Interactions Diagrams

Object Interactions
Sequence Diagrams

Communication (Collaboration)
Diagrams

Examples

CONCrac

Retrospection - realization i

|
implementation

e a semantic relationship between elements, wherein

one element specifies a contract and another
guarantees to carry out this contract

e relevant in two basic scenarios:
Interfaces versus realizing classes/components
uses cases versus diagrams realizing collaborations

e graphically depicted as a dashed arrow with hollow
head -> a cross between dependency and
generalization

OOAD From: 5. Aggregation and Composition. Inheritance 2

Use Case Realization

Use-Case
Realization

A use-case realization describes how
a particular use case is realized within
the design model, in terms of
collaborating objects.

A Use-Case Realization represents the Design perspective of a Use
Case. The reason for separating the Use-Case Realization from its

Use Case is that doing so allows the Use Cases to be managed
separately from their realizations.

OOAD

6. Interactions Diagrams 3

For each Use Case —
One Realization

For each use case In the use-case model, there Is a use-case
realization in the design model with Relization relation to the use case.

@ lse Case

% Ackor

[T] system Initialise G - - - - - realises System Init Realisation
I System Init

=l

#5% Extend

-3 Dependency

<}— Generalizakion
User

- Cullaburati Realization - a relationship between two model elernents in which one requires the other for specification/implementation (R) |

Use case realization is an organization model element used to group &
number of artifacts related to the design of a use case:

Class diagrams of participating classes and subsystems, and

Interaction diagrams which illustrate the flow of events of a use
case, performed by a set of class and subsystem instances.

OOAD 6. Interactions Diagrams 4

Interaction Diagrams

For each use-case realization there is one or more interaction
diagrams depicting its participating objects and their interactions.
There are two types of interaction diagrams:

1. Sequence diagrams - show the explicit sequence of
messages and are better for real-time specifications and for
complex scenarios;

2. Communications (prior UML 2.0: collaboration)
diagrams - show the communication links between objects
and are better for understanding all of the effects on a given
object and for algorithm design.

OOAD 6. Interactions Diagrams 5

Kept in a Picture

e Use Case

= Association

% Actor

L realises
ﬁ Swskem Initialise »~ @ el _ _ - - - O T e e m - = =
=z Include

#Ex Extend

- Dependency

<}— Generalizakion

Realization

User

Sequence Communi-

* el Diagrams cation '
% A4 Diagrams

| = ’

e :-“:3).

| LN
..

N ,
¥ el

L o ot WYt o W ,."".-" o WYL e ot W% 7

[- 5 e - 4 ’ e - » - - e - # P s 1
. = e . F e - F e . F Ve - F vax ;

(S . Y i T NeL W N _—_ . F S, - _E A Tla. F s Soas ik —Na. F B o " SEEa— T

OOAD 6. Interactions Diagrams 6

Models and views in UML 1.5

IIse case Logical |Implementat Process Deployment

Use case
diagram
Class diagram

™ B0 11 eTLC e
diagram

Collaboration
diagram
statechart
diagram
Component
diagram

Deployment
diagram

OOAD 6. Interactions Diagrams 7

Sequence Diagram —

Definition

OOAD

Seguence
Diagram

i

A sequence diagram describes a pattern
of interaction among objects, arranged in a
chronological order.

6. Interactions Diagrams 8

»
S

roperties of
eguence Diagrams

Sequence diagrams show the objects participating in the interaction
by their "lifelines” and the messages that they send to each other,

l.e.

how objects interact to perform the behavior of a use case.

Sequence diagrams are particularly important to designers because
they clarify the roles of objects in a flow and thus provide basic
input for determining class responsibilities and interfaces.

Un
seq

ike @ communication (before UML 2.0 — collaboration) diagram, a
uence diagram includes chronological sequences (explicit

SEC

OOAD

uence of messages), but does not include object relationships.

6. Interactions Diagrams 9

Contents of Sequence Diagrams

You can have:

and

In sequen

objects (i.e. class instances)

actor instances
ce diagrams, together with messages

describing how they interact.

The diagram describes what takes place in the
participating objects, in terms of activations, and how

the objec

OOAD

'S communicate by sending messages.

6. Interactions Diagrams 10

Example of Sequence Diagram

X

]

X

- A-subscriber A Handler - Metwaork Handling B Handler _ B-subscriber

Receive first digit
Turn off the dial tone

Feceive the rest of
the digits

Motify the B handler
If the B-subscriber
15 found, mark it
busy and cannect
A oand B to netwaork

=et ring tone on for
A, and ring signal
an for B

A sequence diagram describing part of the flow of events of the use case

OOAD

digit
gt) ICoordinator:dialledDigit()

dialtone off{)

digit
it} ICoordinator: dialledDigit()

natify()

P ICoordinator:connect()

connect(]

ringtone oni)

Interactions.Diagra|

Place Local Call'ina’simplé Phone Switch.

