
OOAD 5. Aggregation and Composition. Inheritance 1

Aggregation and

Composition.

Inheritance. Design principles

Multiplicity

Abstract Classes

Single and Multiple Inheritance

Interfaces

Coupling and cohesion

Examples

OO Analysis (OOA) and

OO Design (OOD)
 OOA is a process of defining the problem in terms of real-world

objects with which the system must interact, and candidate software

objects used to explore various solution alternatives

 The analyses object model and its dynamic model represent user

level concepts but not actual software classes and components

 OOA should be safe from system classes and components

 Analyses classes are still high-level abstractions and will be

realized in details during OOD

 OOD means defining the solution

 OOD is the process of defining the components, interfaces, objects,

classes, attributes, and operations that will satisfy the requirements.

OOAD 5. Aggregation and Composition. Inheritance 2

Structural relationships in

OOA and OOD

 Structural relationships:

 between classes (relations)

 between objects (links)

 Three kinds of relations between classes:

1) association

2) aggregation

3) composition

OOAD 5. Aggregation and Composition. Inheritance 3

Association (retrospection)

1. the simplest form of

relation between classes

2. peer-to-peer relations

3. one object is aware of

the existence of another

object

4. implemented in objects

as references

OOAD 5. Aggregation and Composition. Inheritance 4

Weak and strong associations

 Weak Association - ClassA may be linked to ClassB in order

to show that one of its methods includes parameter of ClassB

instance, or returns instance of ClassB.

 Strong Association - ClassA may also be linked to ClassB in

order to show that it holds a reference to ClassB instance.

OOAD 5. Aggregation and Composition. Inheritance 5

Source: http://aviadezra.blogspot.bg/2009/05/

http://lh3.ggpht.com/_aUOgqE3fGXc/Sh32SJJ1K6I/AAAAAAAAAaA/unIYlYJmUoI/s1600-h/image%5B9%5D.png
http://lh3.ggpht.com/_aUOgqE3fGXc/Sh32SJJ1K6I/AAAAAAAAAaA/unIYlYJmUoI/s1600-h/image%5B9%5D.png
http://lh5.ggpht.com/_aUOgqE3fGXc/Sh32Wod9dyI/AAAAAAAAAaI/cWKKrsxaQ-8/s1600-h/image%5B14%5D.png
http://lh5.ggpht.com/_aUOgqE3fGXc/Sh32Wod9dyI/AAAAAAAAAaI/cWKKrsxaQ-8/s1600-h/image%5B14%5D.png

Associations examples between

classes A and B

1) A is a physical or logical part of B

2) A is a kind of B

3) A is contained in B

4) A is a description of B

5) A is a member of B

6) A is an organization subunit of B

7) A uses or manages B

8) A communicates with B

9) A follows B

10) A is owned by B

OOAD 5. Aggregation and Composition. Inheritance 6

OOAD 5. Aggregation and Composition. Inheritance 7

Aggregation

Aggregation
An aggregation is a special
form of association that
models a whole-part
relationship between an
aggregate (the whole) and its
parts.

Aggregation is used to model a compositional relationship between
model elements. Containment of the aggregated class is by
reference.

More about aggregation

1. a restrictive form of “part-of” association

2. objects are assembled to create a more complex object

3. assembly may be physical or logical

4. defines a single point of control for participating objects

5. the aggregate object coordinates its parts

6. Тhe aggregation link doesn’t state that ClassA owns

ClassB nor that there’s a parent-child relationship

between them - when the parent is deleted, all its child’s

are NOT being deleted as a result.

OOAD 5. Aggregation and Composition. Inheritance 8

OOAD 5. Aggregation and Composition. Inheritance 9

Aggregation – Examples

Examples:
•a Library contains Books
•within a company Departments are made-up of
Employees
•a Computer is composed of a number of Devices.

To model this, the aggregate (Department) has an
aggregation association to the its constituent parts
(Employee).

OOAD 5. Aggregation and Composition. Inheritance 10

Aggregation Example.

Shared Aggregation

Example: an Customer has an Address. We use aggre-
gation because the two classes represent part of a larger
whole. We have also chosen to model Address as a separate
class, since many other kinds of things have addresses as well.

