
The Engineering

Process

Software Development Process

Unified Process

Round-Trip Engineering

Reverse Engineering

Examples

The software development

process

 The software development process is the process of

dividing software development work into distinct phases to

improve design, product management, and project

management.

 Known as well as a software development life cycle.

 The methodology may include the pre-definition of

specific deliverables and artifacts that are created and

completed by a project team to develop or maintain an

application.

OOAD The Engineering Process 2

Source: Suryanarayana, Girish (2015). "Software

Process versus Design Quality: Tug of War?". IEEE

Software. 32 (4): 7–11.

OOAD 3

The SW Dev. Process Itself

New or changed

requirements

New or changed

system

Software Engineering

Process

What Is a Process?

 DefinesDefines Who is doing What, When to do it, and How
to reach a certain goal.

The Engineering Process

Phases of Software Development

– Analysis

 Requirements analysis - specifying the functional capabilities

needed in the software. Use-cases are an important tool for

communication about requirements between software developers

and their clients.

Products: software requirements documents for the software

Objectives: capture the client's needs and wants

 Domain analysis - developing concepts, terminology, and

relationships essential to the client's model of the software and its

behavior. Conceptual-level class diagrams and interaction diagrams

are important tools of domain analysis.

Products: client-oriented model for the software and its components

Objectives: capture the client's knowledge framework

 OOAD The Engineering Process 4 Source: G. Shute, UMN

Phases of Software Development

– Design
 Client-oriented design - specifying components of the software that

are visible to the client and its' behavior in terms of their attributes,

methods, and relationships to other components. Specification-level

class diagrams and interaction diagrams are important tools here.

Products: client-oriented specifications for components

Objectives: define the structure of interactions with the client,

providing methods that satisfy the client's needs and wants,

operating within the client's knowledge framework

 Implementation-oriented design - determining internal features and

method algorithms for the software.

Products: implementation-oriented specifications for components

Objectives: define internal structure and algorithms for components

that meet client-oriented specifications
 OOAD The Engineering Process 5 Source: G. Shute, UMN

Phases of Software Development –

Implementation and Integration

 Implementation - writing and compiling code for the individual

software components.

Products: source/binary code for software components and their test

software

Objectives: to produce coded components that accurately implement

the implementation-oriented design

 Integration - putting the software components into a context with

each other and with client software.

Products: software integration tools (https://code-maze.com/top-8-

continuous-integration-tools/)

Objectives: test the software components in the context in which they

will be used

OOAD The Engineering Process 6 Source: G. Shute, UMN

https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/

Phases of Software Development –

Packaging

 Packaging - bundling the software and its documentation into a

deliverable form.

Products: software and documentation in an easily installed form

Objectives: to manage the software in an efficient way

OOAD The Engineering Process 7 Source: G. Shute, UMN

Ongoing Activities in Software

Development 1/2

 Risk analysis - management activities that attempt to identify

aspects of the development process that have a significant chance of

failing.

 Planning - management activities that determine the specific goals

and allocate adequate resources for the various phases of

development. Resources include time, work and meeting space,

people, and developmental hardware and software. Risk analysis can

be viewed as preparation for planning.

OOAD The Engineering Process 8 Source: G. Shute, UMN

Ongoing Activities in Software

Development 2/2

 Verification - activities directed at ensuring that the products of the

various phases of development meet their objectives. Testing is an

important part of verification that takes place during implementation

and integration. There are two kinds of testing:

 Black-box testing is testing how software meets its client-oriented specifications,

without regard to implementation.

 White-box testing uses knowledge of implementation to determine a testing plan

that all paths of control have been exercised.

 Documentation - providing instructions and information needed for

the installation, use, and maintenance of software.

OOAD The Engineering Process 9 Source: G. Shute, UMN

Some methodologies
1990s

 Rapid application development (RAD), since 1991

 Dynamic systems development method (DSDM), since 1994

 Scrum, since 1995

 Team software process, since 1998

 Rational Unified Process (RUP), maintained by IBM since 1998

 Extreme programming, since 1999

2000s

 Agile Unified Process (AUP) maintained since 2005 by Scott Ambler

 Disciplined agile delivery (DAD) Supersedes AUP

2010s

 Scaled Agile Framework (SAFe)

 Large-Scale Scrum (LeSS)
OOAD The Engineering Process 10

OOAD The Engineering Process 11

The Rational/IBM Unified Process

The Unified Process is a Process Framework

There is NO Universal Process!