Eringaignal Dn(jé

11

Contents of

Segquence Diagrams - 2

Objects - shown as a vertical dashed line called the "lifeline”.
The lifeline represents the existence of the object at a
particular time. An object symbol shows the name of the
object and its class underlined:

objectname [selector] : classname ref decomposition

selector — typically is an expression
decomposition — refers to another seq. diagram of
decomposable sub-system

Actors - try keeping them either at the left-most, or the right-
most lifelines

OOAD 6. Interactions Diagrams 12

Contents of Sequence Diagrams - 3

Messages - communications between objects that conveys
information with the expectation that activity will ensue;
shown as a horizontal solid arrow from the lifeline of one
object to the lifeline of another object. The arrow is labeled
with the name of the message, and its parameters, or with a
seguence number.

Scripts - describe the flow of events textually in a sequence
diagram.

OOAD 6. Interactions Diagrams 13

Object/Class Naming Convention

objectname [selector] : classname ref decomposition

admin

: ContentManagementSystem

admin ;: Administrator

eventHandlers [2] : EventHandler

. ContentManagementSystem ref
cmslnteraction

OOAD

A part is named admin, but at this point in time the
part has not been assigned a class.

The class of the participant is
ContentManagementSystem, but the part
currently does not have its own name.

There is a part that has a name of admin and is of
the class Administrator.

There is a part that is accessed within an array at
element 2, and it is of the class EventHandler.

The participant is of the class
ContentManagementSystem, and there is another
interaction diagram called cmslinteraction that
shows how the participant
ContentManagementSystem works internally

6. Interactions Diagrams 14

000
00 O
o000 O
ay L LX)
Messages between Participants | 2
®
participant1 : Participant(lass participant?
N[E The Mesage I
Therl':'daﬁm = messalgﬂurgumenrf] ” E E{;ﬂge
ey "'-"::' — f _________ ';' ______ it
‘_.*" ,‘* H ". ' Mess;ge Receiver
Py HE - Activation ﬁar Ij
——[' - * Z loptiona
Message Caller .*' The Message The Message
Activation Bar :' Signature
{optional) ,
P
Return Arrow
(optional)

Interactions on a sequence diagram are shown as messages
between participants (from Learning UML 2.0, by K. Hamilton, R. Miles)
OOAD

6. Interactions Diagrams

15

The Message Signature

e Signature:
attribute = signal_or _message name
(arguments) : return_type

e Arguments:
name:type, ...

e Only signal or message name Is not optional
e Example:
myVar = sendSignal() : ReturnClass

The message's name is sendSignal; no arguments; returns

an object of class ReturnClass that is assigned to the myVar
attribute of the message caller.

OOAD 6. Interactions Diagrams 16

Five main types of messages

A Synchronous Message

= An Asynchronous Message

<. A Return Message
ee e SEEIEIZ o> [p1: ass | A Participant Creation Message
<<destroy>> ’x A Participant Destruction Message

OOAD 6. Interactions Diagrams 17

Message Synchronization

e Synchronous message call -> method invocation

e Asynchronous message call -> method call In

another thread:
public void operation1() {
I/l Receive the message and trigger off the thread
Thread myWorker = new Thread(this);
myWorker.start();
/[This call starts a new thread, calling the run() method of the thread
/[As soon as the thread has been started, the call returns.

OOAD 6. Interactions Diagrams 18

000
00
L X
o
Example
e The first message is a sd Messages
synchronous message Source Targst

(denoted by the solid
arrowhead) complete with

return:= meszagelparametan

an implicit return message; | g
e The second message is e
asynchronous (denoted by I messageretum) U

line arrowhead), and the
third is the asynchronous
return message (denoted

by the dashed line).

OOAD 6. Interactions Diagrams 19

Lifeline Start and End

e A lifeline may be created or sd Start And End
destroyed during the timescale Parent
represented by a sequence
diagram.

nean)

delete

o In this case, the lifeline is 5
terminated by a stop symbol, L

represented asS a CrossS.

e The symbol at the head of the
lifeline i1s shown at a lower level

down the page than the symbol
of the object that caused the
creation.

