The Engineering
Process

Software Development Process
Unified Process

Round-Trip Engineering
Reverse Engineering

Examples

The software development
process

e The software development process is the process of
dividing software development work into distinct phases to
Improve design, product management, and project
management.

e Known as well as a software development life cycle.

e The methodology may include the pre-definition of
specific deliverables and artifacts that are created and
completed by a project team to develop or maintain an

application.

Source: Suryanarayana, Girish (2015). "Software
Process versus Design Quality: Tug of War?". IEEE
Software. 32 (4): 7-11.

OOAD The Engineering Process 2

The SW Dev. Process ltself

What Is a»Process?

+ Defines Who is doing What, When to do it, and How
to reach a certain goal.

New or changed
_—m
requirements

New or changed
_——
system

Software Engineering
Process

RATIONAL

OOAD The Engineering Process 3

Phases of Software Development
— Analysis

e Requirements analysis - specifying the functional capabilities
needed In the software. Use-cases are an important tool for
communication about requirements between software developers
and their clients.

Products: software requirements documents for the software
Objectives: capture the client's needs and wants

e Domain analysis - developing concepts, terminology, and
relationships essential to the client's model of the software and its
behavior. Conceptual-level class diagrams and interaction diagrams
are important tools of domain analysis.

Products: client-oriented model for the software and its components
Objectives: capture the client's knowledge framework

OOAD The Engineering Process Source: G ShUte, U MN 4

Phases of Software Development | 3s2:
— Design T
e Client-oriented design - specifying components of the software that

are visible to the client and its' behavior in terms of their attributes,
methods, and relationships to other components. Specification-level
class diagrams and interaction diagrams are important tools here.
Products: client-oriented specifications for components

Objectives: define the structure of interactions with the client,
providing methods that satisfy the client's needs and wants,
operating within the client's knowledge framework

e Implementation-oriented design - determining internal features and
method algorithms for the software.
Products: implementation-oriented specifications for components
Obijectives: define internal structure and algorithms for components

that meet client-oriented specifications
OOAD The Engineering Process Source: G ShUte, UMN 5

Phases of Software Development —
Implementation and Integration

e Implementation - writing and compiling code for the individual
software components.
Products: source/binary code for software components and their test
software
Objectives: to produce coded components that accurately implement
the implementation-oriented design

e Integration - putting the software components into a context with
each other and with client software.
Products: software integration tools (

)

Objectives: test the software components in the context in which they

will be used
OOAD The Engineering Process Source: G ShUte, UMN 6

https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/
https://code-maze.com/top-8-continuous-integration-tools/

Phases of Software Development —
Packaging

e Packaging - bundling the software and its documentation into a

deliverable form.
Products: software and documentation in an easily installed form
Objectives: to manage the software in an efficient way

OOAD The Engineering Process SOUI’CGZ G Shute, U M N 7

Ongoing Activities in Software
Development 1/2

e Risk analysis - management activities that attempt to identify
aspects of the development process that have a significant chance
failing.

e Planning - management activities that determine the specific goals
and allocate adequate resources for the various phases of
development. Resources include time, work and meeting space,
people, and developmental hardware and software. Risk analysis ¢
be viewed as preparation for planning.

OOAD The Engineering Process SOUI’CGZ G Shute, U M N 8

Ongoing Activities in Software
Development 2/2

e Verification - activities directed at ensuring that the products of the
various phases of development meet their objectives. Testing is an
Important part of verification that takes place during implementation
and integration. There are two kinds of testing:

Black-box testing is testing how software meets its client-oriented specificatior
without regard to implementation.

White-box testing uses knowledge of implementation to determine a testing pl
that all paths of control have been exercised.

e Documentation - providing instructions and information needed for
the installation, use, and maintenance of software.

