
An Improved Algorithm for Approximate String Matching

Zvi Ga1i1

Kunsoo Park

CUCS-468-89

An Improved Algorithm for Approximate String Matching·

Zvi Galil 1.2

Kunsoo Park 1

Jan uary 1989

Abstract: Given a text string, a pattern string, and an integer k, a new algorithm for finding all
occurrences of the pattern string in the text string with at most k differences is presented. Both
its theoretical and practical variants improve the known algorithms .

• Work supported in part by NSF Grants CCR-86-05353 and CCR-88-14977
1 Department of Computer Science, Columbia University, New York, NY 10027
2 Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

1. Introduction

The edit distance between a text string x = XIX2 ••• Xn and a pattern string y = YIY2 ... Yrn over an
alphabet is the minimum number of differences between them. A difference is one of the following.

(1) A character of the pattern corresponds to a different character of the text.

(2) A character of the text corresponds to no character in the pattern.

(3) A character of the pattern corresponds to no character in the text.

An edit opemtion is an operation which corrects a difference. Change, insertion, and deletion are
the edit operations corresponding to the three types of differences. The edit sequence between the
pattern and the text is the sequence of edit operations for converting the pattern to the text which
realizes the edit distance. Algorithms for finding the edit distance and the edit sequence were given

in [9J and [8J.
In this paper we are interested in a more general problem; that is to find all occurrences of the

pattern in the text with at most k differences (k ~ m ~ n), which is called the string matching with
k differences. Closely related is the string matching with k mismatches in which only the difference
of type (1) is allowed. Together these two problems are called approximate string matching.

For the problem of string matching with k differences Landau and Vishkin provided two al­
gorithms [4J and [5J. Their first algorithm consists of text processing of time bound O(k2 n) and
preprocessing of the pattern which has a practical variant and a theoretical variant depending on
the use of a suffix tree and the lowest common ancestor algorithm. Their second algorithm consists
of text processing of time bound O(kn) and preprocessing of both text and pattern by using a suffix
tree and the lowest common ancestor algorithm, which made it less suitable for practical use. The
two algorithms are incomparable for general alphabets. We present a new algorithm whose practi­
cal and theoretical variants improve both [4J and [5J. The algorithm consists of text processing of
time bound O(kn) and preprocessing of the pattern which has practical and theoretical variants as
Landau and Vishkin's first algorithm does. The time bounds of the algorithms are summarized in
Figure 1, where iii is the minimum between m and the size of the alphabet. See [2J for a survey of
approximate string matching.

Algorithm Practical Theoretical

[4J O(k2n + m 2) O(k2n + m log iii)
[5J - O(kn + nlog iii)

New O(kn + m 2
) O(kn + m log iii)

Figure 1. The time bounds of the algorithms

2. O(mn) Algorithms

The ith character of a string x is denoted by Xi. A substring of x from the ith through the jth
characters is denoted by Xi ••• Xj. If the minimum number of differences between the pattern Y
and any Sll bstring of the text x ending at x j is less than k, we say that Y occurs at position j of x
with at most k differences. The problem of string matching with k differences is defined as follows:
Given a text x of length n, a pattern Y of length m, and an integer k (k ~ m ~ n), find all positions

1

Algorithm MNI

for i .- 0 to m do D(i, 0) .- i;
for j .- 0 to n do D(O,j) .- 0;

for j .- 1 to n do
for i .- 1 to m do

row .- D(i - 1,j) + 1;
col .- D (i , j - 1) + 1;
if Yi = Xj then diag .- D(i - l,j - 1);
else diag.- D(i - l,j - 1) + 1;
D(i,j).- min(row,col,diag);

end for
end for

Figure 2. The algorithm MNI

of x \vhere Y occurs with at most k differences. Variations of [9] and [8] solve the string matching
with k differences in time O(mn) as follows. See also [4, 5].