An aggregate object can hold other objects together

Shared Aggregation
An aggregation relationship that has a multiplicity greater than one
(1..N) established for the aggregate is called shared, and
destroying the aggregate does not necessarily destroy the parts. By
implication, a shared aggregation forms a graph, or a tree with
many roots.

1..N

OOAD 5. Aggregation and Composition. Inheritance 11

Shared Aggregation Usage. Example

Shared aggregations are used in cases where there is a strong
relationship between two classes, so that the same instance can
participate in two different aggregations.

Example: Consider the case where a person has a home-based
business. Both the Person and the Business have an address; in
fact it is the same address. The Address is an integral part of
both the Person and the Business. Yet the Business may cease
to exist, leaving the Person hopefully at the same address.

OOAD 5. Aggregation and Composition. Inheritance 12

Using Aggregation

to Model Class Properties

The Customer class can have a set of address attributes
OR an aggregated Address class. How to decide:

• Do the 'properties' need to have independent identity, such
that they can be referenced from a number of objects?
• Do a number of classes need to have the same 'properties'?
• Do the 'properties' have a complex structure and properties of
their own?

If so, use a class (or classes) and aggregation. Otherwise,
use attributes.

OOAD 5. Aggregation and Composition. Inheritance 13

Composition

Composition is a form of aggregation with strong ownership and
coincident lifetime of the part with the aggregate:

•The multiplicity of the aggregate end (in the example, the
Order) may not exceed one (i.e. it cannot be shared).
•The aggregation is also unchangeable, that is once
established, its links cannot be changed.
•By implication, a composite aggregation forms a "tree" of
parts, with the root being the aggregate, and the "branches"
the parts.

A compositional aggregation should be used over "plain"
aggregation when there is strong inter-dependency relationship
between the aggregate and the parts; where the definition of the
aggregate is incomplete without the parts. Containment of the

aggregated class is by value.

More about composition

1. a stricter form of aggregation

2. lifespan of individual objects depend on the on

lifespan of the aggregate object

3. parts cannot exist on their own

4. there is a create-delete dependency of the parts to

the whole

5. The composition is a NOT-shared association

OOAD 5. Aggregation and Composition. Inheritance 14

OOAD 5. Aggregation and Composition. Inheritance 15

Composition - Examples

Example2: the Customer Interface is composed of several other
classes. Here, the multiplicities of the aggregations are not yet
specified. A Customer Interface object knows which Display,
Receipt Printer, KeyPad, and Speaker objects belong to it.

Example1: why to have an Order, if there is nothing being
ordered (i.e., empty Order without any Line Items)?

OOAD 5. Aggregation and Composition. Inheritance 16

Example: the Customer
Interface keeps track of the
current Customer and his/her PIN

Using Composition –

Example

OOAD 5. Aggregation and Composition. Inheritance 17

Aggregation and composition
[Bruegge&Dutoit’2004]

Aggregation vs Association

vs Composition
 The association link can replace the aggregation link in every

situation.

 The aggregation cannot replace association in situations, where

there’s only a ‘weak link’ between the classes, i.e. ClassA has

method/s that contain parameter of ClassB but ClassA doesn’t

hold reference to ClassB instance.

 Unlike association and aggregation, when using the composition

relationship, the composed class cannot appear as a return type

or parameter type of the composite class. Thus, changes to the

composed class cannot propagate to the rest of the system.

Consequently, usage of composition limits complexity growth as

the system grows.
OOAD 5. Aggregation and Composition. Inheritance 18

Source: http://aviadezra.blogspot.bg/2009/05/

OOAD 5. Aggregation and Composition. Inheritance 19

Self-Aggregations

Sometimes, a class may be aggregated with itself - one instance if
the class is an aggregate composed of other instances of the same
class. In the case of self-aggregations, role names are essential
to distinguish the purpose for the association.

A product may be composed of other
products; if they are, the aggregated
products are called sub-products.

Aggregation or Association?

Aggregation should be used only in cases where there is a
structural relationship between classes, where the "parts" are
incomplete outside the context of the whole.
If the classes can have independent identity, if they are not parts of

some greater whole, then the association relationship should be

used.

Nested classes

 Class or interface could

nest (contain) other

classifiers.

