
OOAD 6. Interactions Diagrams 1

Interactions Diagrams

Object Interactions

Sequence Diagrams

Communication (Collaboration)

Diagrams

Examples

Retrospection - realization

 a semantic relationship between elements, wherein

one element specifies a contract and another

guarantees to carry out this contract

 relevant in two basic scenarios:

 interfaces versus realizing classes/components

 uses cases versus diagrams realizing collaborations

 graphically depicted as a dashed arrow with hollow

head -> a cross between dependency and

generalization
OOAD From: 5. Aggregation and Composition. Inheritance 2

OOAD 6. Interactions Diagrams 3

Use Case Realization

A Use-Case Realization represents the Design perspective of a Use
Case. The reason for separating the Use-Case Realization from its
Use Case is that doing so allows the Use Cases to be managed
separately from their realizations.

Use-Case

Realization

A use-case realization describes how
a particular use case is realized within
the design model, in terms of
collaborating objects.

OOAD 6. Interactions Diagrams 4

For each Use Case –

One Realization

For each use case in the use-case model, there is a use-case

realization in the design model with Relization relation to the use case.

Use case realization is an organization model element used to group a

number of artifacts related to the design of a use case:

 Class diagrams of participating classes and subsystems, and

 Interaction diagrams which illustrate the flow of events of a use

case, performed by a set of class and subsystem instances.

OOAD 6. Interactions Diagrams 5

Interaction Diagrams

For each use-case realization there is one or more interaction
diagrams depicting its participating objects and their interactions.
There are two types of interaction diagrams:

1. Sequence diagrams - show the explicit sequence of
messages and are better for real-time specifications and for
complex scenarios;

2. Communications (prior UML 2.0: collaboration)
diagrams - show the communication links between objects
and are better for understanding all of the effects on a given
object and for algorithm design.

OOAD 6. Interactions Diagrams 6

Kept in a Picture

Use Case Realization

Class Diagrams Interaction Diagrams

Sequence

Diagrams

Communi-

cation

Diagrams

OOAD 6. Interactions Diagrams 7

Models and views in UML 1.5

OOAD 6. Interactions Diagrams 8

Sequence Diagram –

Definition

Sequence

Diagram
A sequence diagram describes a pattern
of interaction among objects, arranged in a
chronological order.

OOAD 6. Interactions Diagrams 9

Properties of

Sequence Diagrams

• Sequence diagrams show the objects participating in the interaction
by their "lifelines" and the messages that they send to each other,
i.e. how objects interact to perform the behavior of a use case.

• Sequence diagrams are particularly important to designers because
they clarify the roles of objects in a flow and thus provide basic
input for determining class responsibilities and interfaces.

• Unlike a communication (before UML 2.0 – collaboration) diagram, a
sequence diagram includes chronological sequences (explicit
sequence of messages), but does not include object relationships.

OOAD 6. Interactions Diagrams 10

Contents of Sequence Diagrams

You can have:
objects (i.e. class instances)

and
actor instances

in sequence diagrams, together with messages
describing how they interact.

The diagram describes what takes place in the
participating objects, in terms of activations, and how
the objects communicate by sending messages.

OOAD 6. Interactions Diagrams 11

Example of Sequence Diagram

A sequence diagram describing part of the flow of events of the use case

Place Local Call in a simple Phone Switch.

OOAD 6. Interactions Diagrams 12

Contents of

Sequence Diagrams - 2
Objects - shown as a vertical dashed line called the "lifeline".
The lifeline represents the existence of the object at a
particular time. An object symbol shows the name of the
object and its class underlined:

objectname [selector] : classname ref decomposition

selector – typically is an expression
decomposition – refers to another seq. diagram of
decomposable sub-system

Actors - try keeping them either at the left-most, or the right-
most lifelines

OOAD 6. Interactions Diagrams 13

Contents of Sequence Diagrams - 3

Messages - communications between objects that conveys
information with the expectation that activity will ensue;
shown as a horizontal solid arrow from the lifeline of one
object to the lifeline of another object. The arrow is labeled
with the name of the message, and its parameters, or with a
sequence number.

Scripts - describe the flow of events textually in a sequence
diagram.

Object/Class Naming Convention

Example participant name Description

admin
A part is named admin, but at this point in time the

part has not been assigned a class.

: ContentManagementSystem

The class of the participant is

ContentManagementSystem, but the part

currently does not have its own name.

admin : Administrator
There is a part that has a name of admin and is of

the class Administrator.

eventHandlers [2] : EventHandler
There is a part that is accessed within an array at

element 2, and it is of the class EventHandler.