Let D(i,j), 0 :::; i :::; m and 0 :::; j :::; n, be the minimum number of differences between Yl ... Yi

and any substring of x ending at Xj' The differences between Yl ... Yi and Xh ••• Xj for some h,
1 :::; h :::; j are ei ther

(i) differences between Yl ... Yi-l and Xh ••• Xj + a difference of type (3) at Yi, or
(il) differences between Yl ... Yi and Xh ••• Xj-l + a difference of type (2) at xj, or

(iii) differences between YI ... Yi-l and Xh·.· Xj-l + the difference between Yi and Xj.

Thus, D(i.j) is determined by the three en tries D(i-I, j), D(i,j -1), and D(i-1,j -1). D(i, 0) = i
for 0 :::; i :::; m because Yl ... Yi differs from the empty text by i differences of type (3). D(O,j) = 0
for 0 :::; j :::; n because the empty pattern occurs at any position of the text. D(m,j) :::; k if and
only if the pattern occurs at position j of the text with at most k differences. Figure 2 shows the

dynamic programming algorithm MN1 which is a variation of Wagner and Fischer's algorithm [9].
It fills in table D column by column. Since there are O(mn) entries and each entry takes constant
time to be filled in, algorithm MN1 takes time O(mn).

Example 1. Let x = abbdadcbc, Y = adbbc, and k = 2. Figure 3 shows table D(i, j), 0 :::; i :::; 5

and 0 :::; j :::; 9. The pattern occurs at positions 3, 4, 7, 8, and 9 of the text with at most 2
di fferences.

Lemma 1 [8]. For every D(i,j), 1 :::; i:::; m and 1 :::; j :::; n,

D(i,j) = D(i - 1,j - 1) or D(i,j) = D(i - 1,j - 1) + 1.

Let D-diagonal d be the entries of table D(i, j) such that j - i = d. Lemma 1 suggests a

more compact way to store the information of table D. For each D-diagonal we store only the
positions where the value increases. For aD-diagonal d and a difference e, let G(e, d) be the largest
column j such that D(j - d,j) = e. In other words, the entries of value e on D-diagonal d end at
column C(e, d). Note that C(e, d) - d is the row of the last entry on D-diagonal d whose value is

e. Let C-diagonal c be the entries of table G(e,d) such that e + d = c. The definition of G(e,d)
implies that the minimum number of differences between Yl ... YC(e,d)-d and any substring of the

2

0 1 2 3 4 5 6 7 8 9
D a b b d a d c b c

0 0 0 0 0 0 0 0 0 0 0
1 a 1 0 1 1 1 0 1 1 1 1
2 d 2 1 1 2 1 1 0 1 2 2
3 b 3 2 1 1 2 2 1 1 1 2
4 b 4 3 2 1 2 3 2 2 1 2
5 c 5 4 3 2 2 3 3 2 2 1

Figure 3. Table D(i,j)

text ending at XC(e,d) is e, and YC(e,d)+l-d 1 XC(e,d)+l' C(e, d) = m + d for some e ~ k if and only
if the pattern occurs at position m + d of the text with at most k differences.

Example 2. Consider x = abbdadcbc, Y = adbbc, and k = 2 again. Figure 4 shows table C,
where columns are D-diagonals and rows are differences. For D-diagonal d = -2, -1,2, 3, and 4,
C(2, d) = 5 + d. Thus, the pattern occurs at positions 3, 4, i, 8, and 9 of the text with at most 2
differences.

d
C -3 -2 -1 0 1 2 3 4 5 6 7

-1 -00 -1 0 1 2 3 4 5 6
e 0 -00 -1 1 1 2 3 6 5 6

1 -00 -1 3 3 2 4 6 9 8
2 -1 3 4 4 4 7 8 9

Figure 4. Table C(e, d)