 Nested classifier is a

classifier that is defined

within the (namespace of)

class or interface. Note,

that UML 2.x specification

uses "defined within",

"nested within" and

"owned by" as synonyms

OOAD 5. Aggregation and Composition. Inheritance 20

Source: http://www.uml-diagrams.org/nested-classifier.html

Inner class

 UML 2.x specifications describe

nesting of classifiers

within structured classes (containing

INNER classes) without providing

explicit notation for the nesting.

 Class LinkedList is nesting the

Element interface (right).

 The Element is in scope of the

LinkedList namespace (right).

OOAD 5. Aggregation and Composition. Inheritance 21

Source: http://www.uml-diagrams.org/nested-classifier.html

Inner class example

 Class InnerOddIterator

is nested by

DataStructure class.

 Class DataElement is

aggregated by

DataStructure class.

OOAD 5. Aggregation and Composition. Inheritance 22

Source: http://www.uml-diagrams.org/nested-classifier.html

OOAD 5. Aggregation and Composition. Inheritance 23

Generalization

Generalization

A generalization is a taxonomic relationship

between a more general element and a more

specific element. The more specific element

is fully consistent with the more general

element, and contains additional information.

An instance of the more specific element

may be used where the more general

element is allowed.

A generalization shows that one class inherits from another. The
inheriting class is called a descendant. The class inherited from is
called the ancestor. Inheritance means that the definition of the
ancestor - including any properties such as attributes, relationships, or
operations on its objects - is also valid for objects of the descendant.
The generalization is drawn from the descendant to its ancestor.

Super- and sub-classes

 Super-Class is a class that contains the features

common to two or more classes.

 Sub-Class is a class that contains at least the

features of its super-class(es).

 A class may be a sub-class and a super-class at

the same time.

OOAD 5. Aggregation and Composition. Inheritance 24

In other words…

1) Generalization is a process of organizing the

features of different kinds of objects that share the

same purpose

2) Equivalent to “kind-of” or “type-of” relationship

3) Generalization enables inheritance

4) Specialization is the opposite of generalization

5) Generalization is not an association

OOAD 5. Aggregation and Composition. Inheritance 25

OOAD 5. Aggregation and Composition. Inheritance 26

More about generalization

 Class inheritance enables to

organize concepts into

hierarchies

 Generalization is modeling of

abstract concepts from lower-

lever ones, more concrete

 Specialization – identification

of more specific concepts from

a high-level one

 Inheritance =

generalization II specialization

OOAD 5. Aggregation and Composition. Inheritance 27

Inheritance example
[Bruegge&Dutoit’2004]

OOAD 5. Aggregation and Composition. Inheritance 28

Single and Multiple Inheritance

A class can inherit from several other classes through multiple

inheritance, although generally it will inherit from only one.

Printer Copier

Xerox
Center

OOAD 5. Aggregation and Composition. Inheritance 29

Problems with Multiple Inheritance. Repeated

Inheritance

• If the class inherits from several classes, you must check how the
relationships, operations, and attributes are named in the ancestors.
If the same name appears in several ancestors, you must describe
what this means to the specific inheriting class, for example, by
qualifying the name to indicate its source of declaration.
• If repeated inheritance is used; in this case, the same ancestor is
being inherited by a descendant more than once. How many copies
of the attributes of Window are included in instances of the last
descendant?

OOAD 5. Aggregation and Composition. Inheritance 30

Abstract and Concrete Classes

A class that is not instantiated and exists only for other classes to
inherit it, is an abstract class. Classes that are actually
instantiated are concrete classes. Note that an abstract class
must have at least one descendant to be useful.

A Pallet Place in the Depot-Handling System is an abstract entity
class that represents properties common to different types of
pallet places. The Pallet Place is not instantiated on its own.

Abstract vs concrete classes

ABSTRACT class:

1. is a class that lacks a complete implementation – provides

operations without implementing some methods

2. cannot be used to create objects; cannot be instantiated

3. a concrete sub-class must provide methods for unimplemented

operations

CONCRETE class:

1. has methods for all operations

2. can be instantiated

3. methods may be defined in the class or inherited from a super-

class
OOAD 5. Aggregation and Composition. Inheritance 31

Types of classes

1) abstract class

a) cannot have direct instances

b) the name is written in italics

2) root class

a) cannot be a sub-class

b) written with root stereotype

3) leaf class

a) cannot be a super-class

b) written with leaf stereotype
OOAD 5. Aggregation and Composition. Inheritance 32