: ContentManagementSystem ref

cmsInteraction

The participant is of the class

ContentManagementSystem, and there is another

interaction diagram called cmsInteraction that

shows how the participant

ContentManagementSystem works internally
OOAD 6. Interactions Diagrams 14

objectname [selector] : classname ref decomposition

Messages between Participants

Interactions on a sequence diagram are shown as messages

between participants (from Learning UML 2.0, by K. Hamilton, R. Miles)
OOAD 6. Interactions Diagrams 15

The Message Signature
 Signature:

attribute = signal_or_message_name

(arguments) : return_type

 Arguments:

name:type, …

 Only signal_or_message_name is not optional

 Example:

myVar = sendSignal() : ReturnClass

The message's name is sendSignal; no arguments; returns

an object of class ReturnClass that is assigned to the myVar

attribute of the message caller.
OOAD 6. Interactions Diagrams 16

Five main types of messages

OOAD 6. Interactions Diagrams 17

Message Synchronization

 Synchronous message call -> method invocation

 Asynchronous message call -> method call in

another thread:
public void operation1() {

// Receive the message and trigger off the thread

Thread myWorker = new Thread(this);

myWorker.start();

// This call starts a new thread, calling the run() method of the thread

// As soon as the thread has been started, the call returns.

}

OOAD 6. Interactions Diagrams 18

Example

 The first message is a

synchronous message

(denoted by the solid

arrowhead) complete with

an implicit return message;

 The second message is

asynchronous (denoted by

line arrowhead), and the

third is the asynchronous

return message (denoted

by the dashed line).

OOAD 6. Interactions Diagrams 19

Lifeline Start and End

 A lifeline may be created or

destroyed during the timescale

represented by a sequence

diagram.

 In this case, the lifeline is

terminated by a stop symbol,

represented as a cross.

 The symbol at the head of the

lifeline is shown at a lower level

down the page than the symbol

of the object that caused the

creation.
OOAD 6. Interactions Diagrams 20

Create and Destroy Messages
(from Learning UML 2.0, by K. Hamilton, R. Miles)

OOAD 6. Interactions Diagrams 21

SD with Asynchronous Messages
Source: UML, Second Edition, by S. Bennet, J. Skelton, K. Lunn

OOAD 6. Interactions Diagrams 22

Nested and Self Messages

OOAD 6. Interactions Diagrams 23

Self and Reculsive Messages

 Such messages can

represent:

 Either a recursive call of

an operation,

 Or one method calling

another method belonging

to the same object.

 It is shown as creating a

nested focus of control in

the lifeline’s execution

occurrence.
OOAD 6. Interactions Diagrams 24

Reentrant (Callback) message

OOAD 6. Interactions Diagrams 25

Callback message 2

 Overlapping

execution

specifications

on the same

lifeline -

callback

message

OOAD 6. Interactions Diagrams 26

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

SD

in

VP

OOAD 6. Interactions Diagrams 27

Lost and Found Messages

(UML 2.0)

 Lost messages are those that

are either sent but do not arrive

at the intended recipient, or

which go to a recipient not

shown on the current diagram.

 Found messages are those

that arrive from an unknown

sender, or from a sender not

shown on the current diagram.

They are denoted going to or

coming from an endpoint

element.
OOAD 6. Interactions Diagrams 28

Duration and Time Constraints

(UML 2.0)

 By default, a message is shown

as a horizontal line. Since the

lifeline represents the passage

of time down the screen, when

modelling a real-time system,

or even a time-bound business

process, it can be important to

consider the length of time it

takes to perform actions.

 By setting a duration constraint

for a message, the message

will be shown as a sloping line.
OOAD 6. Interactions Diagrams 29

UML 2.0 Fragments

OOAD 6. Interactions Diagrams 30

OOAD 6. Interactions Diagrams 31

About fragments

 Fragments allow for adding a degree of procedural logic to

diagrams and which come under the heading of combined

fragments.

 A combined fragment is one or more processing sequence

enclosed in a frame and executed under specific named

circumstances. The fragments available are:

 alt - alternatives

 opt - option

 loop - iteration

 break - break

 par - parallel

 strict - strict sequencing

OOAD 6. Interactions Diagrams 32

 seq - weak sequencing

 critical - critical region

 ignore - ignore

 consider - consider

 assert - assertion

 neg – negative

Alt

 Alternative fragment (denoted “alt”) models if…then…else

constructs, i.e. a choice or alternatives of behavior

 At most one of the operands will be chosen.