• The Unified Process is designed for flexibility and extensibility

» allows a variety of lifecycle strategies

» selects what artifacts to produce

» defines activities and workers

» models concepts

OOAD The Engineering Process 12

The Unified Process

for SW Engineering

OOAD The Engineering Process 13

The Unified Process is

Architecture-Centric

OOAD The Engineering Process 14

Architecture and Models

Architecture embodies a collection of views of the models

Views

Models

Use Case
Model

Design
Model

Depl.
Model

Impl.
Model

Test
Model

Analysis
Model

OOAD The Engineering Process 15

The Unified Process is Use-Case Driven

Use Case Driven

Req.ts Impl. Test

Use Cases bind these workflows together

Analysis Design

OOAD The Engineering Process 16

The Unified Process is

Iterative and Incremental

OOAD The Engineering Process 17

OOAD The Engineering Process 18

Milestones, Phases and Releases

 Milestone - the point at which an iteration formally ends;
corresponds to a release point. Major and minor milestones.

 Major Milestones

time

Vision Baseline
Architecture

Initial
Capability

Product
Release

Inception Elaboration Construction Transition

Phase - the time between two major project milestones,
during which a well-defined set of objectives is met,
artifacts are completed, and decisions are made to move
or not move into the next phase.

Release - a subset of the end-product that is the object
of evaluation at a major milestone.

Workload during the Phases and

Workflows (Disciplines)

OOAD The Engineering Process 19
Source: https://larion.com/

OOAD The Engineering Process 20

Phases are not identical

in terms of schedule and effort
 A typical initial development cycle for a medium-sized project

should anticipate the following distribution between effort and
schedule:

Inception Elaboration Construction Transition

Effort ~5 % 20 % 65 % 10%

Schedule 10 % 30 % 50 % 10%

Project plan: a time-sequence set of activities and task,
assigned to resources, containing task dependencies, for the
project. Iteration Plan.

Determining the number of iterations and the length of each
iteration

OOAD The Engineering Process 21

A Risk-Driven Approach

 A risk is a variable that, within its normal distribution, can take a
value that endangers or eliminates success for a project

 Attributes of a risks:
1. Probability of occurrence
2. Impact on the project (severity)
3. Magnitude indicator: High, Significant, Moderate, Minor, Low.

Initial Project Risks

Initial Project Scope

Revise Overall

Project Plan

Cost

Schedule

Scope/Content

Plan Iteration N

 Cost

Schedule

Risks

Eliminated
Revise Project Risks

Reprioritize

Develop Iteration N

• Collect cost and

quality metrics

Define scenarios to

address highest risks

Iteration N

OOAD The Engineering Process 22

Risks in Iterative and Waterfall Development Processes

↑Risk Profile Comparison ↓Coding Comparison

Risk

Transition

Inception

Elaboration

Construction

Preliminary

Iteration

Architect.

Iteration

Architect.

Iteration

Devel.

Iteration

Devel.

Iteration

Devel.

Iteration

Transition

Iteration

Transition

Iteration
Post-

deployment

Waterfall

Time

Progress

 90%

 80%

 70%

 60%

 WP

 50%

 40%

 30%

UP

 20%

 10%

 Time

(weeks)

5

10

15

20

25

30

35

40

45

50

Integration starts here

(waterfall proc.)

Quality tests

OOAD The Engineering Process 23

Types of Risks

 Resource risks (organization, funding, people, time)
 Business risks (contract type, client, competitors)
 Technical risks (scope, technology, external

dependency)
 Schedule risks

Iteration 1 Iteration 2 Iteration 3

Iteration Planning

Rqmts Capture

Analysis & Design

Implementation

 Test

Prepare Release

“Mini-Waterfall” Process • Results of previous iterations

• Up-to-date risk assessment

• Controlled libraries of models, code, and tests

Release description

Updated risk assessment

Controlled libraries

OOAD The Engineering Process 24

Resulting Benefits

 Planning and monitoring

 No “90% done with 90% remaining” effect

 Can incorporate problems/issues/changes into

future iterations rather than disrupting ongoing

production

 The project’s elements (testers, writers, tool-

smiths, QA, etc.) can better schedule their work

OOAD The Engineering Process 25

Software Engineering

Taxonomy

 Taxonomy Project of the IEEE-CS Technical Council on
Software Engineering (TCSE) has developed a unified taxonomy.
Here, we present definitions of:

Forward engineering

Reverse engineering

Reengineering

Round Trip Engineering

OOAD The Engineering Process 26

Forward, Reverse and

Reengineering

Forward engineering - "the traditional process of moving from
high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system."