OOAD The Engineering Process SOUI’CGZ G Shute, U M N 9

Some methodologies

1990s

Rapid application development (RAD), since 1991

Dynamic systems development method (DSDM), since 1994
Scrum, since 1995

Team software process, since 1998

Rational Unified Process (RUP), maintained by IBM since 1998
Extreme programming, since 1999

2000s

Agile Unified Process (AUP) maintained since 2005 by Scott Ambler
Disciplined agile delivery (DAD) Supersedes AUP

2010s
e Scaled Agile Framework (SAFe)
e Large-Scale Scrum (LeSS)

OOAD

The Engineering Process 10

The Rational/IBM Unified Process

The Unified Process is a Process Framework

There is NO Universal Process!
« The Unified Process is designhed for flexibility and extensibility
» allows a variety of lifecycle strategies
» selects what artifacts to produce
» defines activities and workers
» models concepts

RATIONAL

The Engineering Process

The Unified Process
for SW Engineering

The Unified Process is Engineered

A role played by an
individual or ateam

Activity

Describe a

AR Use Case

responsible for Artifact

Use case
Use case

package

OOAD The Engineering Process

00
0000
o000
o0 O
| X
®
A unit of work

A piece of information that is

produced, modified, or used

by a process

RATIONAL
12

The Unified Process Is
Architecture-Centric

Architectu_ re-Centric

* Models are vehicles for visualizing, specifying,
constructing, and documenting architecture

* The Unified Process prescribes the successive
refinement of an executable architecture

_ation Construction Transition

time

Architecture

RATIONAL

The Engineering Process

OOAD

Architecturq and Models

Use Case Analysis Design Depl. Impl.
Model Model Model Model Model

1T

Architecture embodies a collection of views of the models

T~

The Engineering Process 14

The Unified Process is Use-Case Driven

Use Case Driven _

Use Cases bind these workflows together

Use Cases D_rive lterations

<+ Drive a number of development activities
= Creation and validation of the system’s architecture
= Definition of test cases and procedures
= Planning of iterations
= Creation of user documentation
= Deployment of system

- Synchronize the content of different models

RATIONAL

The Engineering Process

The Unified Process Is
lterative and Incremental

Lifecycle Phases

_ation Construction Transition

time

+ |nception Define the scope of the project and
develop business case

+ Elaboration Plan project, specify features, and
baseline the architecture

+ Construction Build the product
< Transition Transition the product to its users

RATIONAL

The Engineering Process

Phases ang:i lterations

oration Construction Transition

Prelim :: Arch : : Dev : Dev | Trans

|lteration lteration [teration lteration [teration

A A A A A A A A

Release Release Release Release Release Release Release Release

An iteration is a sequence of activities with an established plan and
evaluation criteria, resulting in an executable release

RATIONAL

OOAD The Engineering Process 17

Milestones, Phases and Releases

® Milestone - the point at which an iteration formally ends;
corresponds to a release point. Major and minor milestones.

Major Milestones

T Constucion | trension

A A A A

Vision Baseline Initial Product
Architecture Capability Release

Phase - the time between two major project milestones,
during which a well-defined set of objectives is met,
artifacts are completed, and decisions are made to move
or not move into the next phase.

Release - a subset of the end-product that is the object
of evaluation at a major milestone.

OOAD The Engineering Process 18

Workload during the Phases and

Workflows (Disciplines)

Disciplines

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt
Project Management
Environment

OOAD

Phases

Const || Const | Const
N

Iterations

The Engineering Process

Source: https://larion.lcgzom/

Phases are not identical
INn terms of schedule and effort

® A typical initial development cycle for a medium-sized project
should anticipate the following distribution between effort and
schedule:

Inception

Elaboration

Construction

Transition

Effort

~5 %

20 %

65 %

10%

Schedule

g
eSOl T e

10 %

30 %

50 %

10%

o

InCcepti o

Elalyorati on

Cormnstructio

Traosy sitior

Tirr =

Project plan: a time-sequence set of activities and task,
assigned to resources, containing task dependencies, for the

project. Iteration Plan.

