
A graph with two cuts. The dotted line
in red is a cut with three crossing
edges. The dashed line in green is a
min-cut of this graph, crossing only
two edges.
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In computer science and graph theory, Karger's algorithm is a randomized algorithm to
compute a minimum cut of a connected graph. It was invented by David Karger and first
published in 1993.[1]

The idea of the algorithm is based on the concept of contraction of an edge  in an
undirected graph . Informally speaking, the contraction of an edge merges the
nodes  and  into one, reducing the total number of nodes of the graph by one. All other
edges connecting either  or  are "reattached" to the merged node, effectively producing
a multigraph. Karger's basic algorithm iteratively contracts randomly chosen edges until
only two nodes remain; those nodes represent a cut in the original graph. By iterating this
basic algorithm a sufficient number of times, a minimum cut can be found with high
probability.
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The global minimum cut problem

A cut  in an undirected graph  is a partition of the vertices  into two non-empty, disjoint sets .
The cutset of a cut consists of the edges  between the two parts. The size (or weight) of a cut in an
unweighted graph is the cardinality of the cutset, i.e., the number of edges between the two parts,

There are  ways of choosing for each vertex whether it belongs to  or to , but two of these choices make  or  empty
and do not give rise to cuts. Among the remaining choices, swapping the roles of  and  does not change the cut, so each cut is
counted twice; therefore, there are  distinct cuts. The minimum cut problem is to find a cut of smallest size among
these cuts.

For weighted graphs with positive edge weights  the weight of the cut is the sum of the weights of edges between
vertices in each part

which agrees with the unweighted definition for .

A cut is sometimes called a “global cut” to distinguish it from an “ -  cut” for a given pair of vertices, which has the additional
requirement that  and . Every global cut is an -  cut for some . Thus, the minimum cut problem can be
solved in polynomial time by iterating over all choices of  and solving the resulting minimum -  cut problem using the
max-flow min-cut theorem and a polynomial time algorithm for maximum flow, such as the Ford–Fulkerson algorithm, though this
approach is not optimal. There is a deterministic algorithm for the minimum cut problem with running time 
.[2]



Contraction algorithm

The fundamental operation of Karger’s algorithm is a form of edge contraction. The result of contracting the edge  is
new node . Every edge  or  for  to the endpoints of the contracted edge is replaced by an edge

 to the new node. Finally, the contracted nodes  and  with all their incident edges are removed. In particular, the
resulting graph contains no self-loops. The result of contracting edge  is denoted .

The contraction algorithm repeatedly contracts random edges in the graph, until only two nodes remain, at which point there is
only a single cut.

Successful run of Karger’s algorithm on a 10-vertex graph. The minimum cut has size 3.

   procedure contract( ):
   while 
       choose  uniformly at random
       
   return the only cut in 

When the graph is represented using adjacency lists or an adjacency matrix, a single edge contraction operation can be
implemented with a linear number of updates to the data structure, for a total running time of . Alternatively, the
procedure can be viewed as an execution of Kruskal’s algorithm for constructing the minimum spanning tree in a graph where the
edges have weights  according to a random permutation . Removing the heaviest edge of this tree results in two
components that describe a cut. In this way, the contraction procedure can be implemented like Kruskal’s algorithm in time

.

The random edge choices in Karger’s algorithm correspond to an
execution of Kruskal’s algorithm on a graph with random edge ranks
until only two components remain.

The best known implementations use  time and space, or  time and  space, respectively.[1]

Success probability of the contraction algorithm

In a graph  with  vertices, the contraction algorithm returns a minimum cut with polynomially small

probability . Every graph has  cuts,[3] among which at most  can be minimum cuts. Therefore, the success

probability for this algorithm is much better than the probability for picking a cut at random, which is at most 

For instance, the cycle graph on  vertices has exactly  minimum cuts, given by every choice of 2 edges. The contraction

procedure finds each of these with equal probability.



10 repetitions of the contraction
procedure. The 5th repetition finds the
minimum cut of size 3.

To establish the bound on the success probability in general, let  denote the edges of a specific minimum cut of size . The
contraction algorithm returns  if none of the random edges belongs to the cutset of . In particular, the first edge contraction
avoids , which happens with probability . The minimum degree of  is at least  (otherwise a minimum degree
vertex would induce a smaller cut), so . Thus, the probability that the contraction algorithm picks an edge from  is

The probability  that the contraction algorithm on an -vertex graph avoids  satisfies the recurrence ,

with , which can be expanded as

Repeating the contraction algorithm

By repeating the contraction algorithm  times with independent random

choices and returning the smallest cut, the probability of not finding a minimum cut is

The total running time for  repetitions for a graph with  vertices and  edges is
.

Karger–Stein algorithm

An extension of Karger’s algorithm due to David Karger and Clifford Stein achieves an
order of magnitude improvement.[4]

The basic idea is to perform the contraction procedure until the graph reaches  vertices.

   procedure contract( , ):
   while 
       choose  uniformly at random
       
   return 

The probability  that this contraction procedure avoids a specific cut  in an -vertex graph is

This expression is  becomes less than  around . In particular, the probability that an edge from 

is contracted grows towards the end. This motivates the idea of switching to a slower algorithm after a certain number of
contraction steps.

   procedure fastmincut( ):
   if :
       retu rn mincut( )
   else:
       
        contract( , )
        contract( , )
       return min {fastmincut( ), fastmincut( )}



Analysis

The probability  the algorithm finds a specific cutset  is given by the recurrence relation

with solution . The running time of fastmincut satisfies

with solution . To achieve error probability , the algorithm can be repeated 

times, for an overall running time of . This is an order of magnitude improvement over Karger’s

original algorithm.

Finding all min-cuts

Theorem: With high probability we can find all min cuts in the running time of .

Proof: Since we know that , therefore after running this algorithm  times The probability of

missing a specific min-cut is

.

And there are at most  min-cuts, hence the probability of missing any min-cut is

The probability of failures is considerably small when n is large enough.∎

Improvement bound

To determine a min-cut, one has to touch every edge in the graph at least once, which is  time in a dense graph. The
Karger–Stein's min-cut algorithm takes the running time of , which is very close to that.
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