Reverse engineering - "the process of analyzing a subject
system with two goals in mind:
(1) to identify the system's components and their
interrelationships; and,
(2) to create representations of the system in another form or at a
higher level of abstraction."

Reengineering - "the examination of a subject system to
reconstitute it in a new form and the subsequent implementation
of the new form."

OOAD The Engineering Process 27

Round Trip Engineering

 With Round Trip Engineering you can incrementally develop

software, starting either from a new design or from an existing body

of code. You can change the source code and keep design diagrams

up to date, using any editor you like. Or you can change the design

diagrams and keep the source code up to date.

Reverse engineering is the process of evaluating an existing

body of code to capture important information describing a

system, and representing that information in a format useful to

software engineers and designers.

OOAD The Engineering Process 28

Reverse Engineering with

IBM Rose™

 Rose Reverse engineering is the process of examining a
program's source code to recover information about its
design.

 IBM Rose includes a C++ and Java Analyzer. The Rational
Rose C++ Analyzer extracts design information from a C++
application's source code and uses it to construct a model
representing the application's logical and physical structure.

OOAD The Engineering Process 29

The IBM Rose C++ Analyzer

OOAD The Engineering Process 30

Reverse Engineering with

Together™
 Together engineering is the process of examining a program's

source code to recover information about its design.

 A central feature of Together is LiveSource — the ability to
immediately synchronize class diagrams with the
implementation code.

 LiveSource means that your UML class diagrams are always
synchronized to the source code that implementst hem. When
you change a class diagram, Together immediately updates the
corresponding source code, and vice versa.

 The LiveSource feature applies to existing code as well as code
that is being developed. Together can reverse source code,
building a model around existing code or restoring a model from
archived files

OOAD The Engineering Process 31

CodaGen™ Code Generation: As

Easy as Model, Extend, Transform!

C

o

d

e

G

e

n

e

r

a

t

i

o

n

:

A

s

E

a

s

y

a

s

M

o

d

e

l

,

E

x

t

e

n

d

,

T

r

a

n

s

f

o

r

m

!

OOAD The Engineering Process 32

Generation Limits -

Objecteering™

 Generate code for the dynamic model thanks to

PatternsObjecteering/UML associates Design Patterns and

code generators to allow you to generate the code from the

model's dynamic application. The State design pattern,

developed by Gamma, is automated, so as to automatically

transform the UML state diagram model into a class model.

The code generator then transforms this class model into

Java code. By applying the State design pattern, you can be

sure of generating Java code which corresponds to the state

diagrams, thereby guaranteeing a highly efficient result.

OOAD The Engineering Process 33

Generation Limits -

Objecteering™

Generation processes in VP

OOAD The Engineering Process 34

Instant reverse Java sources and

classes

Tools ->

Code ->

Instant Reverse...

OOAD The Engineering Process 35

For more, see: https://www.visual-paradigm.com/support/documents/vpuserguide/276/277/28011_reverseengin.html

Instant reverse Java sources to

sequence diagram

Tools ->

Code ->

Instant

Reverse Java to

Sequence

Diagram...

OOAD The Engineering Process 36

Java Round-Trip:

Generate/Update Java code

Tools ->

Code ->

Generate

Java

Code...

OOAD The Engineering Process 37

https://www.visual-

paradigm.com/support/documents/vpuserguide/276/381/7486_generateorup.

html

Java Round-Trip: Generate/Update

UML classes from Java code

OOAD The Engineering Process 38

Tools ->

Code ->

Reverse

Java

Code...

https://www.visual-paradigm.com/support/documents/vpuserguide/

276/381/7530_generateorup.html

State Machine Diagram Code

Generation

 Creation of controller class

 Creation of a sub-state machine diagram from the

controller class

 Assigning operations to transitions

 Specifying method body for the entry/exit of state

 Specifying method body for operation
OOAD The Engineering Process 39

Tools -> Code -> Generate State

Machine Code...

