
OOAD 8. OCL & Timing Diagrams 1

Object

Constraint Language (OCL)

Timing Diagrams

Model Driven Architecture (MDA)

OCL

Characters of OCL

Timing diagrams

Examples

OOAD 8. OCL & Timing Diagrams 2

Model Driven Architecture

(MDA)

 In Model Driven Architecture (MDA), the software

development process is driven by the activity of

modeling.

 The MDA framework defines how to specify and

transform models at different abstraction levels.

 MDA is under supervision of the Object

Management Group (OMG).

 More info: MDA Explained: The Model Driven

Architecture: Practice and Promise, Addison-

Wesley, 2003.

OOAD 8. OCL & Timing Diagrams 3

The MDA Process

The MDA process consists of
three steps:

 Build a model with a high level of
abstraction, called Platform
Independent Model (PIM).

 Transform the PIM into one or
more Platform Specific Models
(PSMs), i.e., models that are
specified in some specific
implementation technology.

 Transform the PSMs to code.

OOAD 8. OCL & Timing Diagrams 4

MDA Elements

 Models are the basis of MDA.

 Models must be consistent and precise, and contain
as much information as possible.

 Modeling languages describe models.

 These languages must be well-defined to enable
automatic transformation.

 Transformation tools do the dirty work.

 PIM-to-PSM is more challenging than PSM-to-Code.

 Transformation definitions map one model to another.

 These definitions must be independent on the tools.

OOAD 8. OCL & Timing Diagrams 5

MDA Benefits

 Portability - PIMs can be transformed to
different PSMs.

 Productivity - developers work at a higher level
abstraction.

 Cross-platform interoperability - PIMs serve as
a bridge between different PSMs.

 Easier maintenance and documentation

 Maintaining PIMs is much easier than
maintaining code.

OOAD 8. OCL & Timing Diagrams 6

Maturity Levels

The maturity level indicates the gap between the
model and the system.

 Level 0: No specification - Everything is in mind.

 Level 1: Textual description - Informal English
description.

 Level 2: Text with Diagrams - Use diagrams to help
understanding.

 Level 3: Models with Text - Models have well-
defined meaning

 Level 4: Precise models - Precise enough to
enable automatic model-to-code transformation.

 Level 5: Models only - Code is invisible.

OOAD 8. OCL & Timing Diagrams 7

UML, OCL, and MDA

 UML uses diagrams to express software design.

 Diagrams are easier to understand, but many
properties cannot be expressed using diagrams
alone.

 The use of OCL (Object Constraint Language) can
add additional and necessary info to UML diagrams.

 OCL uses expressions that have solid mathematic
foundation but still maintains the ease of use.

 Combining UML and OCL is necessary to construct
models at maturity level 4 - models precise enough
to enable automatic model-to-code transformation.

 The application of MDA relies on Level 4 models.

OCL Language Description

(SOURCE: Object Constraint Language, OMG Spec. Ver.2.0, May 2006)

 OCL - a formal language that remains easy to read

and write

 OCL is a pure specification language - no side

effects (an OCL expression simply returns a value

and change anything in the model)

 OCL is not a programming but modeling language -

it is not possible to write program logic or flow

control in OCL

 The evaluation of an OCL expression is

instantaneous. This means that the states of objects

in a model cannot change during evaluation
OOAD 8. OCL & Timing Diagrams 8

OCL Context

 The context keyword introduces the context for the

expression – class, attribute, operation, operation parameter,

...

 The keyword inv, pre, and post denote the stereotypes,

respectively «invariant», «precondition», and

«postcondition» of the constraint.

 The actual OCL expression comes after the colon.

context TypeName inv:

'this is an OCL expression with stereotype <<invariant>>

in the context of TypeName’ = 'another string'
OOAD 8. OCL & Timing Diagrams 9

Invariants 1/2

 The OCL expression can be part of an Invariant

which is a Constraint stereotyped as an

«invariant».

 An OCL expression is an invariant of the type

and must be true for all instances of that type at

any time.

 All OCL expressions that express invariants are

of type Boolean.

OOAD 8. OCL & Timing Diagrams 10

Invariants 2/2

 in the context of the

Company type, the following

expression would specify an

invariant that the number of

employees must always

exceed 50:

context Company inv:

self.numberOfEmployees > 50

-- self is an instance of type

Company (refers to the

contextual instance)
OOAD 8. OCL & Timing Diagrams 11

context Company inv:

self.numberOfEmployees > 50

OOAD 8. OCL & Timing Diagrams 12

Omitting self

context Company inv:

self.numberOfEmployees > 50

context c : Company inv:

c.numberOfEmployees > 50

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

OOAD 8. OCL & Timing Diagrams 13

Named

constrant

Pre- and Postconditions

 The OCL expression can be part of a Precondition or

Postcondition, corresponding to «precondition» and

«postcondition» stereotypes of Constraint associated with

an Operation or other behavioral feature.

context Typename::operationName(param1 : Type1, ...):

ReturnType

pre : param1 > 5

post: result = 55

 The name self can be used in the expression referring to

the object on which the operation was called.

