Designing the System
Architecture

Layers

Subsystems

Variants

Mapping the Data Model
Examples

Software Architecture

Software architecture encompasses:

e the significant decisions about the organization of a
software system,

o the selection of the structural elements and their interfaces
by which the system is composed together with their
behavior as specified in the collaboration among those
elements,

e the composition of the structural and behavioral elements
into progressively larger subsystems,

e the architectural style that guides this organization, these
elements and their interfaces, their collaborations, and
their composition.

OOAD 10. Designing the System Architecture 2

Systems and Subsystems

System - an instance, an executable configuration of a
software application or of a software application family.

Subsystem - a model element which has the semantics
of a package, such that it can contain other model
elements, and class/classes, thus having its own behavior.

OOAD 10. Designing the System Architecture 3

System Coupling

e Decomposable system - One or more of the components of
a system have no interactions or other interrelationships with
any of the other components at the same level of abstraction
within the system

e A nearly decomposable system - Every component of the
system has a direct or indirect interaction or other
interrelationship with every other component at the same level
of abstraction within the same system

e Design Goal - The interaction or other interrelationship
between any two components at the same level of abstraction
within the system be as weak as possible

10. Designing the System 4 OOAD
Architecture

Measure of the modular
Interdependence

e Unnecessary object coupling:

needlessly decreases the reusability of the coupled
objects

Increases the chances of system corruption when
changes are made to one or more of the coupled
objects

10. Designing the System 5 OOAD
Architecture

Cure:
Decompose the
operation into
multiple primitive
operations

Types of Modular Coupling
In order of desirability

Data Coupling (weakest most desirabl
module is the input to another

Control Coupling - passing con
that one module controls th
steps in another module.

Global Data Coupling - two or more modules share the same
global data structures

Internal Data Coupling (strongest least desirable) - One module
directly modifies local data of another module (like C++ Friends)

Content Coupling (unrated)- some or all of the contents of one
module are Included in the contents of another (like C/C++
header files)

tput from one

ags between modules so
guencing of the processing

10. Designing the System 6 OOAD
Architecture

System Cohesion

e Cohesion — degree of functional relatedness

petween (sub) systems

f there are many objects related to each other and
nerforming similar tasks — high cohesion

f there are many objects not related to each other —

OOAD

ow cohesion

10. Designing the System Architecture 7

Source: 1) Object Coupling and Db'@r‘ ®
Cohesion, chapter 7 of Essays on OQbjgsigQ@ented

CO h eS I O n fg;t:\;\;are Engineering, Vol 1, Berard, F:e.tice—HaII,
_ 2) SDSU & Roger Whitney,

e "Cohesion is the degree to which the tasks performed by|a

single module are functionally related.” IEEE, 1983

e "A software component is said to exhibit a high degree of
cohesion if the elements in that unit exhibit a high degree of
functional relatedness. This means that each element in the
program unit should be essential for that unit to achieve its
purpose.” Sommerville, 1989

e Types of Module Cohesion
Coincidental (worst)
Logical
Temporal
Procedural
Communication
Sequential
Functional (best)

10. Designing the System 8 OOAD
Architecture

Low cohesion example — Bruegge &

Duttoit’2004

—— S—
”/ N\\\\
DecisionSubs y:‘.:m\’ S
/I AJ
/ .] assesses | : I
/ Criterion — g Option | \\
: * *| w* 1
I
N /
N | | 4
N
RN . solvableBy | | ¢~
___..-——----“ttQE_S_"'EHPFDWEmJ ~ .- based-on
1o 1 *~?f_§T_::—=-_I;§_-‘vaeatw’
-7 | SubTask - S . —
‘ K T~ pecision |
AN \ _
\]
- \
| (.
I . - -
' |"“‘ 1 J / implementedBy
| ActionItem Task R
N - . subtasiks
\\ 7/
\\\ ”’/
sl:- —— _——_ ’,’
Figure 6-6 Decivion racking system (UML class diagram). The Decisiondubsysten has a low cohesion:

The classes Criterion. Option, and DesignProblem have no relationships with Subtask. Actionltem,

Cand Task.

Architectural Layers

Layering represents an ordered grouping of functionality:
« with the application-specific located in the upper layers,
« functionality that spans application domains in the middle
layers, and

« functionality specific to the deployment environment at the
lower layers.

