A Fast Bit-Vector Algorithm for Approximate String Matching
Based on Dynamic Programming

Gene Myers *

March 27, 1998

Abstract

The approximate string matching problem is to find all locations at which a query of length
m matches a substring of a text of length n with k-or-fewer differences. Simple and practical bit-
vector algorithms have been designed for this problem, most notably the one used in agrep. These
algorithms compute a bit representation of the current state-set of the k-difference automaton
for the query, and asymptotically run in O(nmk/w) time where w is the word size of the machine
(e.g. 32 or 64 in practice). Here we present an algorithm of comparable simplicity that requires
only O(nm/w) time by virtue of computing a bit representation of the relocatable dynamic
programming matrix for the problem. Thus the algorithm’s performance is independent of k,
and 1t is found to be more efficient than the previous results for many useful choices of £ and
small m.

Moreover, because the algorithm is not dependent on %, it can be used to rapidly compute
blocks of the dynamic programming matrix as in the 4-Russians algorithm of Wu, Manber, and
Myers. This gives rise to an O(kn/w) expected-time algorithm for the case where m may be
arbitrarily large. In practice this new algorithm, which computes a region of the d.p. matrix in
1 x w blocks using the basic algorithm as a subroutine, is significantly faster than our previous
4-Russians algorithm, which computes the same region in 1 x 5 blocks using table lookup. This
performance improvement yields a code which is superior to all existing algorithms except for
some filtration algorithms when k/m is sufficiently small.

1 Introduction

The problem of finding substrings of a text similar to a given query string is a central problem
in information retrieval and computational biology, to name but a few applications. It has been
intensively studied over the last twenty years. In its most common incarnation, the problem is to
find substrings that match the query with k or fewer differences. The first algorithm addressing
exactly this problem is attributable to Sellers [Sel80] although one might claim that it was effectively
solved by work in the early 70’s on string comparison. Sellers algorithm requires O(mn) time where
m is the length of the query and n is the length of the text. Subsequently this was refined to O(kn)
expected-time by Ukkonen [Ukk85], then to O(kn) worst-case time, first with O(n) space by Landau
and Vishkin [LV88], and later with O(m?) space by Galil and Park [GP90].

*Dept. of Computer Science, University of Arizona Tucson, AZ 85721 (e-mail: gene@cs.arizona.edu). Partially
supported by NLM grant L.LM-04960

Of these early algorithms, the O(kn) expected-time algorithm was universally the best in prac-
tice. The algorithm achieves its efliciency by computing only the region or zone of the underlying
dynamic programming matrix that has entries less than or equal to k. Further refining this basic
design, Chang and Lampe [CL92] went on to devise a faster algorithm which is conjectured to run
in O(kn/\/o) expected-time where o is the size of the underlying alphabet. Next, Wu, Manber,
and this author [WMM96] developed a practical realization of the 4-Russians approach [MP80] that
when applied to Ukkonen’s zone, gives an O(kn/logs) expected-time algorithm, given that O(s)
space can be dedicated to a universal lookup table. In practice, these two algorithms are always
superior to Ukkonen’s zone design, and each faster than the other in different regions of the (k, o)
input-parameter space.

At around the same time, another new thread of practice-oriented results exploited the hardware
parallelism of bit-vector operations. Letting w be the number of bits in a machine word, this
sequence of results began with an O(n[m/w]) algorithm for the exact matching case by Baeza-
Yates and Gonnet [BYG92], and culminated with an O(kn[m/w]) algorithm for the k-differences
problem by Wu and Manber [WM92]. These authors were interested specifically in text-retrieval
applications where m is quite small, small enough that the expression between the ceiling braces is 1.
Under such circumstances the algorithms run in O(n) or O(kn) time, respectively. More recently,
Baeza-Yates and Navarro [BYN96] have realized an O(n[km/w]) variation on the Wu/Manber
algorithm, implying O(n) performance when mk = O(w).