OOAD 6. Interactions Diagrams

20

Create and Destroy Messages
(from Learning UML 2.0, by K. Hamilton, R. Miles)

— G eateNewBloohicont -

seleciBlogAccount Type(type)

enter AuthorDetadsiauthor | AuthorDetads)
<<(reate> >

> P AuthorDetails
dicSubmay) . uu‘.eﬁwﬂeqw.rﬂto;huwtloutt-xnem‘!s - AathorDetails)
:) checkAuthorDetalks(authorDetadls : AuthorDetails)
<<create{authorDetails) > >
x‘ > new Account M

<<destroy>> ﬂ p
emailBlogDetaitil newhccount’s ReguiarBlogAc :
]F , sendEmuilemad : Email) L

OOAD

00
. 0o o
SD with Asynchronous Messages | ¢::
Source: UML, Second Edition, by S. Bennet, J. Skelton, K. Lunn
| 8d Spocl File 1o Printer)
‘WM“ II :PrimtSpocier :Printar
] --coenteame) oI e | §
P o 7
write{document) ' ‘
iy i
T e |
o e o] | :
G- o openiname) :
loop [block l=ect] J < readBlock é
(1. .. bock=readBlock | | o iumiock) :
<2)D
. debete{namae) '
= >

Nested and Self Messages

sq:.j\fi'eturnRegi_g;r’éi‘iionSequeqce)

W\

\ \ D P)
\ \ (O L
AN $ <
> o« 4
4\ N34
5 (Y O
A WA A
W "\ Vo
\ N\
- -~ a "
\ ‘ A .
{ & O LA
. N N\
oL AN \ 3
X) '
N A" \ W
RS = :_.l)
A\ & \ "2 \
[\ . A
~ [2
w 1

@

O | N |
1|:- eg:sterResourceReturd() e o TN ¥
DL 2. regiterResourceReturn() | £

N i AN N dmngeResouroeState()

q? f I SetRet

\; \

oL

Djte()

ResourceOvmer ResourceO\men nerfacs. ResourceQuineWorkflow.> Resourg&sEntity
-;' ¥ N N » I

I

| .

l \
&N

|

\
)
\
! |

[5: confrmResourceLend()

AN

ationiisg()

>

'r_’-’.— —_— — 1
o
.

—
”
o —— —— —
3 4
e
3

N
!
‘ :

Guen esEntty,

OOAD 6. Interactions Diagrams

23

Self and Reculsive Messages

e Such messages can
i represent:

1: message Either a recursive call of
an operation,

i Or one method calling

Dﬂ nmessage another method belonging

to the same object.

e It is shown as creating a
nested focus of control In
the lifeline’s execution
occurrence.

OOAD 6. Interactions Diagrams

=d Recursion /

Saource

1
, zelfmessage

recursion

24

Reentrant (Callback) message

": Create Message

]:l Self Message
I']T—‘ Recursive Message

3: SetsData |

3.1: CallBack

& Fournd Messgge | | E-F————————————-
3.2: ReporedStatus

—# |Lost Message

I
I
rr - Reentrant Message I
|

[Alt. Combined Fragm: Reentrant Message - points to an activation at its top (Mayuds+R)

™| Loop Combined Fragment I

OOAD 6. Interactions Diagrams 25

Callback message 2

e Overlapping
execution
specifications
on the same
lifeline -
callback
message

‘Service

Task

start
-

callback

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

OOAD

6. Interactions Diagrams

26

@ Hand
L

Point Eraser
- Sweeper
™ Magnet
Gesture Pen

! Smart Edit

-)
' Lifeline

"E.' Boundary LifeLine

‘ Control LifeLine

2 Entity LifeLine

— Message

— Uninterpreted Message
Ly call Message

— Send Message

- Reply Message

—» Destroy Message

— Terminate Message
— Sequence Message

“y Duration Message

'E Create Message

]:_| self Message

I‘F‘ Recursive Message
»— Found Message

—» Lost Message
I'?? Reentrant Message

Miyhbdlanager... Py count @ L

StatusForm : Dis... FopUpiitfind ow

sd Example .|

My Manager @ Account Manager

Mysccount : Bank Acocount

2: PrepamesData

3 SetsData

B

3.1 CallBack

|
3.2: RepertedStatus }
|

4: Create

Reentrant M - points t tivati t its t Mayiis+R
] Al Combl eentrant Message - points to an activation at its op (Mayus+ jl

7] Loop Combined Fragment
EI Interaction Lse
] Frame

% Actor

w: Concurrent
ﬁ Continuation
—f Gate
EI Duration Constraink

{}-i‘. Time Conskraint
ER Mete

I
|
|
|
|
|
-

2
O

N
VP

§: RecursiveCheck

7 Destroy

h

8: ReportedStatus
[l
|
|

B:1 : Destroy

1
I
|
8.2 Finalise() I
oy

10: Ready 9 SeffCheck

.—5: ______________

27

Lost and Found Messages
(UML 2.0)

e Lost messages are those that d Lozt and Faurd)

are either sent but do not arrive

Lifeline

at the intended recipient, or
which go to a recipient not

shown on the current diagram.

lost_message

=@

e Found messages are those L

found_message

that arrive from an unknown
sender, or from a sender not
shown on the current diagram.
They are denoted going to or

coming from an endpoint
element.

