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1. Introduction 

The edit distance between a text string x = XIX2 ••• Xn and a pattern string y = YIY2 ... Yrn over an 
alphabet is the minimum number of differences between them. A difference is one of the following. 

(1) A character of the pattern corresponds to a different character of the text. 

(2) A character of the text corresponds to no character in the pattern. 

(3) A character of the pattern corresponds to no character in the text. 

An edit opemtion is an operation which corrects a difference. Change, insertion, and deletion are 
the edit operations corresponding to the three types of differences. The edit sequence between the 
pattern and the text is the sequence of edit operations for converting the pattern to the text which 
realizes the edit distance. Algorithms for finding the edit distance and the edit sequence were given 

in [9J and [8J. 
In this paper we are interested in a more general problem; that is to find all occurrences of the 

pattern in the text with at most k differences (k ~ m ~ n), which is called the string matching with 
k differences. Closely related is the string matching with k mismatches in which only the difference 
of type (1) is allowed. Together these two problems are called approximate string matching. 

For the problem of string matching with k differences Landau and Vishkin provided two al­
gorithms [4J and [5J. Their first algorithm consists of text processing of time bound O(k2 n) and 
preprocessing of the pattern which has a practical variant and a theoretical variant depending on 
the use of a suffix tree and the lowest common ancestor algorithm. Their second algorithm consists 
of text processing of time bound O( kn) and preprocessing of both text and pattern by using a suffix 
tree and the lowest common ancestor algorithm, which made it less suitable for practical use. The 
two algorithms are incomparable for general alphabets. We present a new algorithm whose practi­
cal and theoretical variants improve both [4J and [5J. The algorithm consists of text processing of 
time bound O(kn) and preprocessing of the pattern which has practical and theoretical variants as 
Landau and Vishkin's first algorithm does. The time bounds of the algorithms are summarized in 
Figure 1, where iii is the minimum between m and the size of the alphabet. See [2J for a survey of 
approximate string matching. 

Algorithm Practical Theoretical 

[4J O(k2n + m 2 ) O(k2n + m log iii) 
[5J - O(kn + nlog iii) 

New O(kn + m 2
) O(kn + m log iii) 

Figure 1. The time bounds of the algorithms 

2. O(mn) Algorithms 

The ith character of a string x is denoted by Xi. A substring of x from the ith through the jth 
characters is denoted by Xi ••• Xj. If the minimum number of differences between the pattern Y 
and any Sll bstring of the text x ending at x j is less than k, we say that Y occurs at position j of x 
with at most k differences. The problem of string matching with k differences is defined as follows: 
Given a text x of length n, a pattern Y of length m, and an integer k (k ~ m ~ n), find all positions 
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Algorithm MNI 

for i .- 0 to m do D( i, 0) .- i; 
for j .- 0 to n do D(O,j) .- 0; 

for j .- 1 to n do 
for i .- 1 to m do 

row .- D(i - 1,j) + 1; 
col .- D ( i , j - 1) + 1; 
if Yi = Xj then diag .- D(i - l,j - 1); 
else diag.- D(i - l,j - 1) + 1; 
D(i,j).- min(row,col,diag); 

end for 
end for 

Figure 2. The algorithm MNI 

of x \vhere Y occurs with at most k differences. Variations of [9] and [8] solve the string matching 
with k differences in time O(mn) as follows. See also [4, 5]. 

Let D(i,j), 0 :::; i :::; m and 0 :::; j :::; n, be the minimum number of differences between Yl ... Yi 

and any substring of x ending at Xj' The differences between Yl ... Yi and Xh ••• Xj for some h, 
1 :::; h :::; j are ei ther 

(i) differences between Yl ... Yi-l and Xh ••• Xj + a difference of type (3) at Yi, or 
(il) differences between Yl ... Yi and Xh ••• Xj-l + a difference of type (2) at xj, or 

(iii) differences between YI ... Yi-l and Xh·.· Xj-l + the difference between Yi and Xj. 