The final recent thrust has been the development of filter algorithms that eliminate regions of
the text that cannot match the query. The results here can broadly divided into on-line algorithms
(e.g. [WM92, CL94]) and off-line algorithms (e.g. [Mye94]) that are permitted to preprocess a
presumably static text before performing a number of queries over it. After filtering out all but
a presumably small segment of the text, these methods then invoke one of the algorithms above
to verify if a match is actually present in the portion that remains. The filtration efficiency (i.e.
percentage of the text removed from consideration) of these methods increases as the mismatch
ratio e = k/m approaches 0, and at some point, dependent on o and the algorithm, they provide
the fastest results in practice. However, improvements in verification-capable algorithms are still
very desirable, as such results improve the filter-based algorithms when there are a large number of
matches, and also are needed for the many applications where e is such that filtration is ineffective.

In this paper, we present two verification-capable algorithms, inspired by the 4-Russians ap-
proach, but using bit-vector computation instead of table lookup. First, we develop an O(n[m/w])
bit-vector algorithm for the approximate string matching problem. This is asymptotically superior
to prior bit-vector results, and in practice will be shown to be superior to the other bit-vector
algorithms for all but a few choices of m and k. In brief, the previous algorithms use bit-vectors to
model and maintain the state set of a non-deterministic finite automaton with (m+1)(k+ 1) states
that (exactly) matches all strings that are k-differences or fewer from the query. Our method uses
bit-vectors in a very different way, namely, to encode the list of m arithmetic differences between
successive entries in a column of the dynamic programming matrix. Our second algorithm comes
from the observation that our first result can be thought of as a subroutine for computing any 1 x w
block of a d.p. matrix in O(1) time. We may thus embed it in the zone paradigm of the Ukkonen
algorithm, exactly as we did with the 4-Russians technique [WMM96]. The result is an O(kn/w)
expected-time algorithm which we will show in practice outperforms both our previous work and
that of Chang and Lampe [CL92] for all regions of the (k, o) parameter space.

2 Preliminaries

Assume the query sequence is P = p1ps...pnm, the text is T' = {1t5 .. .t,, and that we are given a
positive threshold k& > 0. Further let §(A, B) be the unit cost edit distance between strings A and
B. The approximate string matching problem is to find all positions j in T such that there is a
suffix of T'1..j] matching P with k-or-fewer differences, i.e., j such that min, §(P,Tg..j]) < k.

The classic approach to this problem [Sel80] is to compute an (m + 1) X (n + 1) dynamic
programming (d.p.) matriz C[0..m,0..n] for which C[¢, j] = min, §(P[1..¢], T[g..j]) after an O(mn)
time computation using the well-known recurrence:

Cli,j] = min{Cli—1,7— 1]+ (if p; =¢t; then 0 else 1),Ce —1,7]+ 1,Cli,j— 1]+ 1} (1)

subject to the boundary condition that C[0, j] = 0 for all j. It then follows that the solution to the
approximate string matching problem is all locations j such that C[m, j] < k.

A basic observation is that the computation above can be done in only O(m) space because
computing column C; = < C[i, j] >, only requires knowing the values of the previous column
C;—1. This leads to the important conceptual realization that one may think of a column C; as a
state of an automaton, and the algorithm as advancing from state C';_; to state C; as its “scans”
symbol t; of the text. The automaton is started in the state Cp =< 0,1,2,...,m > and any state
whose last entry is k-or-fewer is considered to be a final state.

The automaton just introduced has at most 3" states. This follows because the d.p. matrix C'
has the property that the difference between adjacent entries in any row or any column is either
1, 0, or —1. Formally, define the horizontal delta Ah[i, 5] at (¢,7) as C[i, j] — C[¢, 7 — 1] and the
vertical delta Av[i, j] as C[i, j]— C[i — 1, j] for all (¢,7) € [1,m] x [1,n].

Lemma 1 [MP80, Ukk85]: For all i, j: Auv[i, j], Ahli, j] € {—1,0,1}.

It follows that to know a particular state C; it suffices to know the relocatable column Av; =
< Avli, j] >™, because C[0, j] = 0 for all j.