OOAD 6. Interactions Diagrams

28

Duration and Time Constraints
(UML 2.0)

e By default, a message is shown [z

as a horizontal line. Since the Source Target
lifeline represents the passage

of time down the screen, when b o

modelling a real-time system, \i
or even a time-bound business s !
process, it can be important to ks
consider the length of time it oo :
takes to perform actions. T i peng]

e By setting a duration constraint
for a message, the message
will be shown as a sloping line.

OOAD 6. Interactions Diagrams 29

UML 2.0 Fragments

W (2 I ¥] | Userlnterface Ll=e it defl aw | LsersE ntity
'y
"% Toals sd SystemRegisterSequence
" Point Eraser
lj_ Swieeper % (j O E }
,*"". Cestre Pen User L.IsenrrIteﬁa::e USEIWIﬂlkﬂﬂw UEEIEIEI"ItIt",l'
1: reqiger
7] Sequence = o . L | '
- 2 digpl ionF orm() | |
- LifeLing v 3 enterR agistrationD F) | |
1]
—2 Message - 4 samK egistrationData " b
: & ref w . 0 | 2. saveRegistrationDatal) |
~a Duration Message X |
7. confirm R egistration) DHF-I
25 Create Message 5™isplayd § T atorTisa 0 | "
| self Message I
L | I
(€ Recursive Message 1 w : w HE
#> Found Message
—=# Lost Message
] Alternative Combined Fragment =

OOAD 6. Interactions Diagrams 30

m SystemlLoginSegquence

|§ l}.‘J I = | U=zer Uzerlnterface | U=zerLaginRrergiste fildo ol ave | UzersEntity
Y
“w. Tools ey Isd SystemLoginSaquence |
" Paoint Eraser
l!-_ Sweeper % (} O g Z
4 Us=drnte rface UsaroginRrergistenorkflow U= rsE ntity
* Gesture Pen -/Tﬁ\\ 1o logind JI T o ﬂl I |
slagin
7] Sequence 2 > 4 Pl 3: authenticate() |
N o . 4; E:’J‘
= Lifeline - 4 authenticationFailed -c::j
’ <
—= Message -
= Duration Message
#= Create Message
|| |
& self Message || || T
| | |
1_"]-_(-‘ Recursive Message | | |
o> Found Message &: dlispl icationF ailureMsg () | |
} 7: authorize) }
—# Lost Message | _ =K D.II_J
o
] alternative Combined Fragment = |J‘|<] F |
e T I i
] Interaction Use — i I u
|
] Frame I
|
A Actor Taooed “alles u = Siagrarns | References | Comments I
1 Concurrent General Interaction Operands | Covered LifeLines I Stereotypes I
HlH . - I
= Continuation Marme: |C|:|mhir‘|edFraqmer‘|t I
=L Gate Operator kind: [alt =] I
= MNote Documentation [consider - |
----- Anchor ™ HTML critical |
igrore: '
A} constraint |
loop I
9 Common == neqg I
I
[=] Package - opt |
_ : par = |
| Diagram Cwerview seq - I
B A S, 1

About fragments

e Fragments allow for adding a degree of procedural logic to
diagrams and which come under the heading of combined
fragments.

e A combined fragment is one or more processing sequence
enclosed in a frame and executed under specific named
circumstances. The fragments available are:

seq - weak sequencing
critical - critical region
ignore - ignore
consider - consider
assert - assertion

neg — negative

alt - alternatives

opt - option

loop - iteration

break - break

par - parallel

strict - strict sequencing

CO0O000

OOAD 6. Interactions Diagrams 32

Alt

Alternative fragment (denoted “alt”) models if...then...else
constructs, i1.e. a choice or alternatives of behavior

At most one of the operands will be chosen.

The chosen operand must have an explicit or implicit guard
expression that evaluates to true at this point in the
Interaction.

alt) [balance=0] l

Call accept() accept) o

If balance > 0, | L

call reject() otherwise. [else] |
reject() 3

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 33

Opt

e Option fragment (denoted “opt”) models switch constructs

— a choice to execute or not the fragment depends on a

condition.

e Here, the combined fragment represents a choice of
behavior where either the (sole) operand happens or

nothing happens.

Post comments

If there were no errors.