Polymorphism

1. ability to dynamically choose the method for an operation

at run-time or service-time

2. facilitated by encapsulation and generalization:

a) encapsulation – separation of interface from implementation

a) generalization – organizing information such that the shared

features reside in one class and unique features in another

3. Operations could be defined and implemented in the super-

class, but re-implemented methods are in unique sub-

classes.
OOAD 5. Aggregation and Composition. Inheritance 33

OOAD 5. Aggregation and Composition. Inheritance 34

Inheritance to Support Polymorphism - Subtyping

Subtyping means that the descendant is a subtype that can fill in
for all its ancestors in any situation. Subtyping is a special case of
polymorphism; it ensures that the system will tolerate changes
in the set of subtypes.

AbstractFugure
Draw()

Circle
Draw()

Rectangle
Draw()

Triangle
Draw()

Other objects

Example: all the Circle, Rectangle and Triangle classes inherit from

the AbstractFigure class. Thus, other objects can call the Draw()

method without taking care whose is that method.

You should use generalizations only between classes of the same
stereotype.

OOAD 5. Aggregation and Composition. Inheritance 35

Inheritance to Support Implementation Reuse -

Subclassing

Subclassing constitutes the reuse aspect of generalization.
When subclassing, you consider what parts of an implementation
you can reuse by inheriting properties defined by other classes.
Subclassing saves labor and lets you reuse code when
implementing a particular class.

Example: in the Smalltalk-80 class library, the class Dictionary
inherits properties from Set. Even though a Dictionary can be
seen as a Set (containing key-value pairs), Dictionary is not a
subtype of Set because you cannot add just any kind of object to
a Dictionary (only key-value pairs).

OOAD 5. Aggregation and Composition. Inheritance 36

Inheritance meta-model
[Bruegge&Dutoit’2004]

OOAD 5. Aggregation and Composition. Inheritance 37

Delegation [Bruegge&Dutoit’2004]

OOAD 5. Aggregation and Composition. Inheritance 38

Problems addressed by

delegation [Bruegge&Dutoit’2004]

OOAD 5. Aggregation and Composition. Inheritance 39

Interfaces

•A model element which defines a set of behaviors (a
set of operations) offered by a classifier model
element (such as a class, subsystem or
component).
•A classifier may realize one or more interfaces.
•An interface may be realized by one or more
classifiers.
•Any classifiers which realize the same interfaces
may be substituted for one another in the system.
•Each interface should provide an unique and well-
defined set of operations.

•Naming and Describing Interfaces
•Defining Operations
•Documenting Interfaces

OOAD 5. Aggregation and Composition. Inheritance 40

More about Interfaces 1/2

 An interface specifies the externally-visible operations of
a class and/or component, and has no implementation of
its own. An interface typically specifies only a limited part
of the behavior of a class or component.

 Interfaces belong to the logical view but can occur in both
class and component diagrams.
 In component diagrams - an interface in a component diagram is

displayed as a small circle with a line to the component that
realizes the interface.

 In class diagrams - an interface in a class diagram is
represented by a class icon with the stereotype “interface.” Thus,
it is a 3-part box, with the interface name in the top part, a list of
attributes (usually empty) in the middle part, and a list of
operations (with optional argument lists and return types) in the
bottom part.

OOAD 5. Aggregation and Composition. Inheritance 41

More about Interfaces 2/2

 The attribute and operation sections
of the interface class box can be
suppressed to reduce detail in an
overview.

 Suppressing a section makes no
statement about the absence of
attributes or operations, but drawing
an empty section explicitly states
that there are no elements in that
part.

Realization

 allows a class to inherit from an

interface class without being a

sub-class of the interface class

 only inherits operations

 cannot inherit attributes or

associations

 If you need to inherit attributes,

use an abstract base class,

rather than an interface

OOAD 5. Aggregation and Composition. Inheritance 42

More about realization

 a semantic relationship between elements, wherein

one element specifies a contract and another

guarantees to carry out this contract

 relevant in two basic scenarios:

 interfaces versus realizing classes/components

 uses cases versus diagrams realizing collaborations

 graphically depicted as a dashed arrow with hollow

head -> a cross between dependency and

generalization
OOAD 5. Aggregation and Composition. Inheritance 43

Dependency

 In UML, a dependency relationship is a relationship in

which one element, the client, uses or depends on

another element, the supplier. You can use

dependency relationships in class diagrams,

component diagrams, deployment diagrams, and use-

case diagrams to indicate that a change to the supplier

might require a change to the client.