We can thus replace the problem of computing €' with the problem of computing the relocatable
d.p. matriz Av. One potential difficulty is that determining if Av; is final requires O(m) time if
one computes the sum 3; Av;[¢] = C[m, j] explicitly in order to do so. Our algorithm will compute
a block of vertical deltas in O(1) time, and thus cannot afford to compute this sum. Fortunately,
one can simultaneously maintain the value of Score; = C[m, j] as one computes the Av;s using
the fact that Scorey = m and Score; = Score;j_; + Ah[m, j]. Note that the horizontal delta in the
last row of the matrix is required, but the horizontal delta at the end of a block of vertical delta’s
will be seen to be a natural by-product of the block’s computation. Figure 1 illustrates the basic
dynamic programming matrix and its formulation in relocatable terms.

3 The Basic Algorithm

Representation. We seek to compute successive AU;S in O(1) time using bit-vector operations
under the assumption that m < w. We begin by choosing to represent the column Av; with two
bit-vectors Pv; and Mv;, whose bits are set according to whether the corresponding delta in Aw;
is +1 or —1, respectively. Formally, Pv;(i) = (Av[i, j] = +1) and Mv;(i) = (Avli, j] = —1),
where the notation W (i) denotes the i** bit of the integer W. Note that Av[i, j] = 0 exactly when
not (Pv; (i) or Mv;(t)) is true.

D.P. Matrix Relocatable D.P. Matrix
' ”()e [0] [0] [0] [0] [0] [0] [0] [0] [O]

©
§esesscseReiiiss
@—@—©2@Q®
600680808
6800008068
......9.9.9.@ (0] [0 M [M [M [M] \ﬁl®\ﬂ®\ﬂ

\ Legend: | T
=<01222, > V= <+1,+1,0,0,-1>
O Cevaue Cg=<0,1222,1 Avg 1,+1,0,0,-1

=<P,P,0,0M>
[] Ahvalue P=+1
<> Av-value M=-1

© 9 (R
X © 96
X &6
X © o6
© @ o

<D
<D
S
e
@<

Figure 1: Dynamic Programming (D.P.) Matrices for P = match and T' = remachine.

Cell Structure. Consider an individual cellof the d.p. matrix consisting of the square (i—1, j—1),
(1=1,7), (¢,7—1),and (¢, 7). There are two vertical deltas, Av,,, = Av[i, 7] and Ah;, = Av[i, j—1],
and two horizontal deltas, Ah,,; = Ahli, j] and Ah;, = Ah[i — 1,], associated with the sides of
this cell as shown in Figure 2(a). Further define Ly = Eg[i, j] to be 1 if p; = ¢; and 0 otherwise.
Using the definition of the deltas and the basic recurrence for C-values it follows that:

AUout = min{_E(L Avin7 Ahzn} + (1 - Ahzn) (2&)
Ahout = min{_E(L Avin7 Ahzn} + (1 - szn) (Qb)

It is thus the case that one may view Av;,, Ah;,, and Fg as inputs to the cell at (7, 7), and Av,y
and Ah,,; as its outputs.

i1y Bin Gy Xv
Qut| O 1
Avi,| Eq | Avgy - out PP
In P 0
. . 0 M
(I 11-1) (l,])
Ahout
(@ (b) ()

Figure 2: D.P. Cell Structure and Input/Output Function.

Cell Logic. Observe that there are 3 choices for each of Av;, and Ah;, and 2 possible values
for Fy. Thus there are only 18 possible inputs for a given cell. The crucial idea that lead to this
paper was the simple observation that in such a case one must be able to devise logical circuits
or formulas capturing the functional dependence of the two outputs on the three inputs, and that
these formulas apply universally to all cells.