The computation of C(e,d) starts from an entry of D-diagonal d whose value is e. In table
D the entries of value e - 1 reach column C(e - I,d - 1) on D-diagonal d - 1, column C(e - I,d)
on D-diagonal d, and column C(e - 1, d + 1) on D-diagonal d + 1. Let col be the maximum of
C(e - 1, d - 1) + 1, C(e - 1, d) + 1, and C(e - I,d + 1). D(col- d, col) gets value e from one of the
last entries of value e - 1 on D-diagonals d - 1, d, and d + 1. The entries of value e on D-diagonal
d continue until there is a mismatch between the pattern and the text on the D-diagonal. C(e, d)
is the column of the last entry on D-diagonal d whose value is e. For D-diagonal d ~ 0, the
initial value of the D-diagonal is 0 at column d (Le., D(O, d) = 0), so we assign d - 1 to C(-1, d)
which indicates that imagina.ry entries of value -1 end at column d - 1. Since the initial value of
D-diagonal d, -(k + 1) ~ d ~ -1, is Idl at column 0, we assign -1 to C(ldl- 1, d). We also assign
-00 to C(ldl- 2,d), -(k + 1) ~ d ~ -1, so that they are properly initialized.

There are three types of D-diagonals with respect to table C.

(i) For -k ~ d ~ -1, we compute d + k + 1 entries C(e,d), Idl ~ e ~ k, because D-diagonal d
starts with value Idl.

(ii) For 0 ~ d ~ n - m, we compute k + 1 entries C(e, d), 0 ~ e ~ k.

3

Algorithm MN2

/ / initialization / /
for d+-O to n - m + k + 1 do C(-l,d) +- d - 1;
for d +- -(k + 1) to -1 do

C(ldl - 1, d) +- -1;
C(ldl - 2, d) +- -00;

end for

for c ;- 0 to n - m + k do
for e+-O to k do

d +- c - e:
col- max(C(e - I,d - 1) + 1, C(e - 1, d) + 1, C(e -I,d + 1));
while col < nand col- d < m and Ycol+l-d = Xcol+l do

coli- col + 1;
end while
C(e,d) +- min(col, m + d);

end for
end for

Figure 5. The algorithm MN2

(iii) For n-m+l ~ d ~ n-m+k, we compute (n-m+k)-d+l entries C(e,d), 0 ~ e ~ (n-m+k)-d
because D-diagonal n - m is the last D-diagonal for which we want to compute C, and D­
diagonal d may affect the values of D-diagonal n - m by the difference of type (3).

Thus the shape of table C is a parallelogram. Figure 5 shows the dynamic programming algorithm

MN2 which is a variation of Ukkonen's algorithm [8J. It proceeds C-diagonal by C-diagonal. col + 1
and col + 1 - d are the postions of the text and the pattern where the characters are compared.

Lemma 2. The characters of the text which are compared vlith the pattern in the computation

of C-diagonal c are at most Xc+l, .•. ,Xc+m (xC+l, ... ,Xn if c + m > n).

Proof. We show that in order to compute C(e, c - e) for 0 ~ e ~ k, at most Xc+l, .•. , X m +c- e

are compared with the pattern. To compute C(O, c), we start with the comparison of Yl and Xc+l.

and we may con tin ue up to the comparison of Ym and X c+m , which is the last one on D-diagonal

c. Thus we compare at most X c+l, .•• ,Xc+m with the pattern for C(O,c). To compute C(e,c - e)
for 0 < e ~ k, the first position of the text to be compared is greater than or equal to c + 1: the
computation of C(O,c - e) starts at text position c - e + 1, and there is at least one entry of each
value e', 0 ~ el < e, on D-diagonal c - e. The entries of value e on D-diagonal c - e may continue to

D(m, m+c-e), the last entry on D-diagonal c- e. Thus, at most Xc+l, ..• ,Xm +c- e are compared
for C(e, c - e). If any position of the text is greater than n, the last position to be considered should
he n .•

Lemma 3. During the computation of C-diagonal c,
1. the positions of the characters of the text which are actually compared with the pattern are

nondecreasing, and
2. the repetitions of text positions occur at most k times.

Proof. Let j be the text position where a mismatch occurred in the computation of C(e, c - e)
for 0 ~ e < k; Le., C(e, c - e) = j - 1. We show that the first position of the text to be considered

4

for C(e + l,e - e - 1) is at least j. At the beginning of the computation of C(e + I.e - e - 1),
col ~ C(e, e - e). The first position of the text col + 1 satisfies the following:

col + 1 ~ C(e, c - e) + 1 = j.