A layered structure:

« starts at the most general level of functionality, and
« grows towards more specific levels of functionality.

OOAD 10. Designing the System Architecture 10

Architectural Layers Structure

Disgtinct application subsystemthat
make up an application - contains the

value adding software developed by the
Organizaton

Business specific - contains a number
of reusable sybsysteme specific tothe
type of hEness.

Middleware - offers subsystens for utiity
dasses and platformindependent senices
for distributed object computing in
heterogeneous ervironments andso on.

Syrstemn software - contains the software for
the actual nirastnucure such as operating
srstemes, interfaces 1o speciiic hardwa e, device
drivers amnd so on.

OOAD 10. Designing the System Architecture 11

Subsystems Can Be Organized -4
in Layers EE:'

The top layer, application layer, contains the application specific serVices.
The business-specific layer, contains business specific components.

The middleware layer contains components such as GUI-builders, interfaces
to DB, platform-independent operating system services, and OLE-components.

The system software layer, contains components such as OS, HW interfaces,
etc.

Tl
(L T=To k- RTIE wl la
T s el 1 r s - _ _
A ot ALz it
Ea nh ning Teleplte e PAST S e T s 1t Aippilication =
I T R B, < FEChu ol — i
L3 m ez o t Tra dimng BEBEusiness-
FPAEME o= m o= FAa magem =t Eoardaca it u B =l mel | T B
=d Ei iy P P LEE FaIladHamal =
PAE Mag =m =rh CEta o o A id dl eEvrEane
S nilEm PAar:E o= m = rnh
—I l—';:-F _ﬁ.:- -"'---- st --------- ";}—I --a
s r@ Hriog Ee tarm al Sy SsSterTn
5 b m E:'D.;?ED.".'-."'_ o Tiwvrarne

An example of a layered implementation model for a banking system. The
arrows shows top-down import dependencies between subsystems.

OOAD 10. Designing the System Architecture 12

Packages

A package is a collection of use cases & their diagrams (use.case
packages), of classes/relationships/ diagrams (design packages),
of components (/mplementation packages) and of other packages;
it is used to structure the design model by dividing it into smaller
parts. Packages are used primarily for model organization and
typically serve as a unit of configuration management.

1

Lpper
Lawver

- \

Faclkage .- Fackage B Lowvwer

Layer

>v<’) FPackage 2 T
o

a b FRackage B

Packages should not be cross-coupled (i.e. co-dependent)

Packages should only be dependent upon packages in the same layer or
next lower layer

OOAD 10. Designing the System Architecture 13

Hierarchical Decomposition

A hierarchical decomposition of a system yields an ordered set of layers. A layer 1s a
grouping of subsystems providing related services, possibly realized using services from another
layer. Layers are ordered in that each layer can depend only on lower level layers and has no
knowledge of the layers above it. The layer that does not depend on any other layer s called the
bottom layer, and the layer that is not used by any other is called the top layer (Figure 6-8). In a
closed architecture, cach layer can access only the layer immediately below it In an open
architecture,' a layer can also access layers at deeper levels.

)
| A:Subsystem Layer 1 (Top)
F m
| B:Subsystem | C:Subsystem | | D:Subsystem | Layer 2
) — e
|[E:Subsystem |_| | F:Subsystem i G:Subsystem | Layer 3 (Bottom)

Figure 6-8 Subsysiem decomposition of a system into three layers (UML object diagram). -"'h 5"-"3'5_*?' from
a lavered decomposition that includes at least one subsystem from cach laver is called a vertical slice. For

example, the subsystems A, B. and E constitute a vertical slice, whereas the subsystems D and G do not. 14

Example of closed system [Bruegge
& Duttoit’2004]

Application
i

X

Presentatian - Object
. —_—
: . ™ CORBA
h
Sessian e~
|
i _
Transportc - Socket]
.
e
i —
NeTwork b= TCP/IP

| r
d LY x .