As Figure 2(b) suggests, we find it conceptually easiest to think of Aw,,; as a function of Ah;,
modulated by an auxiliary boolean value Xv = (Eq or (Av;, = —1)) capturing the net effect of

both Aw;, and Fg on Awv,,:. With a brute force enumeration of the 18 possible inputs, one may
verify the correctness of the table in Figure 2(c) which describes Av,, as a function of Ah;, and
Xv. In the table, the value —1 is denoted by M and +1 by P, in order to emphasize the logical,
as opposed to the numerical, relationship between the input and output. Let Pr;,, and Mz;, be
the bit values encoding Az, i.e. Pri, = (Ax;, = +1) and Mz, = (Az;,, = —1). By definition
Xv = Fq or Mv;, and from the the table one can verify that:

(Pooyt, Moys) = (Mhyy, or not (Xv or Phyy,), Phi, and Xv) (3a)
By symmetry, given Xh = (Eq or Mh;,), it follows that:
(Phouty, Mhowt) = (Mug, or not (Xh or Pvy,), Pog, and Xh) (3b)

Alphabet Preprocessing. To evaluate cells according to the treatment above, one needs the
boolean value Ey[7,j] for each cell (4,j). In terms of bit-vectors, we will need an integer Fy;
for which Fg;(i) = (p; = t;). Computing these integers during the scan would require O(m)
time and defeat our goal. Fortunately, in a preprocessing step, performed before the scan begins,
we can compute a table of the vectors that result for each possible text character. Formally,
if ¥ is the alphabet over which P and T originate, then we build an array Peq[X] for which:
Peq[s](i) = (pi = s). Constructing the table can easily be done in O(|X|m) time and it occupies
O(|X]) space (continuing with the assumption that m < w). We are assuming, or course, that X is
finite. At a small loss in efficiency our algorithm can be made to operate over infinite alphabets.

The Scanning Step. The central inductive step is to compute Score; and the bit-vector pair
(Pv;, Mv;) encodingAvw;, given the same information at column j —1 and the symbol ¢;. In keeping
with the automata conception, we refer to this step as scanning t; and illustrate it in Figure 3 at
the left. The basis of the induction is easy as we know at the start of the scan that Puy(i) = 1,
Muvy (i) = 0, and Scoreg = m. A scanning step is accomplished in two stages as illustrated in Figure

3:

1. First, the vertical delta’s in column j — 1 are used to compute the horizontal delta’s at the
bottom of their respective cells, using formula (3b).

2. Then, these horizontal delta’s are used in the cell below to compute the vertical deltas in
column j, using formula (3a).

In between the two stages, the Score in the last row is updated using the last horizontal delta now
available from the first stage, and then the horizontal deltas are all shifted by one, pushing out the
last horizontal delta and introducing a 0-delta for the first row. We like to think of each stage as a
pivot, where the pivot of the first stage is at the lower left of each cell, and the pivot of the second
stage is at the upper right. The delta’s swing in the arc depicted and produce results modulated
by the relevant X values.

The logical formulas (3) for a cell and the schematic of Figure 3, lead directly to the formulas
below for accomplishing a scanning step. Note that the horizontal deltas of the first stage are
recorded in a pair of bit-vectors, (FPh;, Mh;), that encodes horizontal deltas exactly as (Pv;, Mv;)
encodes vertical deltas, i.e., Ph;(¢) = (AR[t, j] = +1) and Mh; (i) = (Ah[7, j] = —1).

Ph;(i) = Mv;_1(2) or not (Xh;(i) or Pvj_y(1))

Mhj(i) = Poj_1(i) and Xh;(i) (Stage 1)

Scan t;: Stage 1: Stage 2:

0 (0.0)
}){ Mv.Pv)

J 2 b o vy
(Mh,Ph) :
}_‘ (Mv.PY) k @) h . ‘[(MVPV)
: (Mh,Ph)

(M h Ph)

}{ "

(Mh Ph)

Figure 3: The Two Stages of a Scanning Step.

Score; = Scorej_y + (1 if Phj(m)) — (1 if Mh;(m)) (4)

Phi(0) = Mh;(0) = 0
Po;(¢) = Mh;(i—1) or not (Xv;(i) or Ph;(i — 1)) (Stage 2)
Mv; (i) = Ph;(i— 1) and Xv;(1)

At this point, it is important to understand that the formulas above specify the computation of bits
in bit-vectors, all of whose bits can be computed in parallel with the appropriate machine operations.
For example in ', we can express the computation of all of Ph; as ‘Ph = Mv | = (Xh | Pv)’.