 Such relationships do not have names.

 Shown as open arrow that points from the client to the

supplier.
OOAD 5. Aggregation and Composition. Inheritance 44

When to use dependency

Sometimes the relationship between a two

classes is very weak. They are not implemented

with member variables at all. Rather they might

be implemented as member function arguments.

Dependency is weak association.

OOAD 5. Aggregation and Composition. Inheritance 45

How to use dependency

 In Booch’94 this was

called a ‘using’

relationship.

 This relationship simply

means that Shape

somehow depends

upon DrawingContext.

 In C++ this results in a

#include.

OOAD 5. Aggregation and Composition. Inheritance 46

Stereotypes of dependency

relationships

OOAD 5. Aggregation and Composition. Inheritance 47

Type of

dependency

Keyword or

Stereotype Description

Abstraction «abstraction»,

«derive», «refine», or

«trace»

Relates two model elements, or sets of model

elements, that represent the same concept at

different levels of abstraction, or from different

viewpoints

Binding «bind» Connects template arguments to template

parameters to create model elements from

templates

Substitution «substitute» Indicates that the client model element takes

the place of the supplier; the client model

element must conform to the contract or

interface that the supplier model element

establishes

Usage «use», «call»,

«create»,

«instantiate», or

«send»

Indicates that one model element requires

another model element for its full

implementation or operation

Source: http://publib.boulder.ibm.com/

Using dependency relationships 1/2

OOAD 5. Aggregation and Composition. Inheritance 48

•Connect two packages to indicate that at least one element in the

client package is dependent on an element in the supplier package.

The dependency relationship does not indicate that all elements in the

client package are dependent.

•Connect two classes to indicate that the connection between them is

at a higher level of abstraction than an association relationship. The

dependency relationship indicates that the client class performs one of

the following functions:

•Temporarily uses a supplier class that has global scope

•Temporarily uses a supplier class as a parameter for one of its

operations

•Temporarily uses a supplier class as a local variable for one of its

operations

•Sends a message to a supplier class

Using dependency relationships 2/2

OOAD 5. Aggregation and Composition. Inheritance 49

•Connect components to interfaces or other

components to indicate that they use one or more of the

operations that the interface specifies

or

•that they depend on the other component during

compilation.

Heuristics of good design

[Roger Whitney]

 A class should capture one and only one abstraction:
1 class = 1 abstraction

 Keep related data and behavior in one place - an
abstraction is both data and behavior (methods) =
encapsulation

 All data should be hidden within the object =
information hiding

 Beware of classes that have many access methods
defined in their public interface. Having many implies
that related data and behavior is not being kept in one
place.

OOAD 5. Aggregation and Composition. Inheritance 50

5. Aggregation and Composition.

Inheritance

51 OOAD

The God Class Problem

[Roger Whitney] (1/2)

 Distribute system intelligence horizontally as uniformly as
possible, that is, the top-level classes in a design should
share the work uniformly.

 Do not create god classes/objects in your system. Be
very suspicious of a class whose name contains Driver,
Manager, System, or Subsystem

 Beware of classes that have too much non-
communicating behavior, that is, methods that operate
on a subset of the data members of a class. God classes
often exhibit much non-communicating behavior.

5. Aggregation and Composition.

Inheritance

52 OOAD

The God Class Problem

[Roger Whitney] (2/2)

solution ->

5. Aggregation and Composition.

Inheritance

53 OOAD

Metrics of good design

[Roger Whitney] (1/2)

 Upper bound for number of statements in average
method size: Smalltalk - 5, C++/Java - 15

 Average number of methods per class should be
less than 20

 The average number of instance variables (fields,
data members) per class should be less than 6

 The class hierarchy nesting level should be less than
6

5. Aggregation and Composition.

Inheritance

54 OOAD

Metrics of good design

[Roger Whitney] (2/2)

 The average number of comments lines per method
should be greater than 1

 The number of problem reports per class should be
low

 C++ will have 2 to 3 times the lines of code of
Smalltalk

 Code volume will expand in the first half of the
project and decline in the second half, as reviews
clean up the system