—

npt) [no errors] |

post comments()

il

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD

6. Interactions Diagrams

34

Loop

e Potentially infinite loop

e Loop with exact number of occurrences — if both bounds are
specified, loop will iterate minimum the min-int number of
times and at most the max-int number of times.

e Iteration bounds loop with possible interaction constraint

(guard condition)

Ionp)

notify()

E—I I

Iunp(&ﬂﬂﬂ [size<0] |

notify() |
g

—

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD

6. Interactions Diagrams

35

A Loop Fragment Enclosing a
Series of Repeated Messages

OOAD

=d Fragrert /

Userintedface O=t= Control

DataSource

36

Break

e Break fragment models an exceptional sequence of events

that is processed instead of the whole of the rest of the
diagram = |

e UML allows only breaking one level (!) lﬂﬂpﬁﬂy |

add{}»ﬂ;

hreaV [y=0] |

save()

gt

|
1
1
I

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams

I

37

Par

e Par defines potentially/possible parallel execution of

behaviors of the operands of the combined fragment
| _

par
search_google()
Search Google, Bing gn
and Yahoo in || searchbing) | |
possibly in parallel. ’ﬁ

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 38

Strict

e strict requires a strict sequencing (order) of the operands on
the first level within the combined fragment.

| |

Etrit:t) |
search_google()
-,_ I
I I _|_ .
search_bing()
| - |
Search Google, Bing and Yahoo [[| — ;E;n;—y%iruﬁ ~--
In the strict sequential order. i
|

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 39

Seg (weak seguencing)

e Occurrence specifications on different lifelines from differgnt
operands may come in any order.

e Occurrence specifications on the same lifeline from different
operands are ordered such that an occurrence specification of
the first operand comes before that of the second operand.

e Weak sequencing seq reduces to a par when the operands are on disjoint sets of participants.

e \Weak sequencing reduces to strict sequencing when the operands work on only one

participant. seq |
search google()
Search Google possibly parallel with Bing [search_bing)v ™ |
and Yahoo, | "h \
but search Bing before Yahoo. B ;e;rgw;r;jﬂ[{ 1
= !
OOAD 6. Interactions Diagrams Ir ?‘:;til,," 40

Source: http://www.uml-diarams.org/sequence-diagrams-reference.html)

Critical

e critical defines that the combined fragment represents a
critical region.

e A critical region is a region with traces that cannot be
Interleaved by other occurrence specifications (on the Ilfellnes

covered by the region). = ,
par) ———
Crltlﬂay

add() |
Add() or remove() could be called bl;l

In parallel, but each one should run [[|-——"=—"———- -
as a critical region. critical I
remove() hH]

OOAD 6. Interactions Diagrams 41

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

lgnore

e ignore means that there are some insignificant messages
that are not shown within this combined fragment.

e The list of ignored messages follows the operand enclosed in
a pair of curly braces "{" and "}". ||

ignure{get,ﬁety
add
() -
Ignore get() and set() messages, if any. remove() > |

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 42

Consider

e consider defines which messages should be considered
within this combined fragment, meaning that any other
message will be ignored.

e The list of considered messages follows the operand
enclosed in a pair of curly braces "{" and "}".

consider{a dd,mmﬂvey

Consider only add() or add() |
remove() messages, remove() ﬁ
ignore any other. ""|_|_

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 43

Neg

e neg describes combined fragment of
traces that are defined to be negative

(mvalld) «remotes login() |
e Negative traces are the traces which |l >T
occur when the system has failed. neg
o A_II Interaction fragments that are {__“_'""E‘?’ET_ T
different from the negative are .

considered positive, meaning that
they describe traces that are valid and
should be possible.

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 44

Assert

e assert means that the combined fragment represents the
assertion that the sequences of the assert operand are the
only valid continuations

e must be satisfied by a correct design of the system

= |
EEEEI'I/
. commit()
Commit() message should occur -
at this point, following with |
evaluation of state invariant. [t==complete}
|

Source: http://www.umI-diagrams.org/sequence-diagrams-reference.htmll

OOAD 6. Interactions Diagrams 45

Ref

e Ref defines interaction fragment which allows to use (or call)
another interaction.

sc: Site um: User
Controller Manager

Use Login interaction []

to authenticate user and _

assign result back ref) sc.user = Login

to the user attribute of (login_id, password): user
Site Controller. | |

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.htmi

OOAD 6. Interactions Diagrams 46

Gate (UML 2.0)

sd Sequence Diagraml)

e A gate is a connection point for
connecting a message inside a
fragment with a message
outside a fragment. SD show a
gate as a small square on a

fragment frame.

e Diagram gates act as off-page
connectors for sequence
diagrams, representing the
source of incoming messages
or the target of outgoing
messages.