The X-Factors. The induction above is incomplete as we have yet to show how to compute Xv;
and Xh;. By definition Xv; (i) = Peg[t;](i) or Mv;_1(¢) and Xh;(i) = Peq[t;](i) or Mh;(i—1) where
Peq is the precomputed table supplying Fg bits. The bltvector Xv; can be directly computed at
the start of the scan step as the vector Mv;_; is input to the step. On the other hand, computing
Xh; requires the value of Mh; which in turn requires the value of Xh;! We thus have a cyclic
dependency which must be unwound. Lemma 2 gives such a formulation of X%; which depends
only on the values of Pv;_y and Pegl[t;].

Lemma 2: Xh;(i) = 3k <4, Peq[t;](k) and Vo € [k, i — 1], Pvo;_1(z)?. (5)

Basically, Lemma 2 says that the i** bit of Xh is set whenever there is a preceding Fy bit, say
the k' and a run of set Pv bits covering the interval [k, i — 1]. In other words, one might think of
the Eg bit as being “propagated” along a run of set Pv bits, setting positions in the Xh vector as it
does so. This brings to mind the addition of integers, where carry propagation has a similar effect
on the underlying bit encodings. Figure 4 illustrates the way we use addition to have the desired
effects on bits which we summarize as Lemma 3 below, and which we prove precisely in the full
paper.

Lemma 3: If X = ((E&P) + P)" P)|E then X (i) = 3k <4, E(k) and Vz € [k, i — 1], P(z).

Tn the more general case where the horizontal delta in the first row can be —1 or +1 as well as 0, these two bits
must be set accordingly.
%In the more general case where the horizontal delta in the first row can be —1 or +1 as well as 0, Peq[t;](1) must

be replaced with Peq[t;](1) or Mh;(0).

Goal: Our Method:

{00011111111000 P { 00011111111000 P |

\
|
I
|
|
I
|

1 00100100100010 E & +(E&P)
100111111100010 X=f?(P, E)
e -1 00100100011000
_ AFdsSat “r
,/ S
; 00011111111000 P |
| ' 00111011100000
é +E i ! Reset
y Too far ! : 6 | E
01000100011010 |
Carry | 1 00111111100010

Figure 4: lustration of Xv computation.

The Complete Algorithm. 1t now remains just to put all the pieces together. Figure 5 gives a
complete specification in the style of a C program to give one a feel for the simplicity and efficiency
of the result.

1. Precompute Peq[X]

2. Pv =17

3. Mv =0

4. Score =m

5. forj=1, 2,...ndo

6. { Eq = Peqli;]

7. Xv =Eq | M

8. Xh = (((Eq & Pv) + Pv) = Pv) | Eq
9 Ph =Mv | © (Xh | Pv)

10 Mh = Pv & Xh

11. if Ph & 10™"! then

12. Score += 1

13. else if Mh & 10™! then

14. Score -= 1

15. Ph <<= 1

16. Pv = (Mh << 1) | © (Xv | Ph)
17. Mv = Ph & Xv

18. if Score < k then

19. print "Match at " - j

Figure 5: The Basic Algorithm.

The complexity of the algorithm is easily seen to be O(mo + n) where o is the size of the
alphabet . Indeed only 17 bit operations are performed per character scanned. This is to be
contrasted with the Wu/Manber bit-vector algorithm [WM92] which takes O(mo + kn) under the
prevailing assumption that m < w. The Baeza-Yates/Navarro bit-vector algorithm [BYN96] has
this same complexity under this assumption, but improves to O(mo + n) time when one assumes
m < 2y/w—2 (e.g., m <9 when w = 32 and m < 14 when w = 64).

Finally, consider the case where m is unrestricted. Such a situation can easily be accommodated
by simply modeling an m-bit bit-vector with [m/w] words. An operation on such bit-vectors takes
O(m/w) time. It then directly follows that the basic algorithm of this section runs in O(mo +
nm/w) time and O(om/w) space. This is to be contrasted with the previous bit-vector algorithms

[WM92, BYNOG6], both of which take O(mo + knm/w) time asymptotically. This leads us to say
that our algorithm represents a true asymptotic improvement over previous bit-vector algorithms.