Datal 1k

[
!
Physical e — — Exhernet

Wire

S

Figure 6-10 An example of closed architecture (ML class diagram). CORBA cnables the access of
objects implemented in different languages on differemt hosis. CORBA effectively implements the

Presantation and 5essicon layvers of the OS51 srack.
OOAD 10. Designing the System Architecture 15

Example of open system [Bruegge &

_Duttoit’2004]
f_\ .ﬂ.pp'l"i-:::r.icrn

Lol |

|

. i
Swing 5
' |

|

e e e e —

Figure 6-11 Anexample of open architecture: the Saing user interface library on an X131 platform (UML
class I.ﬁ‘il;:l'ﬂﬂ:h Fﬂ.:'.'.;_;.;::,. I.'lJ-HﬂP."-I:I.”. N1t [l!l'l.!lﬂdﬂ low-level ﬂﬂ!"‘i’il‘lﬂ facilities. AWT 15 the Jowsjevel e ace
provided by Java 1o shicld programmers from the window syslem. Swing provides a large number of
sophisticaied wser interface objects, Some Applications often bypass the Swing laver.

OOAD 10. Designing the System Architecture

e R

16

System Variants

Many systems are delivered in more than one variant. This means
that the system is configured, packaged and installed differently
for different (classes of) customers.

a) different languages

b) different platforms: in the example below, the
platform-specific code is located in one subsystem. A compilation
file (a 'makefile') specifies which version of each source code file

should be compiled together.

OOAD 10. Designing the System Architecture 17

System Variants for
Different Platforms

“arnant fonariant for
Unix YWindows

OOAD

Build for Unix

Applications - =

Business-
specific

Middleware

System

software

J J“J I

Build for

YWindo w

10. Designing the System Architecture

A2pplications

Business-
specific

Middleware

System
software

Applications

Business-
specific

Middleweare

term
nghvare

18

System Variants — cont.

=i =Arat =2

A

~=mri=arat 1

Te==1k=r
e ey e o | H oy) o
Fel Ot =T

Al c=tiaomn =

Boa=mineaa———
== A

g B e P | R g

==t =rm

=0T =m e =

c) different parts of the system - for example, a
banking system is delivered as two different products. Variant 1 of
the system, contains everything about telephone banking; and
variant 2, contains everything about teller account management T

d) variant components |

Feport PManagem aent
C~arimant 11

| clentical

reportcGe rerastor.cpp
==fle==

S
== il &=

ﬁ.h

== file==

—

IInigque for «wariant 1

OOAD

Feport Managem aent
~~ariant 17

Comparients

10. Designing the System Architecture

repoGaenasratar.cpp
==file==

==fl==

IImnigque for wariant =2

Software Architecture
Document

‘ IT
Software

Architecture
Document

The Software Architecture Document
provides a comprehensive
architectural overview of the system,
using a number of different
architectural views to depict different
system aspects.

OOAD

10. Designing the System Architecture 20

The seven levels of software
architecture’
Global architecture

: . © © O (OO architecture
Corporative architecture
ORB Subsystems
© O O

System architecture — @H&

Applied archltecture

/ Applied software frameworks
Macro-architecture

Software OO design patterns

Micro-architecture —— -0 ‘:

Objects Q00O

OO programming
* Mowbray and Malveau, 1997

Architectural Style

- Defines a family of systems by means of
pattern for structural organization. In other
words, it defines:

e Component dictionary and types of
connecting elements

e Set of restrictions and how we can combine
them

e One or more semantic models specifying how
to determine common system properties
based on the properties of its building blocks.

OOAD 10. Designing the System Architecture 22

Repository Style [Bruegge &
Duttoit’2004]

In the repository architectural style (see Figure 6-12), subsystems access and modify 3
single data structure called the central repository. Subsystems are relatively independent and
interact only through the repository. Control flow can be dictated either by the central repository
(¢.2., triggers on the data invoke peripheral svstems) or by the subsystems (e.g., independent
Aow of control and synchronization through locks in the repository).

Repositary

Subsystem —|‘ ————— createData()

setData()
getDatal)
| searchData()

Figure 6-12 Repository architectural sryvle (UML class diagram). Every Subsystem depends enly on a
central data structure called the Repository. The Repository has no knowledge of the other Subsystems.
OOAD 10. Designing the System Architecture 23

Repository Style [Bruegge &
Duttoit’2004]

Corpiler HH

' SemanticAnalyzer

i SyntacticAnalyzer _J l ¥

—_—]
| " =
| - 7 A Optimizer
| F s
‘. LexicalAnalyzer oo " CodeCenerator ,
. e - = - ~~I- (] ; rf

e N P

. i
J.r"' Repositary \\.L-ﬁi_ r"'_; l.."f

FarseTree 1 L SyrbolTable
> <
—, il - ! L\ H‘"ﬁ-
SourcelLevelCebugger ! l SyntacticEditor

Figure 6-13 An instance of the repository architectural siyle (UML <lass diagram). A Compiler
incrementaliv generates 3 ParseTree and 3 Symbo1Table that ¢an be uied by ScurcelevelDebuggers and
SynTaxEditors.