Determining the number of iterations and the length of each

coro jteration

The Engineering Process

20

000
. . 0000
A Risk-Driven Approach oo
[X J
¢ A risk is a variable that, within its normal distribution, can take &
value that endangers or eliminates success for a project
¢ Attributes of a risks:
1. Probability of occurrence
2. Impact on the project (severity)
S Magnitude indicator: High, Significant, Moderate, Minor, Low.
Define scenarios to Plan Iteration N
Initial Project Risks address highestdat Cost
Initial Project e Schedule
Develop Iteration N
i - Collect cost and
Iteration N quality metrics
Revise Overall
Project Plan
Cost : i i Risks
Schedule Rews_e P_r_OJect Risks Eliminated
Reprioritize
Scope/Content

OOAD

The Engineering Process 21

(X X
000
Risks in Iterative and Waterfall Development Processes
[X)
o
Inception
Elaboration
Risk Construction
Traiisree —
Preliminary ~ Architect. ~ Architect. Devel. Devel. Devel. Transition Transiton Post-
lteration Iteration lteration lter ?Fn e lteration lteration Iteration lteration ~ deployment
TRisk Profile Comparison |Coding Comparison
Progress Integration starts here Quality tests
90% (waterfall proc) | e~ et T
80% B T
70%
60%
50%
40%
30%
20
10% -
Time 5 10 15 20 25 30 35 40 45 50

OOAD ™ (weeks) I'he Engineering Process 22

Types of Risks

Resource risks (organization, funding, people, time)
® Business risks (contract type, client, competitors)
® Technical risks (scope, technology, external

dependency)
® Schedule risks

Iteration 1 —Iteration 2 —lteration 3
* Results of previous iterations “Mini-Waterfall” Process
* Up-to-date risk assessment
* Controlled libraries of models, code, and tests Iteration Planning

Rgmts Capture

Analysis & Design

Implementation

Test

OOAD The Engineering Process

Prepare Release

Release description
Updated risk assessment
Controlled libraries

23

Resulting Benefits

e Planning and monitoring
e No “90% done with 90% remaining” effect

e Can incorporate problems/issues/changes into
future iterations rather than disrupting ongoing
production

e The project’s elements (testers, writers, tool-
smiths, QA, etc.) can better schedule their work

OOAD The Engineering Process 24

Software Engineering
Taxonomy

Taxonomy Project of the IEEE-CS Technical Council on

Software Engineering (TCSE) has developed a unified taxonomy.
Here, we present definitions of:

Forward engineering
Reverse engineering
Reengineering

Round Trip Engineering

OOAD The Engineering Process 25

Forward, Reverse and
Reengineering

Forward engineering - "the traditional process of moving from
high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system."

Reverse engineering - "the process of analyzing a subject
system with two goals in mind:

(1) to identify the system's components and their
interrelationships; and,

(2) to create representations of the system in another form or at a
higher level of abstraction."

Reengineering - "the examination of a subject system to
reconstitute it in @ new form and the subsequent implementation
of the new form."

OOAD The Engineering Process 26

Round Trip Engineering

With Round Trip Engineering you can incrementally develop
software, starting either from a new design or from an existing body
of code. You can change the source code and keep design diagrams
up to date, using any editor you like. Or you can change the design
diagrams and keep the source code up to date.

Code Generatiom

Retaim
D esicm o T t=
Driacgrarm I_I__%I__I_I Contral Code
Cormpiler Directive s

Reverse Emgimeerimo

Reverse engineering Is the process of evaluating an existing
body of code to capture important information describing a
system, and representing that information in a format useful to
software engineers and designers.

OOAD The Engineering Process 27

Code

f
|

Reverse Engineering with
IBM Rose™

Rose Reverse engineering is the process of examining a
program's source code to recover information about its
design.

IBM Rose includes a C++ and Java Analyzer. The Rational
Rose C++ Analyzer extracts design information from a C++
application's source code and uses it to construct a model

representing the application's logical and physical structure.

