version 2.*

Consists of four parts:

 UML 2.* Superstructure - defines the six structure diagrams,
three behavior diagrams, four interaction diagrams, and the
elements that comprise them.

 UML 2.* Infrastructure - defines base classes that form the
foundation not only for the UML 2.* superstructure.

 UML 2.* Object Constraint Language (OCL) - allows setting
of pre- and post-conditions, invariants, and other conditions.

 UML 2.* Diagram Interchange - extends the UML metamodel
with a supplementary package for graph-oriented information,
allowing models to be exchanged or stored/retrieved and then
displayed as they were originally.

OOADSS 2. Object-Oriented Modelling with UML 29

UML 2.* Changes

 Highlights of the UML 2.* RFP:
 UML 1.x notions of interface and architecture must be enhanced

to support and simplify support for standard component
frameworks and architectures

 Data flow modeling must be added

 Many of the semantics of relationships must be clarified

 In UML 1.x, sequence diagrams are too limited in their
expressiveness and semantics and must be enhanced

 Activity diagrams should be semantically separated from state
machines

 Clean up inconsistencies and errors in the UML 1.x
specifications

 Superstructure requirements to improve the ability and utility of
the UML with the respect to architecture and scalability

OOADSS 2. Object-Oriented Modelling with UML 30

UML 2.* XMI Changes

 In UML 1.x, XMI (XML Metadata Interchange) is a

mechanism for exchanging UML models

 This mechanism did not fully fulfill the goal of model interchange

 The UML 2.* solution extends the UML metamodel by a

supplementary package or graphic-oriented information

while leaving the current UML metamodel fully intact.

 See the UML 2.3 Diagram Interchange spec at

http://www.omg.org/technology/documents/modeling_sp

ec_catalog.htm for additional information.

OOADSS 2. Object-Oriented Modelling with UML 31

UML 2.* Highlight of Changes

 Introduced new concept of Ports

 Composite Structure Classes & Diagrams

introduced

 Class Diagrams – the least changed

 Collaboration Diagram – renamed to

Communication Diagram

 Sequence Diagram – nesting options

 New diagram introduced – Timing Diagram

OOADSS 2. Object-Oriented Modelling with UML 32

Cont.

 Activity Diagrams have the greatest number of

changes of any of the UML diagrams

 Use Case Diagrams – added multiplicity and

changes with extension points.

 Package Diagram now an official UML diagram.

 Timing diagrams – a new type of diagrams in

UML 2.0

OOADSS 2. Object-Oriented Modelling with UML 33

The UML triangle

Instead UML:

OOADSS 2. Object-Oriented Modelling with UML 34