OOAD 10. Designing the System Architecture 24

MVC Style [Bruegge & Duttoit’2004]

In the Model/View/Controller (MVC) architectural style (Figure 6-14), subsystems are
classified into three different tvpes: model subsystems mainlain domain knowledge, view
?uhsyswms display it 10 the user, and controller subsystems manage the sequence of
interactions with the user. The model subsysiems are developed such that they do not depend on
any view or controller subsystem. Changes in their state are propagated 1o the view subsysiem
via a subscribe/notify protocol. The MVC is a special case of the repository where Model
implements the central data structure and control objects dictate the control flow.

— —
e = —

| Controller | initiator repository Model |

[— [* 11 I

linotifier

subscriber
!]

_ i — e

Figure 6-14 ModelView/Controller architectural stvle (UML class diagram). The Controller gathers
gt from the user and wends messages to the Mode 1. The Model maintains the central data structure. The
Views dicplay the Model and are notified (via a subscribe/notily protocol)d whenever the Mode is changed.

OOAD 10. Designing the System Architecture 25

Client-Server Style [Bruegge &

Duttoit’2004]

Client

LErwer
- -
FEQUes T e Prowider| Servi I:-ILE;
servicel

__serviceN()

Figurc 6-17 Clicntssmoer architectural stvle (UAL ¢lass diagram) Clients reguesl services fhoom odne of
more Servers. The Server has no knowiledge of the Cl1ient. The clicntfsener architectural sivle is a

speialization of the ropository arc hitectural sy Be.

An information system with a central Jdatabase is an example of a clicntfserver
architectural stvle. The clients are responsible for receiving inputs from the user. performing
range checks. and initiasting database transactions when all necessary data are collected. The
server is then responsible for performing the transaction and guarantccing the integrity of the
data. In this case, a clieoVserver architectural style is a special case of the rcposilony
architectural sivle in which the central data structure is managzed by a process. Clicnufserver
syvitems. however, are not restricted 1o a single server. On the World Wide Web. a single clicmt

can easily access data from thousands of different servers (Figure 6-18).

I nerscapeé:webBrowser

Torer:x r

mosaic-wWebBrowmser

S |

e

e TS =

—'_'_"_._._

OOAD

10. Designing the System Architecture

26

Peer-to-Peer Style [Bruegge &
Duttoit’2004]

L rEegueESTEr
S reaue

—

servicel{
serviced(

serviceN(d g WL

e

Figure 6-19 Peer-to-peer architeciural siyle (UML class diagram). Peers can request semviccs from. and
provide semvices i other poors.

An example of a pecr-to-peer architectural style is a dawabase that both accepts requesis
from the application and notifies 1o the application whenever cemain data are changed
(Figure 6-20). Pecr-to-peer systems are more difficult wo design than clienuserver systems
because they introduce the possibility of deadlocks and complicate the control flow.

Callbacks are opcrations thal are temporary and customized for a specific purpose. For
example, 4 OBUser peer in Figure 6-20 can tell the DBMS peer which operation o 1 invoke upon a
change notification. The DEUser then uses the callback operation specified by each DEBUser for
notification when a change occurs. Peer-io-peer systems in which a “server” peer invokes
“client™ pecrs only through callbacks are often referred 10 as clienl/server sysiems, even though
this is inaccurate since the “scrver™ can also initiate the control Aow.

|‘|—'———"‘— 1

applicationl: DBUsSEr

1. wpdateDatadl)

: |
| database DEMS 1
E' _-_‘H. . _2 'B] 2. norify{change)
applicaciond - r
 —

OOAD 10. Designing the System Architecture 27

Tree (Four) Tier Style [Bruegge &
Duttoit’2004]