OOAD 6. Interactions Diagrams

LifelLine

47

Part Decomposition (UML 2.0)

=d Part Decomposition /

e An object can
have more than X o
one lifeline |)
coming from It. SR
e This allows for

Inter- and Intra- ; reque

[rata Store

object messages

to be displayed on
the same T
diagram. T TG

OOAD

48

State Invariant (UML 2.0)

e A state invariantis a =d State Invariant_/

constraint placed on Liteline
a lifeline that must be

true at run-time.

e Itis shown as a :
rectangle with semi-

circular ends.

OOAD 6. Interactions Diagrams

49

000
- (X X)
Seqguence diagram for ees
| XN
[X
1 @
ReportEmergency [Bruege&Dutoit]
])
N : .
S R | Repore Manage
® EmergencyButton| tmergencyControl
FieldOfficer ;<] '
press c\) <<{reate>> l
. ‘""— :ReportEmerger‘:yControl |
O | | | g<Create>x ReportEmergency |
c , ' ! ' ' Form |
= !I LI' T f111Ccntents() f '
| f j ' submit() LI‘ :
| I submitReport() ||
T | k<Create>> Emergency |
- | Report
. 1 |] =
; ' - >< l |
N ‘
Figure §-8 Seguence diagram for the ReportEmergency use case.
OOAD 6. Interactions Diagrams 50

Sequence diagram for
ReportEmergency-2 [Bruege&Dutoit]

i Marage " i
‘~crgcn<)Controi

Dispatcher
sub=itReps rtjobwspa°c*er() ccCrezter> i ;
= T 0 e I — -Iﬂ(’def‘(FOf"
i — |
| | | createIncident() _JH
f | e)
, | <CrEArTes>
| [=1 1Incident
l: _submit())
{) [[c<Createss ot D %
!'<<de§tro > <]r ' 5 Oule atei [
© 7< l

Figure 5-9 Sequence diagram for the ReportEmergency use case (continued from Figure 5-8).

OOAD 6. Interactions Diagrams 51

Sequence diagram for
ReportEmergency-3 [Bruege&Dutoit]

T e

Q
A

<<desTroys> >< FaN

Fie'{dﬂfficeri“ Manage ‘ [Hepnr'tfr-lergemr
;'E-'nergtn: yLont roll | Control

|

| |

5 acknowledgeReport()

— — "Tiecreates> | Acknowliedgment
. Notice
dismiss()

D__ —————— — e — F—
_EM.EI%

| | ‘_I <edestroys> N

F

|

Figure 5-10 Scquence diagram for the ReportEmergency use ¢ase (continued from Figure 5-9).

OOAD 6. Interactions Diagrams 52

Centralizing Control Flow
In Sequence Diagrams

Centralized control of a flow of events means that a few objects
steer the flow by sending messages to, and receiving
messages from other objects. These controlling objects decide
the order in which other objects will be activated in the use case.
Interaction among the rest of the objects is very minor or does not
exist.

Main advantage: each object does not have to keep track of
the next object's tally. To change the order of the sub-event
phases, you merely make the change in the control object. Another
advantage to this structure is that you can easily reuse the
various sub-event phases in other use cases because the
order of behavior is not built into the objects.

OOAD 6. Interactions Diagrams 53

Distributing Control Flow
In Sequence Diagrams

Decentralized control arises when the participating objects
communicate directly with one another, not through one or more
controlling objects.

OOAD 6. Interactions Diagrams 54

Centralized Control - Example

In the Recycling-Machine System, the use case Print Daily

Report keeps track of - among other things - the number a

nd type

of returned objects, and writes the tally on a receipt. The Report
Generator control object decides the order in which the sums will

be extracted and written.

-, C 0 -

t Feport T Can t Bolttle
Generator

l |
number of Ccans (Surmd
1

number of hottles (SuUurrd
1

1
| [
number of crates (S

T Crae

0]6)

Decentralized Control - Example

In the use case Send Letter someone mails a letter to another
country through a post office. The letter is first sent to th
country of the addressee. In the country, the letter is sent to a
specific city. The city, in turn, sends the letter to the home of
the addressee.

The sub-event phases belong together. The sender of the letter
speaks of "sending a letter to someone."

N > > - -

t Post OOFTic e t Pos=st Ofnc e s oaratays = iy st Aaddress e [=

Custom er

1 == enmnd lethenr |

Control Flow — How to be used?

A decentralized structure is appropriate:

* If the sub-event phases are tightly coupled:
 Form a part-of or consists-of hierarchy, such as Country -
State - City;
 Form an information hierarchy, such as CEO - Division
Manager - Section Manager;

* Represent a fixed chronological progression (the
sequence of sub-event phases will always be performed in
the same order), such as Advertisement - Order - Invoice -
Delivery - Payment; or

 Form a conceptual inheritance hierarchy, such as Animal -
Mammal - Cat.