 The chosen operand must have an explicit or implicit guard

expression that evaluates to true at this point in the

interaction.

Call accept()

if balance > 0,

call reject() otherwise.

OOAD 6. Interactions Diagrams 33

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Opt

 Option fragment (denoted “opt”) models switch constructs

– a choice to execute or not the fragment depends on a

condition.

 Here, the combined fragment represents a choice of

behavior where either the (sole) operand happens or

nothing happens.

Post comments

if there were no errors.

OOAD 6. Interactions Diagrams 34

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Loop

 Potentially infinite loop

 Loop with exact number of occurrences – if both bounds are

specified, loop will iterate minimum the min-int number of

times and at most the max-int number of times.

 Iteration bounds loop with possible interaction constraint

(guard condition)

OOAD 6. Interactions Diagrams 35

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

A Loop Fragment Enclosing a

Series of Repeated Messages

OOAD 6. Interactions Diagrams 36

Break

 Break fragment models an exceptional sequence of events

that is processed instead of the whole of the rest of the

diagram

 UML allows only breaking one level (!)

OOAD 6. Interactions Diagrams 37

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Par

 Par defines potentially/possible parallel execution of

behaviors of the operands of the combined fragment

Search Google, Bing

and Yahoo in

possibly in parallel.

OOAD 6. Interactions Diagrams 38

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Strict

 strict requires a strict sequencing (order) of the operands on

the first level within the combined fragment.

Search Google, Bing and Yahoo

in the strict sequential order.

OOAD 6. Interactions Diagrams 39

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Seq (weak sequencing)

 Occurrence specifications on different lifelines from different

operands may come in any order.

 Occurrence specifications on the same lifeline from different

operands are ordered such that an occurrence specification of

the first operand comes before that of the second operand.

 Weak sequencing seq reduces to a par when the operands are on disjoint sets of participants.

 Weak sequencing reduces to strict sequencing when the operands work on only one

participant.

Search Google possibly parallel with Bing

and Yahoo,

but search Bing before Yahoo.

OOAD 6. Interactions Diagrams 40

Source: http://www.uml-diarams.org/sequence-diagrams-reference.html

Critical

 critical defines that the combined fragment represents a

critical region.

 A critical region is a region with traces that cannot be

interleaved by other occurrence specifications (on the lifelines

covered by the region).

Add() or remove() could be called

in parallel, but each one should run

as a critical region.

OOAD 6. Interactions Diagrams 41

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Ignore

 ignore means that there are some insignificant messages

that are not shown within this combined fragment.

 The list of ignored messages follows the operand enclosed in

a pair of curly braces "{" and "}".

Ignore get() and set() messages, if any.

OOAD 6. Interactions Diagrams 42

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Consider

 consider defines which messages should be considered

within this combined fragment, meaning that any other

message will be ignored.

 The list of considered messages follows the operand

enclosed in a pair of curly braces "{" and "}".

Consider only add() or

remove() messages,

ignore any other.

OOAD 6. Interactions Diagrams 43

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Neg

 neg describes combined fragment of

traces that are defined to be negative

(invalid).

 Negative traces are the traces which

occur when the system has failed.

 All interaction fragments that are

different from the negative are

considered positive, meaning that

they describe traces that are valid and

should be possible.

OOAD 6. Interactions Diagrams 44

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Assert

 assert means that the combined fragment represents the

assertion that the sequences of the assert operand are the

only valid continuations

 must be satisfied by a correct design of the system

Commit() message should occur

at this point, following with

evaluation of state invariant.

OOAD 6. Interactions Diagrams 45

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Ref

 Ref defines interaction fragment which allows to use (or call)

another interaction.

Use Login interaction

to authenticate user and

assign result back

to the user attribute of

Site Controller.

OOAD 6. Interactions Diagrams 46

Source: http://www.uml-diagrams.org/sequence-diagrams-reference.html

Gate (UML 2.0)

 A gate is a connection point for

connecting a message inside a

fragment with a message

outside a fragment. SD show a

gate as a small square on a

fragment frame.

 Diagram gates act as off-page

connectors for sequence

diagrams, representing the

source of incoming messages

or the target of outgoing

messages.
OOAD 6. Interactions Diagrams 47

Part Decomposition (UML 2.0)

 An object can

have more than

one lifeline

coming from it.