OOAD The Engineering Process 28

The IBM Rose C++ Analyzer

.+ Rational Raose - atm example.ondl - [Class Criagrarmm: CNisperiser

L BT e
B File Edit “wiew

Format Browse R.eport

ey Tool=s Acdd-In=s RO | D D T T Hel
D= 2 B = 2O EEE R D E e | s S e
. It
& T Rational Rose &+ + Analyzer
=
Fil= Edit AcHor = R [Do T Hel
D =E| =] % | == ez BT | ~] hfe]w]| al.2].3] W(|EB|F]|s] W] B[N
= Projectd — II:II XI
| Caption... || |
Direc:turies___l Extensions.___ |
[—1 cAprojectsimyalertijframeworkYcomirilah)fram ew] I{Nnne} |
| Bases.. [[<None> : Project Files =<
Files ___ I File=s Not In List (Fitered) Fil== In List: (I_Infilter=ed)
| sddseiected |
N Al Al |
BEemowre Selected I
BEermosre Al I
File Filter: I*.h;*.hh;*.hpp;*.hm*.cpp;*.mc*.cc;*.c '-rl Filter I
Zurrent Director,..: =y S framework sy comyrilahframevworksbheansh,
Oirector. Structure: Froject Director. List:
= jfrarmewsark - | Aeld Current I T KR chprojects\rwaletyjfre
(= com add Subdirs ||
. = rila
Aol Hierarchyw I
“::Dr,i_.,fe,lr,l prESS F:I = — Eermone D]
< | I
Mletwrork. .. I Eefresh Praject File List I
For Help. press F1
S S e |

Reverse Engineering with
Together™

Together engineering Is the process of examining a program'’s
source code to recover information about its design.

A central feature of Together is LiveSource — the ability to
Immediately synchronize class diagrams with the
Implementation code.

LiveSource means that your UML class diagrams are always
synchronized to the source code that implementst hem. When
you change a class diagram, Together immediately updates the
corresponding source code, and vice versa.

The LiveSource feature applies to existing code as well as code
that is being developed. Together can reverse source code,
building a model around existing code or restoring a model from
archived files

OOAD The Engineering Process 30

CodaGen™ Code Generation: As
Easy as Model, Extend, Transform!

Model your applications in UML
using your favorite modeling tool,

Model

Extend

/' Extend your models with
transformation markers and
architecture-related data.

Transform -

Transform your extended
business models into source code,
XML, SOL scripts, and much more!

OOAD The Engineering Process

31

Generation LImIts -
Objecteering™

Generate code for the dynamic model thanks to
PatternsObjecteering/UML associates Design Patterns and

code generators to allow you to ge

nerate the code from the

model's dynamic application. The State design pattern,
developed by Gamma, is automated, so as to automatically
transform the UML state diagram model into a class model.
The code generator then transforms this class model into

Java code. By applying the State o
sure of generating Java code whic

esign pattern, you can be
N corresponds to the state

diagrams, thereby guaranteeing a

OOAD The Engineering Process

nighly efficient result.

32

Generation Limits -

Objecteering ™

OOAD

State diagram - STATEMACHINE [Analysiz] - S5ale cycle state diagram - Update

L
= a

CL
(=
"

FEREOUANGOe &

| MotConfirtned

foreater)

-

Caneell)

Cancelled

M adify

Conzuilk
Analysis \wWieard
Browese. .
Check rodel
Wizards/Tools

Java

e TR

Design Patlerns ForJava *

Rezources

M azk

Mazk contents

= Show contents

S b linkz

Optiohz

Autamatic

Ctrl+H
Cril+E
Chrl+L

Selectin explarer

GOF -
GOF -

GOF
GOF

GOF -

- Bidapter [create clazs an target]

- fydapter [update existing class]
GOF -

GOF -

Delrrered

SoldOff

15ellOfT)