* If you want to encapsulate, and thereby make abstractions of,

functionality.

OOAD 6. Interactions Diagrams 57

Control Flow — How to be used? (2)

A centralized structure Is appropriate:

* If the order in which the sub-event phases will be
performed is likely to change.

* If you expect to insert new sub-event phases.

* If you want to keep parts of the functionality reusable
as separate pieces.

OOAD 6. Interactions Diagrams 58

Communication (collaboration)
UML 2.0 Diagrams

Collaboration
Diagram

A

A communication (collaboration)
diagram describes a pattern of objects
interaction; it shows the objects
participating in the interaction by their links
to each other and the messages sent to
each other.

Unlike a sequence diagram, a collaboration diagram shows the
relationships among the objects.

You can have objects and actor instances in communication
(collaboration) diagrams, together with links and messages
describing how they are related and how they interact. The
diagram describes what takes place in the participating objects, in

OOAD

one another.

terms of how the objects communicate by sending messages to

6. Inter ns Diagrams

Communication vs Sequence
Diagrams

e Communication diagrams are especially good at showing
which links are needed between participants to pass an
Interaction's messages.

e On a sequence diagram, the links between participants are
Implied by the fact that a message is passed between them.
Communication diagrams provide an intuitive way to show the
links between participants that are required for the events that
make up an interaction (the order of the events involved in an
Interaction is secondary).

e Sequence and communication diagrams are so similar that
most UML tools can automatically convert from one diagram
type to the other.

OOAD 6. Interactions Diagrams 60

Contents of Communication
(Collaboration) Diagrams - Links

A link is a relationship among objects across which
messages can be sent (shown as a solid line between
two objects).

eAn object interacts with, or navigates to, other objects
through its links to them.

*A link can be an instance of an association, or it can be
anonymous, meaning that its association is unspecified.

OOAD 6. Interactions Diagrams 61

Example of Communication 33
Diagram
3 newelterm|)
Fogetiterns ()
Q:M}
e Dl—%%igem : DE%Item & ner

10 init

1: insert iterm ()
. finish)
—_— |
I
i ustarmer Fanel

/

- Deposit [term
11 getFaperAmount () =

Twpe

L ustormer

3. print)

S Alarnm Device

. Heceipt Printer

Events’ flow of the use case Receive Deposit Item in the Recycling-Machine
System

OOAD 6. Interactions Diagrams 62

Contents of Communication Diagrams —
Messages 1/2

° A message Is a communication between objects
that conveys information with the expectation that
activity will ensue

¢ In collaboration diagrams, a message Is shown as a
labeled arrow placed near a link. This means that the
link Is used to transport, or otherwise implement the
delivery of the message to the target object

¢ The arrow points along the link in the direction of
the target object (the one that receives the message).

OOAD 6. Interactions Diagrams 63

Contents of Communication Diagrams
— Messages 2/2

® The arrow is labeled with the name of the message,
and its parameters. The arrow may also be labeled with
a sequence number to show the sequence of the
message in the overall interaction.

® A message can be unassigned, meaning that its name
IS a temporary string that describes the overall meaning
of the message. You can later assign the message by

specifying the operation of the message's destination
object.

® Message notation:
[sequenceNumber:] methodName(parameters) [: returnValue]

6. Interactions Diagrams 64

Sample communication diagram

1: getName(): seminarName
2: getDescription()
3: getLocation()

4: getSeatsLeft()

*Seminar 5: getStudentList()
Details =
<<UI>>

5.1.1.1: getFullName() l

1.1: getName(): string

1.2: getNumber(): string
2.1: getDescription(): string

:Seminar

l* 5.1: getinfo
N\

enrollment
:Enrollment

15.].1: getinfo 4

student
:Student

N

/

N

4

:Course

Actually a series of
getter invocations.

65

Source: The Object Primer 3rd Edition: Agile Model Driven
Development with UML 2, 2007.

Boundary Objects In Interaction Diagr.

To illustrate the boundary objects participating in the use-case
storyboard (a logical and conceptual description of how a use case
is provided by the user interface), and their interactions with the
user, we use communication or sequence diagrams. This is useful
for use cases with complex sequences or flows of events.

Example: Class diagram including the Mail User actor and the
boundary classes Mail Box, Mail Message, and Attachment,
realizing Manage Incoming Mail Messages use case.