Thus, D( i.j) is determined by the three en tries D( i-I, j), D( i,j -1), and D( i-1,j -1). D( i, 0) = i 
for 0 :::; i :::; m because Yl ... Yi differs from the empty text by i differences of type (3). D(O,j) = 0 
for 0 :::; j :::; n because the empty pattern occurs at any position of the text. D( m,j) :::; k if and 
only if the pattern occurs at position j of the text with at most k differences. Figure 2 shows the 

dynamic programming algorithm MN1 which is a variation of Wagner and Fischer's algorithm [9]. 
It fills in table D column by column. Since there are O(mn) entries and each entry takes constant 
time to be filled in, algorithm MN1 takes time O(mn). 

Example 1. Let x = abbdadcbc, Y = adbbc, and k = 2. Figure 3 shows table D( i, j), 0 :::; i :::; 5 

and 0 :::; j :::; 9. The pattern occurs at positions 3, 4, 7, 8, and 9 of the text with at most 2 
di fferences. 

Lemma 1 [8]. For every D(i,j), 1 :::; i:::; m and 1 :::; j :::; n, 

D(i,j) = D(i - 1,j - 1) or D(i,j) = D(i - 1,j - 1) + 1. 

Let D-diagonal d be the entries of table D(i, j) such that j - i = d. Lemma 1 suggests a 

more compact way to store the information of table D. For each D-diagonal we store only the 
positions where the value increases. For aD-diagonal d and a difference e, let G(e, d) be the largest 
column j such that D(j - d,j) = e. In other words, the entries of value e on D-diagonal d end at 
column C( e, d). Note that C( e, d) - d is the row of the last entry on D-diagonal d whose value is 

e. Let C-diagonal c be the entries of table G(e,d) such that e + d = c. The definition of G(e,d) 
implies that the minimum number of differences between Yl ... YC(e,d)-d and any substring of the 
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0 1 2 3 4 5 6 7 8 9 
D a b b d a d c b c 

0 0 0 0 0 0 0 0 0 0 0 
1 a 1 0 1 1 1 0 1 1 1 1 
2 d 2 1 1 2 1 1 0 1 2 2 
3 b 3 2 1 1 2 2 1 1 1 2 
4 b 4 3 2 1 2 3 2 2 1 2 
5 c 5 4 3 2 2 3 3 2 2 1 

Figure 3. Table D(i,j) 

text ending at XC(e,d) is e, and YC(e,d)+l-d 1 XC(e,d)+l' C( e, d) = m + d for some e ~ k if and only 
if the pattern occurs at position m + d of the text with at most k differences. 

Example 2. Consider x = abbdadcbc, Y = adbbc, and k = 2 again. Figure 4 shows table C, 
where columns are D-diagonals and rows are differences. For D-diagonal d = -2, -1,2, 3, and 4, 
C(2, d) = 5 + d. Thus, the pattern occurs at positions 3, 4, i, 8, and 9 of the text with at most 2 
differences. 

d 
C -3 -2 -1 0 1 2 3 4 5 6 7 

-1 -00 -1 0 1 2 3 4 5 6 
e 0 -00 -1 1 1 2 3 6 5 6 

1 -00 -1 3 3 2 4 6 9 8 
2 -1 3 4 4 4 7 8 9 

Figure 4. Table C( e, d) 