Interface Form
|
1
Application logic Connection
|
'
Storage Query

Figure 6-21 Three-tier architectural style (UML class diagram). Objects are organized into three layers
realizing the user interface, the processing, and the storage,

OOAD 10. Designing the System Architecture 28

Pipe and Filter Style [Bruegge &
Duttoit’2004]

Presentation Client [WebBrowser
¢ —
Presentation Server r_ Form
1 l .
.I' —_—
Application Lagic I Connection 1
—T —
T ——
Storage Query i

Figure 6-22 Four-tier architectural sivle (UML class diagram). The Interface layer of the three-tier style
15 split into 1w layers to enable more variabilily on the user interface stvle.

- — " input output 1
Filter Fipe

T gutput input 1=

Figure 6-2.'1. Fipe and filier architeciural style (UML class diagram). A F11ter can have many inputs and
outputs. A Pipe connects ane of the cutpuls of a Filter 1o one of the inputs of another Filter.

Subsystems
(filters)
process data
received from
other
subsystems
and send
them via pipes
(associations
b/n
subsystems).

29

Software Architecture
Document may include:

. Objectives

. Scope - what it applies to

. References

. Architectural Representation

. Architectural Goals and Constraints
. Use-Case View

Logical View

. Process View

. Deployment View

10 Implementation View

11. Data View (optional)

12. Size and Performance

13. Quality: extendibility, reliability, portability

OOAD 10. Designing the System Architecture

OONOUTDAWNR

30

The Data Model

The data model is a subset of the
Implementation model which describes the
e = Rl logical and physical representation of
persistent data in the system. It also includes
any behavior defined in the database, such as
stored procedures, triggers, constraints, etc.

A top-level Package stereotyped as «data
model», containing a set of Components which
UML representation | 'EPresent the physical storage of persistent data
In the system.

A Data Model is a description of the persistent data storage perspective
of the system. This section is optional if there is little or no persistent data,
or trivial translation between the Design and Data Model.

OOAD 10. Designing the System Architecture 31

owned by the packages.

| X N J
_ o000
Data Model Properties oo
Name Brief Description UML Representation
Packages The packages used for Owned via the association "represents”, or
organizational grouping purposes. | recursively via the aggregation "owns".
Tables The tables in the data model, Components, stereotyped as <<table>>.

Relationships

The relationships between tables in
the model.

Associations, stereotyped as <<foreign

key>>.

Columns The data values of the tables. Attributes, stereotyped as <<column>>.,

Diagrams The diagrams in the model, owned | -" -
by the packages.

Indexes Event-activated behavior Components, stereotyped as <<index>>.
associated with tables.

Triggers Event-activated behavior Operation, stereotyped as <<trigger>>.
associated with tables.

Procedures Explicitly invoked behavior, Component, stereotyped as <<procedure>>.
associated with tables or with the
model as a whole. -

OOAD 10. Designing the System Architecture

The Relational Model

The relational model is composed of entities and relations+An
entity may be a physical table or a logical projection of several
tables also known as a view.

An entity has columns and records or rows. Each entity has one
or more primary keys. The primary keys uniquely identifies each
record. Foreign key columns contain data which can relate specific
records in the entity to the related entity.

In the physical model relations are typically implemented using
foreign key / primary key references. Relations have multiplicity
(also known as cardinality). Common cardinalities are 1:1, 1:m, m:1,
and m:n.

r’_-:::-RDER

Lir=Itex_ T4 Description
1xtiber .
| o T, Eup IirteIlt=exns

IinetIt=r Crde I4
cxder Bl (PRODUCT
Craanmitite IDate_ &Svwvwailablde
3

LINEITEM

The Object Model

The object model contains classes defining the structure and
behavior of a set of objects; sometimes called objects instances.
The structure is represented as attributes (data values) and
associations (relationships between classes). Supports
inheritance. The following figure illustrates a simple class
diagram model, showing only attributes (data) of the classes.

Crder Lineltermrm

+linelterms=s i -
Eznumber - Integer [<= = %ﬁﬂfﬂﬁélg-_ Integer
+~order 1.] d

+product 1..1

Froduct

lﬂ:}nur‘r‘uber: Integer
Sedescription 1 String
Srunit price - Doukble

PN

SoftewareFroduct HardwwareFroduct
Seversion - Double Srassermbly - String

OOAD

AV, UTIOIYIHIY UIT OYyOLCHi MIVIHHIICULUIC 34

Persistence Frameworks

The role of the object-relational framework is to generically
encapsulate the physical data store and to provide appropriate
object translation services.