 This allows for

inter- and intra-

object messages

to be displayed on

the same

diagram.
OOAD 6. Interactions Diagrams 48

State Invariant (UML 2.0)

 A state invariant is a

constraint placed on

a lifeline that must be

true at run-time.

 It is shown as a

rectangle with semi-

circular ends.

OOAD 6. Interactions Diagrams 49

OOAD 6. Interactions Diagrams 50

Sequence diagram for

ReportEmergency [Bruege&Dutoit]

T
im

e

OOAD 6. Interactions Diagrams 51

Sequence diagram for

ReportEmergency-2 [Bruege&Dutoit]

OOAD 6. Interactions Diagrams 52

Sequence diagram for

ReportEmergency-3 [Bruege&Dutoit]

OOAD 6. Interactions Diagrams 53

Centralizing Control Flow

in Sequence Diagrams

Centralized control of a flow of events means that a few objects
steer the flow by sending messages to, and receiving
messages from other objects. These controlling objects decide
the order in which other objects will be activated in the use case.
Interaction among the rest of the objects is very minor or does not
exist.
Main advantage: each object does not have to keep track of
the next object's tally. To change the order of the sub-event
phases, you merely make the change in the control object. Another
advantage to this structure is that you can easily reuse the
various sub-event phases in other use cases because the
order of behavior is not built into the objects.

OOAD 6. Interactions Diagrams 54

Distributing Control Flow

in Sequence Diagrams

Decentralized control arises when the participating objects
communicate directly with one another, not through one or more
controlling objects.

OOAD 6. Interactions Diagrams 55

Centralized Control - Example

In the Recycling-Machine System, the use case Print Daily
Report keeps track of - among other things - the number and type
of returned objects, and writes the tally on a receipt. The Report
Generator control object decides the order in which the sums will
be extracted and written.

OOAD 6. Interactions Diagrams 56

Decentralized Control - Example

In the use case Send Letter someone mails a letter to another
country through a post office. The letter is first sent to the
country of the addressee. In the country, the letter is sent to a
specific city. The city, in turn, sends the letter to the home of
the addressee.
The sub-event phases belong together. The sender of the letter
speaks of "sending a letter to someone."

OOAD 6. Interactions Diagrams 57

Control Flow – How to be used?

A decentralized structure is appropriate:

• If the sub-event phases are tightly coupled:

• Form a part-of or consists-of hierarchy, such as Country -

State - City;

• Form an information hierarchy, such as CEO - Division

Manager - Section Manager;

• Represent a fixed chronological progression (the

sequence of sub-event phases will always be performed in

the same order), such as Advertisement - Order - Invoice -

Delivery - Payment; or

• Form a conceptual inheritance hierarchy, such as Animal -

Mammal - Cat.

• If you want to encapsulate, and thereby make abstractions of,

functionality.

OOAD 6. Interactions Diagrams 58

Control Flow – How to be used? (2)

A centralized structure is appropriate:

• If the order in which the sub-event phases will be

performed is likely to change.

• If you expect to insert new sub-event phases.

• If you want to keep parts of the functionality reusable

as separate pieces.

OOAD 6. Interactions Diagrams 59

Communication (collaboration)

UML 2.0 Diagrams

Collaboration

Diagram

A communication (collaboration)
diagram describes a pattern of objects
interaction; it shows the objects
participating in the interaction by their links
to each other and the messages sent to
each other.

Unlike a sequence diagram, a collaboration diagram shows the
relationships among the objects.

You can have objects and actor instances in communication
(collaboration) diagrams, together with links and messages
describing how they are related and how they interact. The
diagram describes what takes place in the participating objects, in
terms of how the objects communicate by sending messages to
one another.

Communication vs Sequence

Diagrams

 Communication diagrams are especially good at showing

which links are needed between participants to pass an

interaction's messages.

 On a sequence diagram, the links between participants are

implied by the fact that a message is passed between them.

Communication diagrams provide an intuitive way to show the

links between participants that are required for the events that

make up an interaction (the order of the events involved in an

interaction is secondary).

 Sequence and communication diagrams are so similar that

most UML tools can automatically convert from one diagram

type to the other.
OOAD 6. Interactions Diagrams 60

OOAD 6. Interactions Diagrams 61

Contents of Communication

(Collaboration) Diagrams - Links

•A link is a relationship among objects across which
messages can be sent (shown as a solid line between
two objects).