The computation of C(e,d) starts from an entry of D-diagonal d whose value is e. In table 
D the entries of value e - 1 reach column C(e - I,d - 1) on D-diagonal d - 1, column C(e - I,d) 
on D-diagonal d, and column C( e - 1, d + 1) on D-diagonal d + 1. Let col be the maximum of 
C(e - 1, d - 1) + 1, C(e - 1, d) + 1, and C(e - I,d + 1). D(col- d, col) gets value e from one of the 
last entries of value e - 1 on D-diagonals d - 1, d, and d + 1. The entries of value e on D-diagonal 
d continue until there is a mismatch between the pattern and the text on the D-diagonal. C( e, d) 
is the column of the last entry on D-diagonal d whose value is e. For D-diagonal d ~ 0, the 
initial value of the D-diagonal is 0 at column d (Le., D(O, d) = 0), so we assign d - 1 to C( -1, d) 
which indicates that imagina.ry entries of value -1 end at column d - 1. Since the initial value of 
D-diagonal d, -(k + 1) ~ d ~ -1, is Idl at column 0, we assign -1 to C(ldl- 1, d). We also assign 
-00 to C(ldl- 2,d), -(k + 1) ~ d ~ -1, so that they are properly initialized. 

There are three types of D-diagonals with respect to table C. 

(i) For -k ~ d ~ -1, we compute d + k + 1 entries C(e,d), Idl ~ e ~ k, because D-diagonal d 
starts with value Idl. 

(ii) For 0 ~ d ~ n - m, we compute k + 1 entries C(e, d), 0 ~ e ~ k. 
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Algorithm MN2 

/ / initialization / / 
for d+-O to n - m + k + 1 do C(-l,d) +- d - 1; 
for d +- -(k + 1) to -1 do 

C(ldl - 1, d) +- -1; 
C(ldl - 2, d) +- -00; 

end for 

for c ;- 0 to n - m + k do 
for e+-O to k do 

d +- c - e: 
col- max(C(e - I,d - 1) + 1, C(e - 1, d) + 1, C(e -I,d + 1)); 
while col < nand col- d < m and Ycol+l-d = Xcol+l do 

coli- col + 1; 
end while 
C(e,d) +- min(col, m + d); 

end for 
end for 

Figure 5. The algorithm MN2 

(iii) For n-m+l ~ d ~ n-m+k, we compute (n-m+k)-d+l entries C(e,d), 0 ~ e ~ (n-m+k)-d 
because D-diagonal n - m is the last D-diagonal for which we want to compute C, and D­
diagonal d may affect the values of D-diagonal n - m by the difference of type (3). 

Thus the shape of table C is a parallelogram. Figure 5 shows the dynamic programming algorithm 

MN2 which is a variation of Ukkonen's algorithm [8J. It proceeds C-diagonal by C-diagonal. col + 1 
and col + 1 - d are the postions of the text and the pattern where the characters are compared. 

Lemma 2. The characters of the text which are compared vlith the pattern in the computation 

of C-diagonal c are at most Xc+l, .•. ,Xc+m (xC+l, ... ,Xn if c + m > n). 

Proof. We show that in order to compute C( e, c - e) for 0 ~ e ~ k, at most Xc+l, .•. , X m +c- e 

are compared with the pattern. To compute C(O, c), we start with the comparison of Yl and Xc+l. 

and we may con tin ue up to the comparison of Ym and X c+m , which is the last one on D-diagonal 

c. Thus we compare at most X c+l, .•• ,Xc+m with the pattern for C(O,c). To compute C(e,c - e) 
for 0 < e ~ k, the first position of the text to be compared is greater than or equal to c + 1: the 
computation of C(O,c - e) starts at text position c - e + 1, and there is at least one entry of each 
value e', 0 ~ el < e, on D-diagonal c - e. The entries of value e on D-diagonal c - e may continue to 

D(m, m+c-e), the last entry on D-diagonal c- e. Thus, at most Xc+l, ..• ,Xm +c- e are compared 
for C( e, c - e). If any position of the text is greater than n, the last position to be considered should 
he n .• 

Lemma 3. During the computation of C-diagonal c, 
1. the positions of the characters of the text which are actually compared with the pattern are 

nondecreasing, and 
2. the repetitions of text positions occur at most k times. 