Fratatype

Singleton

Friowy
M ementa

The Engineering Process

33

Generation processes in VP

Project IeXceler

Diagram

Wiew Team |T::n::n|5 | Modeling Wi

Publish
Enmpnser Project

DB

L

Q@ﬁ@

Hibernate

L

-

Code

gt

MSc Thesis Process

ﬂl Hand

" Paink Eraser
|i Sweeper
L Magnet
Gesture Pen

|E Diagram Mavigator |

i} Smart Edit
F

™1 Timing Frame

i Moke

OOAD

Generate Java Code...

Reverse Java Code...

Generate C++ Code...

/B BB

Reverse C++ Code...

Instant Generator. ..

&

Instant Reverse...

Generate State Machine Code...

Reverse State Machine Code. ..

Instant Reverse Java to Sequence Diagram...

Generate REST APL..

i & | &

The Engineering Process 34

Instant reverse Java sources and | 332:
classes | e
TOOIS -> JARs,mcemddassfoldersonmemmnewse---

Code ->
Instant Reverse...

1
EI_J Reverse source on demand

Reverse To: | Class Diagram v

For more, see: https://www.visual-paradigm.com/support/documents/vpuserguide/276/277/28011 reverseengin.html

OOAD The Engineering Process 35

00
o00o
Instant reverse Java sources to | se2:
3
sequence diagram :
TO O I S -> Select Operation
Select an operation to form a sequence diagram.
CO d e -> EI--@C:\Sample‘ler &' RegisterController register {Strirllg.inl)
Instant O e e L S L E—
egisterController = | sd RegisterController register | String,int
Reverse Java to - ig“a _ g — —
Sequence R X o | i
Diagram... = N [|
; 1.2 setial) ’%I i
g 1.3: setName(} F|J:_'| i
ol 1.4 selfge() I i
'[:] |
it | |
) 1.5 adcl{aJr:ounu }
< Back || Mext = L i ..?
—r @< _E____| | | |
L | | |
=

OOAD The Engineering Process 36

Java Round-Trip:
Generate/Update Java code

Tools ->
Code ->

Generate

Java
Code...

https://www.visual-

paradigm.com/support/documents/vpuserguide/276/381/7486_generateorup.

html

OOAD

Generate Code

ciagram. Your Implement wil be retained.

Language: | Java w
+ =&l

Model

Pleass spedafy the folder to generate code, The code generator wall update your g

Code Synchronization

| Code | Brace and indentation | new Lines | Template |

Predefined macros...

The Engineering P

Operaton Template

ST TODO - implement {dass}, [operation)

throw new UnsupportedOperationE xcephion();

Getter Template

| class

operaton |

return this, {attribute};

Setter Template
this. {attribute} = {parameter);

Pressenw

public dass ClassX [
private mt attribute;

public void operation{) {
[TODO - mplement Oass ope
throw rew Unsuppor tedOper atic
¥

pubdic int getAtirbute() {
retumn this. attribube;
}

public void setAtirbute(nt atiribute
this.atinbute = atiribute;
}

Java Round-Trip: Generate/Update
UML classes from Java code

Reverse Code

Tools ->
Code ->
Reverse

Language: | Java w

Source Path
}C:"Prl:-p:dﬂ"l'r ProjectiProtolype
C:\pProjects\My ProjectiTmgl

Pieasa gpedfy the source path for reverse code.

31 =1la v

Java
Code...