OOAD The Engineering Process 40

https://www.visual-paradigm.com/support/documents/vpuserguide/276/386/28107_generatingst.html

OOAD The Engineering Process 41

Reverse-engineering Relational DB
Replicating the structure of the database in a class model
is relatively straight-forward.

Create a Class for each Table

For each column, create an attribute on the class with the
appropriate data type. Try to match the data type of the attribute
and the data type of the associated column as closely as possible.

Column Name Data Type

Customer_ID Number

Name Varchar

Street Varchar

City Varchar

State/Province Char(2)

Zip/Postal Code Varchar

Country Varchar

OOAD The Engineering Process 42

Example by MagicDraw™ - from

DDL…

--@(#) C:\md\MagicDraw UML 6.0\script.ddl

DROP TABLE MQOnline.mqo_dbo.customers;

DROP TABLE MQOnline.mqo_dbo.libraries;

CREATE TABLE MQOnline.mqo_dbo.libraries

(

 id numeric (10) NOT NULL,

 abbreviation varchar (4) NOT NULL,

 name varchar (30) NOT NULL,

 prod_code varchar (8) NOT NULL,

 CONSTRAINT MQOnline.mqo_dbo.PK__libraries__605D434C PRIMARY KEY(id)

);

CREATE TABLE MQOnline.mqo_dbo.customers

(

 id numeric() (10) NOT NULL,

 name varchar (30) NOT NULL,

 password varchar (16),

 CONSTRAINT MQOnline.mqo_dbo.PK__customers__00CA12DE PRIMARY KEY(id)

);

OOAD The Engineering Process 43

Example by MagicDraw™ - …to

E-R diagram

OOAD The Engineering Process 44

Identify Embedded/Implicit Classes

The class that results from the direct table-class mapping will
often contain attributes that can be separated into a separate
class, especially in cases where the attributes appear in a
number of translated classes. These 'repeated attributes' may
have resulted from denormalization of tables for performance
reasons, or may have been the result of an oversimplified data
model.

Example: revised Customer class, with extracted Address class.

The association drawn between these two is an aggregation,
since the customer's address can be thought of as being part-of
the customer.

OOAD The Engineering Process 45

Handle Foreign-Key Relationships

For each foreign-key relationship in the table, create an association
between the associated classes, removing the attribute from the
class which mapped to the foreign-key column. If the foreign-key
column was represented initially as an attribute, remove it from the
class.
 Column Name Data Type

Number Number
<<FK>> Customer_ID Varchar

Example: In the Order table above,
the Customer_ID column is a
foreign-key reference; this column
contains the primary key value of the
Customer associated with the Order.

OOAD The Engineering Process 46

Handle Many-to-Many

Relationships

RDBMS data models represent many-to-many
relationships with a mean which has been called a
join table
, or an
association table
- a foreign key reference can only contain a reference to
a single foreign key value; when a single row may relate
to many other rows in another table, a join table is
needed to associate them.

OOAD The Engineering Process 47

Handle Many-to-Many

Relationships – DB model

Product-Supplier Table

Column Name Data Type

Product_ID Number

Supplier_ID Number

Product Table

Column Name Data Type

Product_ID Number

Product_Name Varchar

Supplier Table

Column Name Data Type

Supplier_ID Number

Supplier_Name Varchar

OOAD The Engineering Process 48

Handle Many-to-Many

Relationships – Object Model

Product-Supplier Table
Column Name Data Type
Product_ID Number
Supplier_ID Number

OOAD The Engineering Process 49

Introducing Generalization

Sometimes common structure results from denormalization for
performance, such as is the case with the 'implicit' Address table
which we extracted into a separate class. In other cases, tables
share more fundamental characteristics which we can extract into
a generalized parent class with two or more sub-classes. Look for
repeated columns in two tables:

SW Product HW Product

Column Name Data Type Column Name Data Type

Product_ID Number Product_ID Number

Name Varchar Name Varchar

Description Varchar Description Varchar

Price Number Price Number

Version Varchar Assembly Number

OOAD The Engineering Process 50

Class Generalization from

the Data Model

SW Product HW Product

Column Name Data Type Column Name Data Type

Product_ID Number Product_ID Number

Name Varchar Name Varchar

Description Varchar Description Varchar

Price Number Price Number

Version Varchar Assembly Number

OOAD The Engineering Process 51

Finally – an Object Model

Putting all of the class definitions together, the figure

shows a consolidated class diagram for the Order

Entry System.