Proof. Let j be the text position where a mismatch occurred in the computation of C( e, c - e) 
for 0 ~ e < k; Le., C( e, c - e) = j - 1. We show that the first position of the text to be considered 
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for C(e + l,e - e - 1) is at least j. At the beginning of the computation of C(e + I.e - e - 1), 
col ~ C( e, e - e). The first position of the text col + 1 satisfies the following: 

col + 1 ~ C(e, c - e) + 1 = j. 

Since the repetition of a text position occurs only at the first comparison for C( e, c - e). 1 $ e $ k. 
there are at most k repetitions. • 

By lemma 2 and lemma 3 the computation of each C-diagonal takes time Oem). Since there 
are n - m + k + 1 C-diagonals, algorithm MN2 takes time O(mn). 

3. The New Algorithm 

The algorithm consists of preprocessing of the pattern followed by processing of the text. In the 
preprocessing we build an upper triangular table Prefix(i,j), 1 $ i < j $ m, where Prefix(i,j) is the 
length of the longest common preii.x of Yi ... Ym and Yj . .. Ym' This table is used for the comparison 
of two substrings of the pattern during the text processing. The details of the preprocessing will 
be discussed in the next section. 

The text processing is based on the second algorithm in the previous section. It consists of 
n - m + k + 1 iterations, one for each C -diagonal, as algorithm MN2 does. Whereas algorithm MN2 
relies only on direct comparisons of the text with the pattern, the new algorithm uses both direct 
comparisons and lookups of the Prefix table. If a substring of the text had matches with a substring 
of the pattern, the algorithm looks up the Prefix table for the substring of the text. Otherwise, 
it directly compares the text with the pattern. For the matched part of the text the algorithm 
compares two substrings of the pattern instead of comparing a substring of the pattern with a 
substring of the text. This technique which first appeared in the Knuth-Morris-Pratt algorithm 
[3] was also used in [4] and [7]. 

A reference triple (u, v. w) consists of a start position u, an end position v, and aD-diagonal 
w such that substring Xu ... Xu of the text matches substring Yu-w ••. Yu-w of the pattern and 
Xu+l :f: Yu+l-w· Note that w is the D-diagonal where the match occurred. We call Yu-w'" Yv-w 

the reference of XU'" Xu' If U > v in a triple (u, v, w), the triple is called null, and it indicates that 
[u. v] is an empty interval and Xu+l :f: Yu+l-w. The idea of triples which are equivalent to reference 
triples appeared in [4]. 

At iteration e we compute C-diagonal c which is C(e,c - e), 0 $ e ~ k. Let q be the text 
position such that Xq+l is the rightmost character of the text which was compared with the pattern 
before iteration c (i.e., Xq+l had a mismatch). Suppose that from previous iterations we have k + 1 
reference triples (uo,vo,wo), (UI,Vl,Wt}, ... , (Uk,Vk,Wk) such that the set of intervals [uo,vol. 
[UI, VI], ... , [Uk,Vk] is a partition of interval [e,q] with a possible hole between Ve and Ue+l for 
o ~ e < k (Le., either Ue+l = Ve + 1 or Ue+ I = De + 2). Initially, q = 0 and all triples are (0,0,0). 

Let t be the current text position (col + 1 in Figures 5 and 6) in the computation of C(e,c- e) 
for 0 $ e ~ k. To compute G(e, c - e), we look for the first mismatch Xi :f: Yi-{c-e) for j ~ t. Then 
Gee, c - e) will be j - 1. For notational convenience. let d = c - e hereafter. If t > q, we have no 
reference triples for Xt. So we compare the text with the pattern until there is a mismatch. While 
t ~ q, we compare the pattern with references unless t is the position of a hole, in which case Xt 

is directly compared with the pattern. If t is within the interval of a reference triple (u r , Vr, wr ) 

for some 0 ~ r ~ k, we look up the Prefix table. The current pattern position pis t - d, and the 
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Algorithm KN 

ini tializations 

for c+-O to n - m + k do 
r - 0; 
for e+-O to k do 

d +-- c - e; 
col- max(G(e - I,d -1) + 1, G(e -I,d) + 1, G(e -l,d + 1)); 