Since the repetition of a text position occurs only at the first comparison for C(e, c - e). 1 $ e $ k.
there are at most k repetitions. •

By lemma 2 and lemma 3 the computation of each C-diagonal takes time Oem). Since there
are n - m + k + 1 C-diagonals, algorithm MN2 takes time O(mn).

3. The New Algorithm

The algorithm consists of preprocessing of the pattern followed by processing of the text. In the
preprocessing we build an upper triangular table Prefix(i,j), 1 $ i < j $ m, where Prefix(i,j) is the
length of the longest common preii.x of Yi ... Ym and Yj . .. Ym' This table is used for the comparison
of two substrings of the pattern during the text processing. The details of the preprocessing will
be discussed in the next section.

The text processing is based on the second algorithm in the previous section. It consists of
n - m + k + 1 iterations, one for each C -diagonal, as algorithm MN2 does. Whereas algorithm MN2
relies only on direct comparisons of the text with the pattern, the new algorithm uses both direct
comparisons and lookups of the Prefix table. If a substring of the text had matches with a substring
of the pattern, the algorithm looks up the Prefix table for the substring of the text. Otherwise,
it directly compares the text with the pattern. For the matched part of the text the algorithm
compares two substrings of the pattern instead of comparing a substring of the pattern with a
substring of the text. This technique which first appeared in the Knuth-Morris-Pratt algorithm
[3] was also used in [4] and [7].

A reference triple (u, v. w) consists of a start position u, an end position v, and aD-diagonal
w such that substring Xu ... Xu of the text matches substring Yu-w ••. Yu-w of the pattern and
Xu+l :f: Yu+l-w· Note that w is the D-diagonal where the match occurred. We call Yu-w'" Yv-w

the reference of XU'" Xu' If U > v in a triple (u, v, w), the triple is called null, and it indicates that
[u. v] is an empty interval and Xu+l :f: Yu+l-w. The idea of triples which are equivalent to reference
triples appeared in [4].

At iteration e we compute C-diagonal c which is C(e,c - e), 0 $ e ~ k. Let q be the text
position such that Xq+l is the rightmost character of the text which was compared with the pattern
before iteration c (i.e., Xq+l had a mismatch). Suppose that from previous iterations we have k + 1
reference triples (uo,vo,wo), (UI,Vl,Wt}, ... , (Uk,Vk,Wk) such that the set of intervals [uo,vol.
[UI, VI], ... , [Uk,Vk] is a partition of interval [e,q] with a possible hole between Ve and Ue+l for
o ~ e < k (Le., either Ue+l = Ve + 1 or Ue+ I = De + 2). Initially, q = 0 and all triples are (0,0,0).

Let t be the current text position (col + 1 in Figures 5 and 6) in the computation of C(e,c- e)
for 0 $ e ~ k. To compute G(e, c - e), we look for the first mismatch Xi :f: Yi-{c-e) for j ~ t. Then
Gee, c - e) will be j - 1. For notational convenience. let d = c - e hereafter. If t > q, we have no
reference triples for Xt. So we compare the text with the pattern until there is a mismatch. While
t ~ q, we compare the pattern with references unless t is the position of a hole, in which case Xt

is directly compared with the pattern. If t is within the interval of a reference triple (u r , Vr, wr)

for some 0 ~ r ~ k, we look up the Prefix table. The current pattern position pis t - d, and the

5

Algorithm KN

ini tializations

for c+-O to n - m + k do
r - 0;
for e+-O to k do

d +-- c - e;
col- max(G(e - I,d -1) + 1, G(e -I,d) + 1, G(e -l,d + 1));

found +- false;
while not found do

if within(col + 1, k, r) then
f +-- Vr - col;
9 ...- Prefix(col + 1 - d, col + 1 - wr);

if f = 9 then
col +- col + f;

else
col +- col + min(j,g);
found - true;

end if
else

if col < nand col- d < m and Ycol+l-d = Xcol+l then
col -- col + 1;

else
found - true;

end if
end if

end while

G(e. d) +- min(col. m + d);
update reference triple (ue , Ve, we);

end for
end for

Figure 6. The algorithm KN

reference position corresponding to t is t - W r . We look at Prefix(p, t - w r). Let f be Vr - t + 1, the
length of the reference from t - Wr to Vr - W r • Let 9 be Prefix(p, t - w r), the length of the longest
common prefix of YP •.• Ym and Yt-w, .•. Ym' There are three cases:

(i) f < 9 : text Xt .. · Xt+f-l matches pattern Yp"· Yp+f-l, but Xt+f :f. Yp+f because Xt+f :f.

Yt+f-w, by the definition of reference triples and Yt+f-w, = Yp+! since f < g.

(ii) f = 9 : text Xt ••• Xt+!-l matches pattern Yp ... Yp+f-l, and Xt+! mayor may not match Yp+!

because Xt+f :f. Yt+!-w, and Yt+!-w, :f. Yp+f'

(iii) f> g: text Xt ... Xt+g-l matches pattern Yp ... Yp+g-l, but Xt+g:f. Yp+g because Xt+g =
Yt+g-w, and Yt+g-w, :f. Yp+g'

In cases (i) and (iii) we have found j which is t + min(f, g). In case (ii) we continue at position

t + f.
After iteration c we update reference triples for the next iteration. Let Se, 0 ~ e ~ k, be the

6

first position of the text which was considered for G(e,d). G(e,d) itself is the last position where
a series of matches (possibly null) ended. Namely, x~" ••• , Xe(e,d) had matches with the pattern if
Se ~ G(e,d). Therefore, triples (Se,G(e,d),d), 0 ~ e ~ k, are reference triples which came from
the computation of G-diagonal c. We combine the old reference triple (ue, Ve, we) and the reference
triple (se,G(e,d),d) to obtain the new reference triple (u~,v~,w~) for each 0 ~ e ~ k. Two triples
(ue, Ve, We) and (Se, G(e, d), d) compete for (U~, v~, w~), and the one with larger end position (Le .. Ve
vs. G(e,d)) wins. New v~ and w~ are those of the winner- It follows by induction on the iteration
number that after the update, v~ is the maximum of G(e, i-e), 0 ~ i ~ c. New u~ is c + 1 if e = O.
If e > 0, there are two cases for u~. In each case we show that (u~, v~, w~) is a reference triple and
u~ is either v~_l + 1 or V~_l + 2.

(i) If (ue,ve,we) is the winner,u~ is the maximum ofue and V~_l + 1.
(a) (u~,v~,w~) is a reference triple because (ue,ve,we) is a reference triple and u~ ~ U e.
(b) U e is either Ve-l + 1 or Ve-l + 2 from previous iterations, and Ve-l ~ v~_l by the previous

competition. Thus, U e > v~_l + 1 only when U e = V e-l + 2 and Ve-l = V~_l' in \vhich
case Ue = V~_l + 2.

(ii) If (se,G(e,d),d) is the winner, u~ is the maximum of Se and v~_l + 1.

(a) (u~,v~,w~) is a reference triple because (se,G(e,d),d) is a reference triple and u~ 2:: Se.
(b) Se is the maximum of G(e - I,d + 1) + 1, G(e - I,d) + 2, and G(e - I,d - 1) + 2. V~_l is

the maximum ofG(e-1,d+ 1), G(e-1,d), G(e-1,d-I), ... , G(e-I,-(e-1)). Thus,
Se > V~_l +1 when Se = G(e-I, d)+2 and V~_l = G(e-I,d) or when Se = G(e-1,d-1)+2
and v~_l = G(e - l,d - 1). In both cases, Se = v~_l + 2.