Predefined macos

https://www.visual-paradigm.com/support/documents/vpuserguide/

276/381/7530_generateorup.html

OOAD

[#] Reverse source on demand (You can drag and drop from Class

Class Repository (=]

O-B-The

a X

fDmu‘ﬂed
&y Java Round-trip
EH{ZC: output MyProject
= [lsc
= [mypackage

[#]4

The Engineering Process

; i\gChemepayment.java
| J) CreditCardPayment.jz

| F)Payment.javq

I Visual @

Paradigm

Enterprise Edition

Open Recent Projects Ue

Reverse "Customer.java” to

> |

%\ Collapse
% Bxpand

%] New Class Diagram

[Lﬂj Class Repository t So—

38

State Machine Diagram Code

Generation

e Creation of controller class
e Creation of a sub-state machine diagram from the

controller class

e Assigning operations to transitions

] *

Order Controller

-debug : boolean
+OrderControliendebug : boolaan)
B +submitOrdear()
+shipOrder()
*daivafad{}
Debug() | boolean

b

Add
Mew Diagram...
Existing Diagrames...

Shipping Delivered

=
Open Specification... Enter
Stereotypes I:E b

e Specifying method body for the entry/exit of state
e Specifying method body for operatlon

OOAD

The Engineering Proces 39

Tools -> Code -> Generate State

Machine Code...

OOAD

Class: |fmh’d|er

State Diagram:| Class

Language: | Java

Cutput Path:

Options
Synchronized transition methods

[| Generate debug message

Generate try/catch

[| Re-generate transition methods

|:| Browse output directory after generate Auto create transition operations

Generate sample 6

Generate diagram image

https:/www.visual-paradigm.com/support/documents/vpuserguide/276/386/28107 _generatingst.html

The Engineering Process

40

Reverse-engineering Relational DB

Replicating the structure of the database in a class model
s relatively straight-forward.

Create a Class for each Table

For each column, create an attribute on the class with the
appropriate data type. Try to match the data type of the attribute
and the data type of the associated column as closely as possible.

Column Name Data Type

Customer_ID Number

Name Varchar i L
Street Varchar

City Varchar Seisiomerns - NumBeT
State/Province Char(2) Egi;neztﬂgggg
Zip/Postal Code Varchar S ostaiCode : Strng
Country Varchar e

OOAD

The Engineering Process 41

Example by MagicDraw ™ - from
DDL...

--@(#) C:\md\MagicDraw UML 6.0\script.dd|

DROP TABLE MQOnline.mqgo_dbo.customers;
DROP TABLE MQOnline.mqo_dbo.libraries;
CREATE TABLE MQOnline.mgo_dbo.libraries
(
id numeric (10) NOT NULL,
abbreviation varchar (4) NOT NULL,
name varchar (30) NOT NULL,
prod_code varchar (8) NOT NULL,
CONSTRAINT MQOnline.mgo_dbo.PK__libraries_ 605D434C PRIMARY KEY(id)

);

CREATE TABLE MQOnline.mgo_dbo.customers
(

id numeric() (10) NOT NULL,

name varchar (30) NOT NULL,

password varchar (16),
CONSTRAINT MQOnline.mgo_dbo.PK__customers__ 00CA12DE PRIMARY KEY(id)

);

OOAD The Engineering Process 42

Example by MagicDraw™ - ... to

E-R diagram

<=gatahase=>
MQOnline
<<schema==
mqo_dbo
=<tahle=> i2b|
<< b=
libraries A
customers

<<PC==-id : numeric(10) [1]
-abbreviation : varchar(4) [1]
-name :varchar(30) [1]
-prod_code :varchar(8) [1]

<<Pl==-id : numeric(10) [1]
-name :varchar(30) [1]
-password : varchar(16)

=<PK==+PK__libraries__605D434C(id)

<=<PK==+PK__customers__00CA12DE(id)

OOAD

The Engineering Process

43

ldentify Embedded/Implicit Classes

The class that results from the direct table-class mapping will
often contain attributes that can be separated into a separate
class, especially /n cases where the attributes appear in a
number of transiated classes. These repeated attributes’ may
have resulted from denormalization of tables for performance
reasons, or may have been the result of an oversimplified data
model.

Example: revised Customer class, with extracted Address class.