found +- false; 
while not found do 

if within( col + 1, k, r) then 
f +-- Vr - col; 
9 ...- Prefix(col + 1 - d, col + 1 - wr ); 

if f = 9 then 
col +- col + f; 

else 
col +- col + min(j,g); 
found - true; 

end if 
else 

if col < nand col- d < m and Ycol+l-d = Xcol+l then 
col -- col + 1; 

else 
found - true; 

end if 
end if 

end while 

G(e. d) +- min(col. m + d); 
update reference triple (ue , Ve, we); 

end for 
end for 

Figure 6. The algorithm KN 

reference position corresponding to t is t - W r . We look at Prefix(p, t - w r ). Let f be Vr - t + 1, the 
length of the reference from t - Wr to Vr - W r • Let 9 be Prefix(p, t - w r ), the length of the longest 
common prefix of YP •.• Ym and Yt-w, .•. Ym' There are three cases: 

(i) f < 9 : text Xt .. · Xt+f-l matches pattern Yp"· Yp+f-l, but Xt+f :f. Yp+f because Xt+f :f. 

Yt+f-w, by the definition of reference triples and Yt+f-w, = Yp+! since f < g. 

(ii) f = 9 : text Xt ••• Xt+!-l matches pattern Yp ... Yp+f-l, and Xt+! mayor may not match Yp+! 

because Xt+f :f. Yt+!-w, and Yt+!-w, :f. Yp+f' 

(iii) f> g: text Xt ... Xt+g-l matches pattern Yp ... Yp+g-l, but Xt+g:f. Yp+g because Xt+g = 
Yt+g-w, and Yt+g-w, :f. Yp+g' 

In cases (i) and (iii) we have found j which is t + min(f, g). In case (ii) we continue at position 

t + f. 
After iteration c we update reference triples for the next iteration. Let Se, 0 ~ e ~ k, be the 
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first position of the text which was considered for G(e,d). G(e,d) itself is the last position where 
a series of matches (possibly null) ended. Namely, x~" ••• , Xe(e,d) had matches with the pattern if 
Se ~ G(e,d). Therefore, triples (Se,G(e,d),d), 0 ~ e ~ k, are reference triples which came from 
the computation of G-diagonal c. We combine the old reference triple (ue, Ve, we) and the reference 
triple (se,G(e,d),d) to obtain the new reference triple (u~,v~,w~) for each 0 ~ e ~ k. Two triples 
(ue, Ve, We) and (Se, G( e, d), d) compete for (U~, v~, w~), and the one with larger end position (Le .. Ve 
vs. G(e,d)) wins. New v~ and w~ are those of the winner- It follows by induction on the iteration 
number that after the update, v~ is the maximum of G(e, i-e), 0 ~ i ~ c. New u~ is c + 1 if e = O. 
If e > 0, there are two cases for u~. In each case we show that (u~, v~, w~) is a reference triple and 
u~ is either v~_l + 1 or V~_l + 2. 

(i) If (ue,ve,we) is the winner,u~ is the maximum ofue and V~_l + 1. 
(a) (u~,v~,w~) is a reference triple because (ue,ve,we ) is a reference triple and u~ ~ U e. 
(b) U e is either Ve-l + 1 or Ve-l + 2 from previous iterations, and Ve-l ~ v~_l by the previous 

competition. Thus, U e > v~_l + 1 only when U e = V e-l + 2 and Ve-l = V~_l' in \vhich 
case Ue = V~_l + 2. 

(ii) If (se,G(e,d),d) is the winner, u~ is the maximum of Se and v~_l + 1. 