Therefore, (u~,v~,w~), (u~,v~,wD, ... , (u~,v~,w~) are reference triples, and the set of intervals
[U~, vb], [u~, v~], ... , [u~, v~J is a partition of interval [c + 1, ql with a possible hole bet\veen v~

and U~+l for 0 ~ e < k, where q' is the largest end position of the triples (q' may not be v~ if
triple (u~, v~, w~) is null). Instead of updating all reference triples at the end of iteration c, we can
update the reference triple (u e , Vel We) after the computation of G(e, d). If the old reference triple
(ue,ve.we) is the winner, triple (se,G(e,d),d) is simply discarded. Otherwise, the text position to
be considered next is greater than G(e,d) by lemma 3.1, so we can update (ue,ve,we) securely.

Example 3. Consider x = abbdadcbc, y = adbbc, and k = 2. Figure 7 shows the reference triples
at the beginning of iteration c, 1 ~ c ~ 6. The triples marked with - are null triples.

Reference triples
c 0 1 2

1 (1,1,0) (2,3,-1) (4,3,-2t
2 (2,1,0)- (2,3,-1) (5,4,-1)-

3 (3,2,2t (3,3,-1) (5,4,-1t
4 (4,3,3)* (4,4,2) (5,4,-lt
5 (5,6,4) (7,6,:n- (7,7,2)
6 (6,6,4) (8,9,4) (10,8,3)*

Figure 7. Reference triples

The algorithm KN in Figure 6 shows the text processing. Procedure within(t, k, r) tests if text
position t is within an interval of reference triples, in which case r is the index of the reference triple

7

procedure within(t,k,r)

end

while r ~ k and t > Vr do r +- r + 1;
if r > k then return(false);
else

if t ~ u,. then return(true);
else return(false);

end if

Figure 8. The procedure within(t.k,r)

vdthin whose interval text position t is. At the beginning of iteration c, r is O. By lemma 3.1, r

never decreases during iteration c. If t > Vi for all 0 ~ i ~ k, obviously t > q; within(t, k. r) returns
false. If t ~ q, it increases r by 1 until t ~ V r • If U r ~ t, t is in interval [u r , vr]; it returns true.
If t < U r , t is the position of a hole; it returns false. Figure 8 shows the procedure within(t, k, r).
The text position q is implicitly maintained by the reference triples.

At iteration c the number of repetitions of the while loop in algorithm KN is the number of
direct comparisons and lookups of the Prefix table. Direct comparisons are counted in two ways.

(i) If t > q + 1 (i.e., Xt is a new character), the comparison is charged to text position t.
(ii) If t ~ q + 1 (i.e., Xt was compared before iteration c), the comparison is charged to C·diagonal

c.

\Vhen t > q + 1. there can be at most k repetitions of text position t during iteration c by lemma
3.2. At the next iteration the text position belongs to (ii). Thus, there are O(kn) comparisons
for the whole text processing by rule (i). In interval [c, q + 1] there are at most k holes from the
reference triples and another hole at q + 1. A direct comparison at a hole either increases e (when a
mismatch occurs) or causes passing the hole (when a match occurs). Hence, O(k) comparisons are
charged to C·diagonal c by rule (ii). Table lookups are charged to C·diagonal c. A lookup of the
table increases either e (when f :f; g) or r (when f = g); O(k) lookups are charged to C·diagonal
c. Since there are n - m + k + 1 C.diagonals, the total time of the text processing is O(kn).

The text processing maintains table C and k + 1 reference triples. To find edit distances
(i.e., string matching with k differences) we keep only two previous C·diagonals. Thus, the space
required for the text processing is O(k). If we want to find both edit distances and edit sequences,
we need to keep k C-diagonals [8], which leads to O(k2) space.

4. The Preprocessing

In the preprocessing of pa.ttern Y we compute upper triangula.r table Prefix(i,j), 1 ~ i < j ~
m, where Prefix(i,j) is the length of the longest common prefix of Yi ... Ym and Yj ... Ym' The
procedure in Figure 9 computes Prefix(i,j) diagonal by diagonal. For each diagonal d it starts to
compare Yl with Yl+d and proceeds on the diagonal until there is a mismatch Yc :f; Yc+d. Then
Prefix (1,1 + d) = c - 1, Prefix(2,2 + d) = c - 2, ... , Prefix (c, c + d) = O. It resumes the comparison
with Yc+l and Yc+l+d, and repeats until it reaches the end of the pattern. If the procedure makes
c comparisons in the inner while loop, it fills in c entries of the Prefix table. Since there are
m(m - 1)/2 entries. the preprocessing takes time and space O(m2). An alternate computation of