4 The Unrestricted Algorithm.

The Blocks Model. Just as we think of the computation of a single cell as realizing an input/output
relationship on the four deltas at its borders, we may more generally think of the computation of
a u X v rectangular subarray or block of cells as resulting in the output of deltas along its lower
and right boundary, given deltas along its upper and left boundary as input. This is the basic
observation behind Four Russians approaches to sequence comparison [MP80, WMM96], where the
output resulting from every possible input combination is pretabulated and then used to effect the
computation of blocks as they are encountered in a particular problem instance. We can similarly
modify our basic algorithm to effect the O(1) computation of 1 xw blocks (via bitvector computation
as opposed to table lookup), given that we are careful to observe that in this context the horizontal
input delta may be —1 or +1, as well as 0.

There are several sequence comparison results that involve computing a region or zone of the
underlying dynamic programming matrix, the first of which was [Ukk85]. Figure 6 depicts such
a hypothetical zone and a tiling of it with 1 x w blocks. Provided that one can still effectively
delimit the zone while performing a block-based computation, using such a tiling gives a factor
w speedup over the underlying zone algorithm. For example, we take Ukkonen’s O(kn) expected-
time algorithm and improve it to O(kn/w) below. Note that blocks are restricted to one of at most
bar = [m/w] levels, so that only O(om/w) Fg-vectors need be precomputed. Further note that
any internal boundary of the tiling has a delta of 1.

owwin Blin oww)) ZJ)r e 1

1*

1* 1* 1* 2

AV | 1xw | AVgy

1* 3
l*

(bwi-) AR (bwi)

1*

4

1l
o
3

2

A Level-b 1 x w Block : w

Figure 6: Block-Based Dynamic Programming.

A Block-Based Algorithm for Approximate String Matching. Ukkonen improved the expected
time of the standard O(mn) d.p. algorithm for approximate string matching, by computing only
the zone of the d.p. matrix consisting of the prefix of each column ending with the last & in the
column. That is, if 2; = max{¢ : C(¢,j) < k} then the algorithm takes time proportional to
the size of the zone Z(k) = U7_o{(?,7) : ¢ € [0,2;]}. It was shown in [CL92] that the expected
size of Z(k) is O(kn). Computing just the zone is easily accomplished with the observation that
z;=max{t: i< z;_1+1and C(7,j) < k}.

A block-based algorithm for this O(kn) expected-time algorithm was devised and presented

in an earlier paper of ours [WMMO96] where the blocks were computed in O(1) time using a 4-
Russians lookup table. What we are proposing here, is to do exactly the same thing, except to use
our bit-vector approach to compute 1 x w blocks in O(1) time. As we will see in the next section,
this results in almost a factor of 4-5 improvement in performance, as the 4-Russians table lookups
were limited to 1 x 5 blocks and the large tables involved result in much poorer cache coherence,
compared to the bit-vector approach where all the storage required typically fits in the on-board
CPU cache. We describe the small modifications necessary to tile Z(k) in the full paper.

5 Some Empirical Results

We report on two sets of comparisons run on a Dec Alpha 4/233 for which w = 64. The first is a
study of our basic bit-vector algorithm and the two previous bit-vector results [WM92, BYN96] for
approximate string matching when m < w. The second set of experiments involves all verification-
capable algorithms that work when k& and m are unrestricted. Experiments to determine the range
of k/m for which filter algorithms are superior have not been performed in this preliminary study.

The expected time complexity of each algorithm, A, is of the form ©(f4(m,k,o)n) and our
experiments are aimed at empirically measuring f4. In the full paper we will detail the specific
trials, noting here only that (a) their design guarantees a measurement error of at most 2.5%, and
(b) the search texts were obtained by randomly selecting characters from an alphabet of size o with
equal probability.