(a) (u~,v~,w~) is a reference triple because (se,G(e,d),d) is a reference triple and u~ 2:: Se. 
(b) Se is the maximum of G(e - I,d + 1) + 1, G(e - I,d) + 2, and G(e - I,d - 1) + 2. V~_l is 

the maximum ofG(e-1,d+ 1), G(e-1,d), G(e-1,d-I), ... , G(e-I,-(e-1)). Thus, 
Se > V~_l +1 when Se = G(e-I, d)+2 and V~_l = G(e-I,d) or when Se = G(e-1,d-1)+2 
and v~_l = G(e - l,d - 1). In both cases, Se = v~_l + 2. 

Therefore, (u~,v~,w~), (u~,v~,wD, ... , (u~,v~,w~) are reference triples, and the set of intervals 
[U~, vb], [u~, v~], ... , [u~, v~J is a partition of interval [c + 1, ql with a possible hole bet\veen v~ 

and U~+l for 0 ~ e < k, where q' is the largest end position of the triples (q' may not be v~ if 
triple (u~, v~, w~) is null). Instead of updating all reference triples at the end of iteration c, we can 
update the reference triple (u e , Vel We) after the computation of G( e, d). If the old reference triple 
(ue,ve.we ) is the winner, triple (se,G(e,d),d) is simply discarded. Otherwise, the text position to 
be considered next is greater than G(e,d) by lemma 3.1, so we can update (ue,ve,we) securely. 

Example 3. Consider x = abbdadcbc, y = adbbc, and k = 2. Figure 7 shows the reference triples 
at the beginning of iteration c, 1 ~ c ~ 6. The triples marked with - are null triples. 

Reference triples 
c 0 1 2 

1 (1,1,0) (2,3,-1) (4,3,-2t 
2 (2,1,0)- (2,3,-1) (5,4,-1)-

3 (3,2,2t (3,3,-1) (5,4,-1t 
4 (4,3,3)* (4,4,2) (5,4,-lt 
5 (5,6,4) (7,6,:n- (7,7,2) 
6 (6,6,4) (8,9,4) (10,8,3)* 

Figure 7. Reference triples 

The algorithm KN in Figure 6 shows the text processing. Procedure within(t, k, r) tests if text 
position t is within an interval of reference triples, in which case r is the index of the reference triple 
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procedure within(t,k,r) 

end 

while r ~ k and t > Vr do r +- r + 1; 
if r > k then return(false); 
else 

if t ~ u,. then return(true); 
else return(false); 

end if 

Figure 8. The procedure within(t.k,r) 

vdthin whose interval text position t is. At the beginning of iteration c, r is O. By lemma 3.1, r 

never decreases during iteration c. If t > Vi for all 0 ~ i ~ k, obviously t > q; within( t, k. r) returns 
false. If t ~ q, it increases r by 1 until t ~ V r • If U r ~ t, t is in interval [u r , vr ]; it returns true. 
If t < U r , t is the position of a hole; it returns false. Figure 8 shows the procedure within( t, k, r). 
The text position q is implicitly maintained by the reference triples. 

At iteration c the number of repetitions of the while loop in algorithm KN is the number of 
direct comparisons and lookups of the Prefix table. Direct comparisons are counted in two ways. 

(i) If t > q + 1 (i.e., Xt is a new character), the comparison is charged to text position t. 
(ii) If t ~ q + 1 (i.e., Xt was compared before iteration c), the comparison is charged to C·diagonal 

c. 

\Vhen t > q + 1. there can be at most k repetitions of text position t during iteration c by lemma 
3.2. At the next iteration the text position belongs to (ii). Thus, there are O(kn) comparisons 
for the whole text processing by rule (i). In interval [c, q + 1] there are at most k holes from the 
reference triples and another hole at q + 1. A direct comparison at a hole either increases e (when a 
mismatch occurs) or causes passing the hole (when a match occurs). Hence, O( k) comparisons are 
charged to C·diagonal c by rule (ii). Table lookups are charged to C·diagonal c. A lookup of the 
table increases either e (when f :f; g) or r (when f = g); O(k) lookups are charged to C·diagonal 
c. Since there are n - m + k + 1 C.diagonals, the total time of the text processing is O(kn). 