8

for d - 1 to m - 1 do

i - 0;
while i + d < m do

c -1;
while i + c + d $ m and Yi+c = Yi+c+d do c - c + 1;
for j - 1 to c do Prefix(i + j, i + j + d) - c - j;
i - i + c;

end while
end for

Figure 9. The preprocessing

the Prefix table which also takes time and space O(m2) appears in [4]. Taking into account both
preprocessing and text processing, our algorithm takes time O(kn + m 2) and space O(m2).

Using a suffix tree and the lowest common ancestor algorithm, the time bound of the prepro­
cessing can be reduced to O(mlogm) for general alphabets or to O(m) for alphabets whose size
is fixed, and the space bound is reduced to O(m) [2,4,5]. Since, however, the constant hidden in
the suffix tree and the lowest common ancestor algorithm is quite large, it is mostly of theoretical
interest. In this case our algorithm takes time O(kn + mlog iii) and space O(m).

5. Conclusion

\Ve have presented a new algorithm for the string matching with k differences which improves the
known algorithms. It is interesting that the time and space bounds of the algorithm are the same as
those of Galil and Giancarlo's algorithm [1] for the string matching with k mismatches. In addition
to the bounds. they are similar in that both algorithms use the Prefix table and maintain k + 1
references (by a D-diagonal and mismatched text positions in [1], and by reference triples in ours).
They are different in that [1] finds start positions of occurrences of the pattern in the text while
our algorithm finds end positions of the occurrences, and [1] builds references from one D-diagonal
while our algorithm builds them from at most k + 1 D-diagonals.

An additional difference was considered in [6] and [8].

(4) Two adjacen t characters ab of the pattern correspond to the transposed characters ba of the
text.

Transposition is the edi t operation which corrects the difference of type (4). Our algorithm can be
extended to include the difference of type (4) wi th some modifications. Since a mismatch Xi =F Yi - d

may turn out to be a difference of type (4) XiXi+l = Yi+l-dYi-d,

col - max(C (e - 1, d - 1) + 1, C (e - 1, d) + 1, C (e - 1, d + 1));

should be replaced by

i-C(e-l,d)+l:
if Yi+l-dYi-d = XiIi+l then i - i + 1;
col max(i, C(e - 1, d - 1) + 1, C(e - 1, d + 1));

Now the first position Se of the text which is considered for C(e,d) can be V~_l + 3 because of
transposed characters. Thus there are at most two holes between the intervals of reference triples.

9

References

[1] Galil, Z., and Giancarlo, R. Improved string matching with k mismatches. SIGACT News 17 (1986),
52-54.

[2] Galil, Z., and Giancarlo, R. Data structures and algorithms for approximate string matching. Jour­
nal of CompJexity 4 (1988), 33-72.

[3] Knuth, D. E., 1forris, J. H., and Pratt, V. R. Fast pattern matching in strings. SIAM J. Comput.
6 (1977), 323-350.

[4] Landau, G. M., and Vishkin, U. Fast string matching with k differences. J. Comput. System Sci.
37 (1988), 63-78.

[5] Landau, G. M., and Vishkin, U. Fast parallel and serial approximate string matching. Journal of
Algorithms 10 (1989).

[6] Lowrance, R., and Wagner, R. A. An extension of the string-to-string correction problem. J. Assoc.
Comput. Mach. 22 (1975), 177-183.

[7] Main, M. G., and Lorentz, R. J. An O(nlogn) algorithm for finding all repetitions in a string.
Journal oL4lgorithms 5 (1984), 422-432.

[8] Ukkonen, E. Algorithms for approximate string matching. Information and Control 64 (1985),
100-118.

[9] \Vagner, R. A., and Fischer, M. J. The string-to-string correction problem. J. Assoc. Comput.
Mach. 21 (1974), 168-173.

10