N o
Flail B o
/ l:.:} ;
1
ol il L==r1 -
HC D<= =

1 = 66
Pl 3il lee== ag = ~ttachmeni

Boundary Object
Collaboration/Communication Diagrams |-

Example

CD including the Mail User actor and boundary objects of Malil
Box, Mail Message, and Attachment, participating in a use-case
storyboard realizing the
Manage Incoming Mail Messages use case:

1: =tart by =hovwing mail mes=ages
=Z: arrang=e by criterias endeaer, = ubject)
Foquit managing incoming mail mes=ages

2 — o

b3l Boes

= read thhe mail mes=s age
= e the mail me=s= age
S: = gauve attachment=

N

Si: =aw= attachmeaent
H 5 =

: —~attachment
OOAD 6. Interactions Diagrams 67

Concurrency

e Instance of A sends draw() messages
concurrently to instance of B and to instance of C

e Messages 2.3a and 2.3b are concurrent within
activation 2.3

2.3a.draw() .
A7 '
‘A
A :C
OOAD Edef’EW“ 68

Recurrence (Repetition)

e The recurrence defines conditional or iterative
execution of zero or more messages that are
executed depending on the specified condition.

<recurrence> ..= <branch> | <loop>
<pranch>::="'[' <guard>"]’
<loop>:=" ["I|'] ['[' <iteration-clause>"]"]

OOAD 6. Interactions Diagrams 69

Guard condition

e |Instance of class A will send draw() message to
Instance of C if x >y

2.3b [x=y]: draw()
—

OOAD 6. Interactions Diagrams 70

Sequence vs Concurrency

e Instance of class A
will send search()

1.2 "[k:1..n]: search(k)

message to instance =
of B n times, one by A ‘B
one
e Instance of class A |
: 1.2 *||[k:1..n]: search(k)
will send n B
concurrent search() A B

messages to
Instance of B

OOAD 6. Interactions Diagrams

71

Comparing sequence and communication diagram
(from Learninag UML 2.0, by K, Hamilton, R, Miles)

Feature

Sequence diagrams

Communication diagrams

Shows participants
effectively

Participants are mostly arranged along
the top of page, unless the drop-box
participant creation notation is used. It is
easy to gather the participants involved in
a particular interaction.

Participants as well as links are the focus, so
they are shown clearly as rectangles.

Showing the links
between
participants

Links are implied. If a message is passed
from one participant to another, then it is
implied that a link must exist between
those participants.

Explicitly shows the links between
participants. In fact, this is the primary
purpose of these types of diagram.

Showing message
signatures

Message signatures can be fully
described.

Message signatures can be fully described.

Supports parallel

With the introduction of sequence

Shown using the number-letter notation on

messages fragments, sequence diagrams are much |message sequences.

better.
Supports Achieved using the asynchronous arrow. Communication diagrams have no concept of
asynchronous the asynchronous message since its focus is

messages (fire and
forget)

not on Mmessage ordering.

Easy to read
message ordering

This is a sequence diagram's forté.
Seqguence diagrams clearly show message
ordering using the vertical placement of
messages down the diagram's page.

Shown using the number-point-nested
notation.

Easy to create and
maintain the
diagram

Creating a sequence diagram is fairly
simple. However, maintaining sequence
diagrams can be a nightmare unless a
helpful UML tool is being used.

Communication diagrams are simple enough
to create; however, maintenance, especially
if message numbering needs to be changed,
still ideally needs the support of a helpful
UML tool.

Homework

e TO convert a sequence diagram into a
communication diagram and vice versa on
Visual Paradigm for UML

OOAD 6. Interactions Diagrams 73

The University Course
Registration (UCR)
Case Study

Object Name
History 101-Section?2

Object Name & Class

History 101-
Section7:CourseOffering

Class Name
:CourseOffering

Naming Objects in a Sequence Diagram

OOAD 6. Interactions Diagrams 74

UCR - 2

Math 101-Sectionl:CourseOffering

:ProﬁesorCourse_Manaqer

1: Add Professor

R AR

.ProffesorCourseManager

1: Add Professor\ Math 101-Sectionl1:CourseOffering

Sequence Diagram (over) versus Collaboration Diagram (bellow)

OOAD 6. Interactions Diagrams 75

UCR -3

.Reqistrar

:course form:

theManaqger:

CourseForgn

CurriculumManaqger

1: set course info

V

2. process

OOAD

Vv

3: add course

L]
N L]
e

: 4: new course

aCourse:

Courseg

Sequence Diagram with Objects
Assigned to Classes

6. Interactions Diagrams

i

76

CY X
'Y I XK
| N XN
00
Y

UCR -4 °
1: set course info _
M course form : CourseForm

‘Registrar l 3: add course

4: new course

<

aCourse:Course theManager:CurriculumManager

Collaboration Diagram

OOAD 6. Interactions Diagrams 77