5. Aggregation and Composition.

Inheritance

55 OOAD

Coupling

 Decomposable system - One or more of the components of
a system have no interactions or other interrelationships with
any of the other components at the same level of abstraction
within the system

 A nearly decomposable system - Every component of the
system has a direct or indirect interaction or other
interrelationship with every other component at the same level
of abstraction within the same system

 Design Goal - The interaction or other interrelationship
between any two components at the same level of abstraction
within the system be as weak as possible

5. Aggregation and Composition.

Inheritance

56 OOAD

Measure of the modular

interdependence

 Unnecessary object coupling:

 needlessly decreases the reusability of the coupled

objects

 increases the chances of system corruption when

changes are made to one or more of the coupled

objects

5. Aggregation and Composition.

Inheritance

57 OOAD

Types of Modular Coupling

In order of desirability

Cure:

Decompose

the operation

into multiple

primitive

operations

 Data Coupling (weakest most desirable) - output from one
module is the input to another

 Control Coupling - passing control flags between modules
so that one module controls the sequencing of the
processing steps in another module.

 Global Data Coupling - two or more modules share the
same global data structures

 Internal Data Coupling (strongest least desirable) - One
module directly modifies local data of another module (like
C++ Friends)

 Content Coupling (unrated)- some or all of the contents of
one module are included in the contents of another (like
C/C++ header files)

5. Aggregation and Composition.

Inheritance

58 OOAD

Cohesion

 "Cohesion is the degree to which the tasks performed by a
single module are functionally related.“ IEEE, 1983

 "A software component is said to exhibit a high degree of
cohesion if the elements in that unit exhibit a high degree
of functional relatedness. This means that each element in
the program unit should be essential for that unit to
achieve its purpose.“ Sommerville, 1989

 Types of Module Cohesion

 Coincidental (worst)

 Logical

 Temporal

 Procedural

 Communication

 Sequential

 Functional (best)

Source: 1) Object Coupling and Object

Cohesion, chapter 7 of Essays on Object-

Oriented Software Engineering, Vol 1, Berard,

Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

5. Aggregation and Composition.

Inheritance

59 OOAD

Coincidental Module Cohesion
 Little or no constructive relationship among the elements of

the module

 Common Object Occurrence:
 Object does not represent any single object-oriented concept

 Collection of commonly used source code as a class inherited via
multiple inheritance

 Example:

class Rous {
public static int findPattern(String text, String pattern) {

// blah

}

public static int average(Vector numbers) {

// blah

}

public static OutputStream openFile(String fileName) {

// blah

}

}

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

5. Aggregation and Composition.

Inheritance

60 OOAD

Logical Module Cohesion
 Module performs a set of related functions, one of which is

selected via function parameter when calling the module

 Similar to control coupling

 Cure: isolate each function into separate operations
public void sample(int flag) {

switch (flag) {

case ON:

// bunch of on stuff

break;

case OFF:

// bunch of off stuff

break;

case CLOSE:

// bunch of close stuff

break;

}

}

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

5. Aggregation and Composition.

Inheritance

61 OOAD

Temporal Module Cohesion
 Elements are grouped into a module as they are all processed

within the same limited time period

 Common example:
 "Initialization" modules that provide default values for objects

 "End of Job" modules that clean up

procedure initializeData() {

font = "times"; windowSize = "200,400";

foo.name = "Not Set"; foo.size = 12;

foo.location = "/usr/local/lib/java";

}

 Cure: Each object should have a constructor and destructor

class foo {

public foo() {

foo.name = "Not Set";

foo.size = 12;

foo.location = "/usr/local/lib/java";

}

}

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

Call these constructors/

destructors from a non-object

oriented routine that performs a

single, cohesive task

5. Aggregation and Composition.

Inheritance

62 OOAD

Procedural Module Cohesion

 Associates processing elements on the basis of their
procedural or algorithmic relationships

 Procedural modules are application specific

 In context the module seems reasonable

 Removed from the context these modules seem strange and
very hard to understand

 BUT:

 Cannot understand module without understanding the program
and the conditions existing when module is called

 Makes module hard to modify and understand

 Cure: redesign the system

 Class Builder verse Program writer

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

5. Aggregation and Composition.

Inheritance

63 OOAD

Communication

Module Cohesion

 Operations of a module all operate upon the
same input data set

and/or
produce the same output data

Cure:

 Isolate each element into a separate modules

 Rarely occurs in object-oriented systems due to
polymorphism

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

5. Aggregation and Composition.

Inheritance

64 OOAD

Sequential (Pipeline)

Module Cohesion

 Sequential association the type in which the
output data from one processing element serve
as input data for the next processing element

 A module that performs multiple sequential
functions where the sequential relationship
among all of the functions is implied by the
problems or application statement and where
there is a data relationship among all of the
functions

Cure:

 Decompose into smaller modules

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

5. Aggregation and Composition.

Inheritance

65 OOAD

Functional Module Cohesion

 If the operations of a module can be collectively
described as a single specific function in a
coherent way, the module has functional
cohesion

 If not, the module has lower type of cohesion

 In an object-oriented system:
 Each operation in public interface of an object should

be functional cohesive

 Each object should represent a single cohesive
concept

Source: 1) Object Coupling and Object Cohesion, chapter 7 of Essays

on Object-Oriented Software Engineering, Vol 1, Berard, Prentice-Hall, 1993;

2) SDSU & Roger Whitney;

OOAD 5. Aggregation and Composition. Inheritance 66

Examples: The University Course Registration

(UCR) Case Study

Navigation in aggregation

Containment by-value and by-reference
(composition versus aggregation)

OOAD 5. Aggregation and Composition. Inheritance 67

UCR - 2

Inheritance versus aggregation

OOAD 5. Aggregation and Composition. Inheritance 68

UCR - 3

Inheritance versus aggregation

69

SOLID Design Principles

(for homework)

 SRP: The Single Responsibility Principle

 OCP: The Open/Closed Principle

 LSP: The Liskov Substitution Principle

 ISP: The Interface Segregation Principle

 DIP: The Dependency Inversion Principle

Source: Agile Software Development: Principles, Patterns, and Practices.

Robert C. Martin, Prentice Hall, 2002.

70

SRP: The Single Responsibility

Principle 1/2

 In object-oriented programming, the single responsibility
principle states that every object should have a single
responsibility, and that responsibility should be entirely
encapsulated by the class. All its services should be narrowly
aligned with that responsibility.

 The term was introduced by Robert C. Martin in his Principles
of Object Oriented Design, and his book Agile Software
Development, Principles, Patterns, and Practices - described
it as being based on the principle of кохезия.

 The single responsibility principle is used in responsibility
driven design methodologies like the Responsibility Driven
Design (RDD) and the Use Case / Responsibility Driven
Analysis and Design (URDAD).

Source: http://en.wikipedia.org/

71

SRP: The Single Responsibility

Principle 2/2
 Example: consider a module that compiles and prints a

report. Such a module can be changed for two reasons:
 First, the content of the report can change.

 Second, the format of the report can change.

 These two things change for very different causes; one
substantive, and one cosmetic. The single responsibility
principle says that these two aspects of the problem are
really two separate responsibilities, and should therefore be
in separate classes or modules. It would be a bad design to
couple two things that change for different reasons at
different times.

 The reason it is important to keep a class focused on a single
concern is that it makes the class more robust. Continuing
with the foregoing example, if there is a change to the report
compilation process, there is greater danger that the printing
code will break if it is part of the same class.

72

OCP: The Open/Closed Principle

1/2

 The open/closed principle states: "software entities
(classes, modules, functions, etc.) should be open
for extension, but closed for modification";

 An entity can allow its behavior to be modified
without altering its source code.

 This is especially valuable in a production
environment, where changes to source code may
necessitate code reviews, unit tests, and other such
procedures to qualify it for use in a product: code
obeying the principle doesn't change when it is
extended, and therefore needs no such effort.

Source: http://en.wikipedia.org/

73

OCP: The Open/Closed Principle

2/2
 Meyer's Open/Closed Principle - in his 1988 book Object

Oriented Software Construction: once completed, the
implementation of a class could only be modified to correct
errors; new or changed features would require that a
different class be created. That class could reuse coding
from the original class through inheritance. The derived
subclass might or might not have the same interface as the
original class - advocates implementation inheritance – the
existing implementation is closed to modifications, and new
implementations need not implement the existing interface.

 Polymorphic Open/Closed Principle - Robert C. Martin's 1996
article "The Open-Closed Principle" redefines it to refer to the
use of abstracted interfaces, where the implementations can
be changed and multiple implementations could be created
and polymorphically substituted for each other - advocates
inheritance from abstract base classes. The existing interface
is closed to modifications.