 The reserved word result denotes the result of the

operation, if there is one.
OOAD 8. OCL & Timing Diagrams 14

Objects and Properties

 OCL expressions can refer to Classifiers, e.g., types,

classes, interfaces, associations (acting as types), and

datatypes. Also all attributes, association-ends, methods,

and operations without side-effects that are defined on

these types, etc. can be used.

 OCL refers to attributes, association-ends, and side-effect-

free methods/operations as being properties. A property is

one of:

 an Attribute

 an AssociationEnd

 an Operation with isQuery being true

OOAD 8. OCL & Timing Diagrams 15

OOAD 8. OCL & Timing Diagrams 16

OCL (Object Constraint Language) –

The Mortgage Example

OOAD 8. OCL & Timing Diagrams 17

How to express constraints?

Can we express the following info on the diagrams?

1. A person may have a mortgage on a house only if
that house is owned by himself.

2. The start date for any mortgage must be before
the end date.

3. The social security number of all persons must be
unique.

4. A new mortgage will be allowed only when the
person’s income is sufficient.

5. A new mortgage will be allowed only when the
counter value of the house is sufficient.

OOAD 8. OCL & Timing Diagrams 18

context Mortgage

inv: security.owner = borrower

/* A person may have a mortgage on a house only if that

house is owned by himself.*/

OOAD 8. OCL & Timing Diagrams 19

context Mortgage

inv: startDate < endDate

/* The start date for any mortgage must be before the end

date.*/

OOAD 8. OCL & Timing Diagrams 20

context Person

inv: Person::allInstances() -> isUnique (socSecNr)

/* The social security number of all persons must be

unique.*/

OOAD 8. OCL & Timing Diagrams 21

context Person::getMortgage(sum: Money, security: House)

Pre: self.mortgages.monthlyPayment -> sum() <=

self.salary * 0.30

/* A new mortgage will be allowed only when the person’s

income is sufficient.*/

OOAD 8. OCL & Timing Diagrams 22

context Person::getMortgage(sum: Money, security:

House)

Pre: security.value >= self.mortgages.principal->sum()

/* A new mortgage will be allowed only when the counter

value of the house is sufficient.*/

OOAD 8. OCL & Timing Diagrams 23

Constraints Usage

 Avoid any potential misunderstandings

 Not everyone is aware of these constraints

 People may make different assumptions.

 Enable automatic model analysis/transform.

 Computer has no “intuition”.

 Software tools are possible only if the model

contains complete information.

 Document your design decisions.

OOAD 8. OCL & Timing Diagrams 24

Characteristics of OCL 1/2

 OCL is a constraint and query language

 A constraint is a restriction on one or more values

of a model.

 OCL can be used to write not only constraints, but

any query expression.

 It is proved that OCL has the same capability as

SQL.

 OCL has a formal foundation, but maintain the

ease of use.

 The result is a precise language that should be

easily read and written by average developers.

OOAD 8. OCL & Timing Diagrams 25

Characteristics of OCL 2/2

 OCL is strongly-typed

 This allows OCL expressions can be checked

during modeling, before execution.

 What is the benefit?

 OCL is a declarative language

 OCL expressions state what should be done, but

not how.

OCL

in VP

OOAD 8. OCL & Timing Diagrams 26

OCL for age and

setMeritalStatus

OOAD 8. OCL & Timing Diagrams 27

More about OCL

 UML 2.0 OCL Specification -

http://www.lri.fr/~wolff/teach-material/2008-

09/IFIPS-VnV/UML2.0OCL-specification.pdf

 The university model - An UML/OCL example

- http://dresden-

ocl.sourceforge.net/usage/ocl22sql/modelexplan

ation.html

 Verification of UML/OCL Class Diagrams

using Constraint Programming, by J. Cabot
OOAD 8. OCL & Timing Diagrams 28

Timing Diagrams

(UML 2.0)

Source for these slides:

Learning UML 2.0,

by Kim Hamilton, Russell Miles

...

Publisher: O'Reilly

Pub. Date: April 2006

OOAD 8. OCL & Timing Diagrams 29

 Interaction diagrams:

 sequence diagrams focus on message order

 communication diagrams show the links

between participants

 But: we need interaction diagrams to model

detailed timing information!

 In timing diagrams:

 each event has timing information associated

with it

Event Timing Information:

 Describes:

 when the event is invoked,

 how long it takes for another participant to

receive the event, and

 how long the receiving participant is expected

to be in a particular state.

 Event timing could be expressed within activity

diagrams (UML 2.x).

OOAD 8. OCL & Timing Diagrams 30

Time Events (slide from

previous lesson)

 A time event with no incoming flows models a

repeating time event

OOAD 7. State and Activity Diagrams 31

Need of Timing Diagrams

 Although sequence diagrams and

communication diagrams are very similar,

 timing diagrams add completely new information

 that is not easily expressed on any other form of

UML interaction diagram.