The association drawn between these two is an aggregation,

since the customer's address can be thought of as being part-of
i

Address

—ustormer S=street @ String
crPcustormeriD D MHMumber SeCity - String
SPhnEarme D String srstatelprovinoce @ String
1..1 crpostalzcode D String

00 Lecoudntry - String

Handle Foreign-Key Relationships

For each foreign-key relationship in the table, create an association
between the associated classes, removing the attribute from the
class which mapped to the foreign-key column. If the foreign-key
column was represented initially as an attribute, remove it from the
class.

Column Name Data Type

Number Number
<<FK>> Customer_ID Varchar

Crder
eriuarmber D Integer

Example: In the Order table above,
the Customer _ID column is a
foreign-key reference; this column 1.1

contains the primary key value of the T e T
Customer associated with the Order. ename : String

OOAD The Engineering Process 45

Handle Many-to-Many
Relationships

RDBMS data models represent many-to-many

relationships with a mean which has been called a
join table
, Or an

association table
- a foreign key reference can only contain a reference to
a single foreign key value; when a single row may relate

to many other rows in another table, a join table is
needed to associate them.

OOAD The Engineering Process 46

Handle Many-to-Many

Relationships —

Product Table

DB model

Supplier Table

Column Name Data Type

Product_ID Number

oduct Name Varchar

Column Name Data Type
Supplier_ID Numbes—

Supplier Name Varch

Product-Supplier Table

Column Name Data Type
Product_ID Number
Supplier_ID Number

OOAD

The Engineering Process

47

Handle Many-to-Many
Relationships — Object Model

Product-Supplier Table

Column Name Data Type

Product_ID Number

Supplier_ID Number

Froduct Supplier
<=rmuarmber D Iinteger 1.7~ . .
wede=scription @ String srnAarme - String
<=danit price - Double

Addres=

==treet - String

a=city @ String
==tatesfprovwince @ String
arpo=taliTode @ String
c=courntre @ =tring

OOAD The Engineering Process

48

Introducing Generalization

Sometimes common structure results from denormalization for
performance, such as is the case with the 'implicit' Address table
which we extracted into a separate class. In other cases, tables
share more fundamental characteristics which we can extract into
a generalized parent class with two or more sub-classes. Look for
repeated columns in two tables:

SW Product HW Product

Column Name Data Type Column Name Data Type
Product_ID Number Product_ID Number
Name Varchar Name Varchar
Description Varchar Description Varchar
Price Number Price Number
Version Varchar Assembly Number

OOAD

The Engineering Process

49

(Y X)
- - ' XX X
Class Generalization from eecc
o0
the Data Model °
SW Product HW Product
Column Name Data Type Column Name Data Type
Product_ID Number Product_ID Number
Name Varchar Name Varchar
Description Varchar Description Varchar
Price Number Price Number
Version Varchar Assembly Number

Froduct

gemurmber : Integer
grdescription - Sirinog
NIt price - Dooukxle

=

SoftwareFProduct

Lversion D Double

OOAD

The Engineering Process

N

HardwareFProduct

rassernbly . String

50

00
. . | X X J
Finally —an Object Mode 3
o
order Linelterm
rnarmber : Integer Hlinelterns equantity : Integer
<) 1..* Lenuurmbear - integer
1..1
1..1
Zustarmear Eroduct
gocustomeriD - Rurmber e —— Y ———— 4 = Supplier
L=narme D String {}descri ti-cln X Sgtrin B L=name D String
< : K - g Senarmber D HMamber
{} Sednit price Double
1..1
SoftvwwareProduct HardwwareFroduct Address
cvarsion D Double Fassermbly @ String o=street @ String
Secity D String
srstaterprovince @ String
orpostalZode @ String
Secountry © String
1..1
Address

srstreet | String

=ity @ String
sstatefprovince @ String
crpostalZode @ String
Secountry @ String

OOAD

Putting all of the class definitions together, the figure
shows a consolidated class diagram for the Order

Entry System.

The Engineering Process

51