•An object interacts with, or navigates to, other objects
through its links to them.

•A link can be an instance of an association, or it can be
anonymous, meaning that its association is unspecified.

OOAD 6. Interactions Diagrams 62

Example of Communication

Diagram

Events’ flow of the use case Receive Deposit Item in the Recycling-Machine

System

OOAD 6. Interactions Diagrams 63

Contents of Communication Diagrams –

Messages 1/2

 A message is a communication between objects
that conveys information with the expectation that
activity will ensue

 In collaboration diagrams, a message is shown as a
labeled arrow placed near a link. This means that the
link is used to transport, or otherwise implement the
delivery of the message to the target object

 The arrow points along the link in the direction of
the target object (the one that receives the message).

Contents of Communication Diagrams

– Messages 2/2

 The arrow is labeled with the name of the message,
and its parameters. The arrow may also be labeled with
a sequence number to show the sequence of the
message in the overall interaction.

 A message can be unassigned, meaning that its name
is a temporary string that describes the overall meaning
of the message. You can later assign the message by
specifying the operation of the message's destination
object.

 Message notation:

[sequenceNumber:] methodName(parameters) [: returnValue]

OOAD 6. Interactions Diagrams 64

Sample communication diagram

OOAD 6. Interactions Diagrams 65

Source: The Object Primer 3rd Edition: Agile Model Driven

Development with UML 2, 2007.

OOAD 6. Interactions Diagrams 66

Boundary Objects in Interaction Diagr.

To illustrate the boundary objects participating in the use-case
storyboard (a logical and conceptual description of how a use case
is provided by the user interface), and their interactions with the
user, we use communication or sequence diagrams. This is useful
for use cases with complex sequences or flows of events.

Example: Class diagram including the Mail User actor and the

boundary classes Mail Box, Mail Message, and Attachment,

realizing Manage Incoming Mail Messages use case.

OOAD 6. Interactions Diagrams 67

Boundary Object

Collaboration/Communication Diagrams -

Example
CD including the Mail User actor and boundary objects of Mail

Box, Mail Message, and Attachment, participating in a use-case

storyboard realizing the

Manage Incoming Mail Messages use case:

Concurrency

 Instance of A sends draw() messages

concurrently to instance of B and to instance of C

 Messages 2.3a and 2.3b are concurrent within

activation 2.3

OOAD 6. Interactions Diagrams 68

Recurrence (Repetition)

 The recurrence defines conditional or iterative

execution of zero or more messages that are

executed depending on the specified condition.

<recurrence> ::= <branch> | <loop>

<branch> ::= '[' <guard> ']'

<loop> ::= '*' ['||'] ['[' <iteration-clause> ']']

OOAD 6. Interactions Diagrams 69

Guard condition

 Instance of class A will send draw() message to

instance of C if x > y

OOAD 6. Interactions Diagrams 70

Sequence vs Concurrency

 Instance of class A

will send search()

message to instance

of B n times, one by

one

 Instance of class A

will send n

concurrent search()

messages to

instance of B
OOAD 6. Interactions Diagrams 71

Comparing sequence and communication diagrams
(from Learning UML 2.0, by K. Hamilton, R. Miles)

OOAD 6. Interactions Diagrams 72

Homework

 To convert a sequence diagram into a

communication diagram and vice versa on

Visual Paradigm for UML

OOAD 6. Interactions Diagrams 73

OOAD 6. Interactions Diagrams 74

The University Course

Registration (UCR)

Case Study

Naming Objects in a Sequence Diagram

History 101-Section2

Object Name

History 101-

Section7:CourseOffering

Object Name & Class

:CourseOffering

Class Name

OOAD 6. Interactions Diagrams 75

UCR - 2

:ProffesorCourseManager Math 101-Section1:CourseOffering

:ProffesorCourseManager

Math 101-Section1:CourseOffering1: Add Professor

1: Add Professor

Sequence Diagram (over) versus Collaboration Diagram (bellow)

OOAD 6. Interactions Diagrams 76

UCR - 3

:course form:

CourseForm

theManager:

CurriculumManager

1: set course info

aCourse:

Course:Registrar

2: process

3: add course

4: new course

Sequence Diagram with Objects
Assigned to Classes

OOAD 6. Interactions Diagrams 77

UCR - 4

course form : CourseForm

theManager:CurriculumManageraCourse:Course

:Registrar

1: set course info
2: process

3: add course

4: new course

Collaboration Diagram