BFioasirnie=s=

= cormnpact amterf=aos
= ohiject-r=laticorxnal tran=1laticxr
= orxroapsualates data stoxrs

Application developers spend over 30% of their time implementing
relational DB access in OO applications. Implementing an object-
relational framework captures this investment. The object-relational
framework can be reused in subsequent applications reducing the
object-relational implemeqotggjgﬂhegyggng to less than 10% of the tota
implementation costs.

Mapping Persistent Classes to Tables

In a relational database written in third normal form,

every row in the tables — every "tuple" — is regarded as
an object. A column in a table is equivalent to a
persistent attribute of a class. So, in the simple case
where we have no associations to other classes, the
mapping between the two worlds is simple. The data
type of the attribute corresponds to one of the
allowable data types for columns.

Custormer
Eename ;. String
Eeaddress - String
EecustomerlD © String

Hew Customer Object Table

Hame Customer |0 —— Attributes from the

Object | underlying object
Instance Ward Tech Comm | w123456 type

OOAD 36

Mapping Associations between Persistent Objects

Associations between two persistent e
objects are realized as foreign keys to
the associated objects. A foreign key

1..1

IS @ column in one table which contains P y—
the primary key value of associated = el e

. SEecustarmearlD - String
object.

When we map this into relational tables, we get an Order table
and a Customer table. The Order table will have columns for
attributes listed, plus an additional column Customer_ID which
contains foreign-key references to associated rows in the Customer
table. For a given Order, the Customer_ID column will contain the
identifier of the Customer to whom the Order is associated.

Foreign keys allow the RDBMS to join related information together.

OOAD 10. Designing the System Architecture 37

Mapping of 1:N association
[Bruegge & Duttoit’2004]
R

1]
yomre—

Leaguc table

LeagueQwner lable —
[id:long vam
kllong red
s |

Fipure 10-19 Mapping of the Leag seOuner/League association as a buried association.

OOAD 10. Designing the System Architecture

38

(XX
Mapping of M:N association -
[Brueg_ge & Duttoit’2004] .
.:Tnm:;namini- 2 - - L____[P'm';.*tr ‘
Tournameni 1able Tﬂumlnlﬂﬁlﬂ_jill':ﬂfm—k‘iﬂi““ table ITE“}"ET luble
!1I nome . 'l... tnuTlnmi | plaver id n:ll_m: | e |
| M noviee B .'.23 o S ._.'i-ﬁ-_‘ alice |
A :xpﬂ'l -I [| B 21 k) 74 l ju.hn | |

Fipure 1020 Mapping of the Tournament,/Player asseciation as a separate 1able,

OOAD 10. Designing the System Architecture 39

Mapping Aggregation Associations to the Data Maod

Aggregation is also modeled using foreign key relationships.

=000

g0

When we map this into relational tables, we get an Order table
and a Line_Item table. The Line_Item table will have columns for
attributes listed, plus an additional column Order_ID which
contains foreign-key references to associated rows in the Order
table. For a given Line Item, the Order_ID column will contain
the Order_ID of the Order that the Line Item Is associated with.
Foreign keys allow the RDBMS to join related information

together.

arder

SEenumber : Integer

OOAD

+linelterms=

-‘I__‘.'.—

10. Designing the System Architecture

Linelterm

SEequantity - Integer
Senurmber ; Integer

40

Modeling Inheritance and Many-to-Many -4
Associations oo

The standard relational data model does not support modeling
inheritance associations in a direct way but:
. Use separate tables to represent the super-class and sub-class.
Have, in the sub-class table, a foreign key references to the super-
class table.

. Duplicate all inherited attributes and associations as separate
columns in the sub-class table. This is similar to de-normalization
in the standard RDBS.

A standard technique in relational modeling is to use an
Intersection entity to represent many-to-many associations. The
same approach should be used here: an intersection table should be
used to represent the association.

Example: If Suppliers can supply many Products, and a Product

can be supplied by many,Suppliers. the.solution is to createa
Supplier/Product table.