Source: http://en.wikipedia.org/

74

LSP: The Liskov Substitution Principle
 Barbara Liskov in a 1987: Let q(x) be a property provable

about objects x of type T. Then q(y) should be true for
objects y of type S where S is a subtype of T.

 Liskov's notion of a behavioral subtype defines a notion of
substitutability for mutable objects; that is, if S is a subtype of
T, then objects of type T in a program may be replaced with
objects of type S without altering any of the desirable
properties of that program (e.g., correctness).

 Behavioral subtyping is a stronger notion than typical
subtyping of functions defined in type theory, which relies
only on the contravariance of argument types and covariance
of the return type:
 Contravariance (converting from narrower to wider) of method

arguments in the subtype.

 Covariance (converting from wider to narrower) of return types in the
subtype.

 No new exceptions should be thrown by methods of the subtype,
except where those exceptions are themselves subtypes of
exceptions thrown by the methods of the supertype.

75

ISP: The Interface Segregation

Principle
 The ISP was formulated by Robert C. Martin for Xerox. Xerox

had created a new printer system which could perform a
variety of tasks such as stapling a set of printed papers, faxing,
and so forth. The software grew it became harder and harder
to change - there was one main Job class that was used by
almost all of the tasks. Anytime a print job or a stapling had to
be done, a call was made to some method in the Job class.
This meant that the Job class was getting huge or 'fat', full of
tons of different methods which were specific to a variety of
different clients.

 Martin suggested that they add a layer of interfaces to sit
between the Job class and all of its clients. Using the
properties of the Dependency Inversion Principle, all of the
dependencies could be reversed. Instead of having just one
'fat' Job class that all the tasks used, there would be a Staple
Job interface or a Print Job interface that would be used by the
Staple class or Print class, respectively, and would call
methods of the Job class. Source: http://en.wikipedia.org/

76

DIP: The Dependency Inversion

Principle 1/2

 Coined by Robert C. Martin in 1996

 DIP refers to a specific form of decoupling, where
conventional dependency relationships established
from high-level, policy-setting modules to low-level,
dependency modules are inverted (e.g. reversed)
for the purpose of rendering high-level modules
independent of the low-level module
implementation details.

 DIP states:
 A. High-level modules should not depend on low-level

modules. Both should depend on abstractions.

 B. Abstractions should not depend upon details. Details
should depend upon abstractions.

Source: http://en.wikipedia.org/

77

DIP: The Dependency Inversion

Principle 2/2

Source: http://en.wikipedia.org/

 Traditional layers pattern

 Dependency inversion pattern

Inversion of control

 Inversion of Control (IoC) is a design principle used by

framework libraries that allow the framework to regain some

control from the application (e.g., a framework may call back into

application code when certain user interface events occur)

 Martin Fowler uses the term Hollywood Principle as in Don't call

us, we'll call you. Decoupling is an important part of IoC

 Several basic techniques to implement IoC:

 Using a service locator pattern

 Using dependency injection

 Using a contextualized lookup

 Using template method design pattern

 Using strategy design pattern
OOAD 5. Aggregation and Composition. Inheritance 78

IoC and DI

 Dependency Injection (DI) is a specialization of IoC that

applies IoC specifically to manage dependencies

 DI is merely an act of externalizing creation of dependencies

to the outside world by components

 Implementation of dependency injection :

 Constructor injection

 Parameter injection

 Setter injection

 Interface injection

OOAD 5. Aggregation and Composition. Inheritance 79

1. https://stackoverflow.com/questions/3226605/inversion-of-control-dependency-injection/3227404#3227404

2. https://en.wikipedia.org/wiki/Inversion_of_control

https://stackoverflow.com/questions/3226605/inversion-of-control-dependency-injection/3227404#3227404
https://en.wikipedia.org/wiki/Inversion_of_control

80

SOLID Class Design Principles

 SRP: The Single Responsibility Principle

 OCP: The Open/Closed Principle

 LSP: The Liskov Substitution Principle

 ISP: The Interface Segregation Principle

 DIP: The Dependency Inversion Principle

Homework:

http://butunclebob.com/files/SDWest2006/AdvancedPrinciplesOfClassDesign.ppt