The text processing maintains table C and k + 1 reference triples. To find edit distances 
(i.e., string matching with k differences) we keep only two previous C·diagonals. Thus, the space 
required for the text processing is O(k). If we want to find both edit distances and edit sequences, 
we need to keep k C-diagonals [8], which leads to O(k2) space. 

4. The Preprocessing 

In the preprocessing of pa.ttern Y we compute upper triangula.r table Prefix(i,j), 1 ~ i < j ~ 
m, where Prefix(i,j) is the length of the longest common prefix of Yi ... Ym and Yj ... Ym' The 
procedure in Figure 9 computes Prefix(i,j) diagonal by diagonal. For each diagonal d it starts to 
compare Yl with Yl+d and proceeds on the diagonal until there is a mismatch Yc :f; Yc+d. Then 
Prefix ( 1,1 + d) = c - 1, Prefix(2,2 + d) = c - 2, ... , Prefix ( c, c + d) = O. It resumes the comparison 
with Yc+l and Yc+l+d, and repeats until it reaches the end of the pattern. If the procedure makes 
c comparisons in the inner while loop, it fills in c entries of the Prefix table. Since there are 
m( m - 1 )/2 entries. the preprocessing takes time and space O( m2 ). An alternate computation of 
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for d - 1 to m - 1 do 

i - 0; 
while i + d < m do 

c -1; 
while i + c + d $ m and Yi+c = Yi+c+d do c - c + 1; 
for j - 1 to c do Prefix( i + j, i + j + d) - c - j; 
i - i + c; 

end while 
end for 

Figure 9. The preprocessing 

the Prefix table which also takes time and space O(m2) appears in [4]. Taking into account both 
preprocessing and text processing, our algorithm takes time O(kn + m 2 ) and space O(m2 ). 

Using a suffix tree and the lowest common ancestor algorithm, the time bound of the prepro­
cessing can be reduced to O(mlogm) for general alphabets or to O(m) for alphabets whose size 
is fixed, and the space bound is reduced to O(m) [2,4,5]. Since, however, the constant hidden in 
the suffix tree and the lowest common ancestor algorithm is quite large, it is mostly of theoretical 
interest. In this case our algorithm takes time O(kn + mlog iii) and space O(m). 

5. Conclusion 

\Ve have presented a new algorithm for the string matching with k differences which improves the 
known algorithms. It is interesting that the time and space bounds of the algorithm are the same as 
those of Galil and Giancarlo's algorithm [1] for the string matching with k mismatches. In addition 
to the bounds. they are similar in that both algorithms use the Prefix table and maintain k + 1 
references (by a D-diagonal and mismatched text positions in [1], and by reference triples in ours). 
They are different in that [1] finds start positions of occurrences of the pattern in the text while 
our algorithm finds end positions of the occurrences, and [1] builds references from one D-diagonal 
while our algorithm builds them from at most k + 1 D-diagonals. 

An additional difference was considered in [6] and [8]. 

(4) Two adjacen t characters ab of the pattern correspond to the transposed characters ba of the 
text. 

Transposition is the edi t operation which corrects the difference of type (4). Our algorithm can be 
extended to include the difference of type (4) wi th some modifications. Since a mismatch Xi =F Yi - d 

may turn out to be a difference of type (4) XiXi+l = Yi+l-dYi-d, 

col - max( C (e - 1, d - 1) + 1, C (e - 1, d) + 1, C (e - 1, d + 1)); 

should be replaced by 

i-C(e-l,d)+l: 
if Yi+l-dYi-d = XiIi+l then i - i + 1; 
col ..... max(i, C(e - 1, d - 1) + 1, C(e - 1, d + 1)); 

Now the first position Se of the text which is considered for C(e,d) can be V~_l + 3 because of 
transposed characters. Thus there are at most two holes between the intervals of reference triples. 
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