OOAD 8. OCL & Timing Diagrams 32

Introducing timing:

osciloscope views

OOAD 8. OCL & Timing Diagrams 33

A logic analyzer captures a sequence of events

as they occur on an electronic circuit board

Events and states on

timing diagrams

 On a timing diagram:

 events are the logic analyzer's signals, and

 states are the states that a participant is placed in

when an event is received.

OOAD 8. OCL & Timing Diagrams 34
Sample timing diagram for a mail server

Source: UML 2.0 in a Nutshell (O'Reilly).

From use case and

requirements…

Sample use case: Create a new Regular

Blog Account

Requirement A.2

 The content management system shall allow

an administrator to create a new regular blog

account, provided the personal details of the

author are verified using the Author

Credentials Database.
OOAD 8. OCL & Timing Diagrams 35

…To sequence diagrams –

sequential ordering…

OOAD 8. OCL & Timing Diagrams 36

Create a new Regular Blog Account interaction

…Through Adding Timing Constraints

in System Requirements…

Requirement A.2 (Updated)

 The content management system shall allow

an administrator to create a new regular blog

account within five seconds of the information

being entered,

 provided the personal details of the author

are verified using the Author Credentials

Database.

OOAD 8. OCL & Timing Diagrams 37

…To a Timing Diagram – first

define the Participants

OOAD 8. OCL & Timing Diagrams 38

Next – add States

OOAD 8. OCL & Timing Diagrams 39

States are

written

horizontally

on a timing

diagram and

next to the

participant

that they are

associated

with

Exact Time Measurements and

Relative Time Indicators

OOAD 8. OCL & Timing Diagrams 40

• Time measurements are

placed on a timing

diagram as a ruler along

the bottom of the page

• Relative time indicators

are particularly useful

when you have timing

considerations such as

"ParticipantA will be in

State1 for half of the time

that ParticipantB is in

State2"

The Participant's State-Line

1/2

OOAD 8. OCL & Timing Diagrams 41

The Participant's

State-Line 2/2

 Create a new Regular Blog Account timing

diagram - updated to show the state of each

participant at a given time during the interaction.

 p1:Participant's state-line indicates that it is in

State1 for 1 unit of time, State2 for three units of

time, and State3 for roughly five units of time

(before returning to State1 at the end of the

interaction)

 In practice, you would probably add both events

and states to a timing diagram at the same time.
OOAD 8. OCL & Timing Diagrams 42

OOAD 8. OCL & Timing Diagrams 43

Create a new Regular

Blog Account timing

diagram

(the single t value

below represents a

single second

wherever it is

mentioned on any

further timing

constraints on the

diagram)

Adding events and

messages

OOAD 8. OCL & Timing Diagrams 44

Events on a timing diagram can even have their own durations, as shown

by event1 taking 1 unit of time from invocation by p1:Participant1 and

reception by p2:Participant2

Participant

state

changes

make much

more sense

when you

can see the

events that

cause them

OOAD 8. OCL & Timing Diagrams 45

Timing Constraints

OOAD 8. OCL & Timing Diagrams 46

Timing constraints can be associated with an

event or a state and may or may not be

accompanied by constraint boundary arrows

Timing Constraints Format

OOAD 8. OCL & Timing Diagrams 47

Timing

Constraint
Description

{t..t+5s} The duration of the event or state should be 5 seconds or less.

{<5s}
The duration of the event or state should be less than 5 seconds.

This is a slightly less formal than {t..t+5s}.

{>5s, <10s}
The duration of the event or state should be greater than 5

seconds, but less than 10 seconds.

{t}
The duration of the event or state should be equal to the value of

t. This is a relative measure, where t could be any value of time.

{t..t*5}

The duration of the event or state should be the value of t

multiplied 5 times. This is another relative measure (t could be

any value of time).

OOAD 8. OCL & Timing Diagrams 48

From when the

:Administrator

clicks on submit

until the point at

which the

system has

created a new

account, no

more than five

seconds have

passed

OOAD 8. OCL & Timing Diagrams 49

• The regular timing

diagram notation (over)

does not scale well

when you have many

participants that can be

put in many different

states during an

interaction's lifetime.

• If a participant is

placed in many different

states during the course

of the interaction, then it

is worth considering

using the alternative

notation (below).

OOAD 8. OCL & Timing Diagrams 50

Note:

the alternate

notation is more

compact and

manageable in a

situation where

there are many

states per

participant

Conclusions
 Interaction timing is most commonly associated with real-time

or embedded systems, but it certainly is not limited to these

domains.

 In a timing diagram, each event has timing information

associated with it that accurately describes:

1. when the event is invoked,

2. how long it takes for another participant to receive the event, and

3. how long the receiving participant is expected to be in a particular

state.

 Although sequence diagrams and communication diagrams

are very similar, timing diagrams add completely new

information that is not easily expressed on any other form of

UML interaction diagram.
OOAD 8. OCL & Timing Diagrams 51