Our first set of experiments compare the three bit-vector algorithms for the case where m < 64,
and the results are shown in Figure 7. At left we show our best estimate for f4 for each algorithm.
For our basic algorithm, f4 is a constant as is also true of the Baeza-Yates and Navarro algorithm
save that it can only be applied to the region of the parameter space where (m — k)(k + 2) < 64.
Their algorithm can be extended to treat a greater range of k and m by linking automata together,
but since such an extension will run at least twice as slowly as the case measured, it clearly will
not be competitive with our basic algorithm in the remainder of the region. The Wu and Manber
algorithm performs linearly in k& and a least-squares regression line fits the results of 90 trials very
well, save that the fit is off by roughly 9% for the first two values of k (see Figure 7). We hypothesize
that this is due to the effect of branch-prediction in the instruction pipeline hardware. Figure 7
depicts the values of & and m for which each method is superior to the others. In the zone where
the Baeza-Yates and Navarro algorithm requires no automata linking it is 12% faster than our basic
algorithm, and for k = 0 the algorithm of Manber and Wu is 29% faster. For the remaining 1832
out of 2080 (88%) choices of m and k, our basic algorithm gives the best performance.

Our second set of experiments are aimed at comparing verification-capable algorithms that can
accommodate unrestricted choices of k£ and m. In this case, we need only consider our block-
based algorithm and the results of [CL92] and [WMMO96], as all other competitors are already
known to be dominated in practice by these two [WMM96]. These three algorithms are all zone-
based and when m is suitably large, the zone never reaches the last row of the d.p. matrix, so
that running time does not depend on m. We set m = 400 for all trials and ran 107 trials with
(k,0) €40,1,2,...6,8,10,...20,24,28...60} x {2,4,8,16,32} U {64,68,72,...120} x {32}. For
each of the five choices of o, Figure 8 has a graph of time as a function of k, one curve for each
algorithm. From this figure it is immediately clear that our block-based algorithm is superior to
the others for all choices of k and ¢ we tried. The Change and Lampe algorithm may eventually
overtake ours but it did not do so with ¢ = 95, the number of printable ASCII characters.

63

B Bacza YatesNavarro
L] wuwManber
[] Basic

Basic: .204n

Baeza- Y ates/Navarro: .181n
(when (m-k)(k+2) < 64)

Wu/Manber: (.159+.079k)n k
k=0: .146n
k=1: .225n
k=2: .316n
k=3: .404n
0
1 m 64

Figure 7: Performance Summary and Regions of Superiority for Bit-Vector Algorithms.

References

[BYG92] R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching. Communications of the
ACM, 35:74-82, 1992.

[BYN96] R.A. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. In Proc.
7th Symp. on Combinatorial Pattern Matching. Springer LNCS 1075, pages 1-23, 1996.

[CL92] W.I. Chang and J. Lampe. Theoretical and empirical comparisons of approximate string matching
algorithms. In Proc. 3rd Symp. on Combinatorial Pattern Matching. Springer LNCS 644, pages
172-181, 1992.

[CL94] W.I. Chang and E.L. Lawler. Sublinear expected time approximate matching and biological
applications. Algorithmica, 12:327-344, 1994.

[GPI0] Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAM J. on
Computing, 19:989-999, 1990.

[LV88] G.M. Landau and U. Vishkin. Fast string matching with k differences. J. of Computer and
System Sciences, 37:63-78, 1988.

[MP80] W.J. Masek and M. S. Paterson. A faster algorithm for computing string edit distances. J. of
Computer and System Sciences, 20:18-31, 1980.

[Mye94] E.W. Myers. A sublinear algorithm for approximate keywords searching. Algorithmica, 12:345—
374, 1994.

[Sel80] P.H. Sellers. The theory and computations of evolutionary distances: Pattern recognition. J. of
Algorithms, 1:359-373, 1980.

[Ukk85] E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132-137, 1985.

[WM92] S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM, 35:83—
91, 1992.

[WMM96] S. Wu, U. Manber, and G. Myers. A subquadratic algorithm for approximate limited expression

matching. Algorithmica, 15:50-67, 1996.

10

3 T T T 3 T T
ChaLa <— ChaLa <—
25 WMM -+--- 25 WMM -+---
This -8-- This -&--
~ 2 B ~ 2 —
1] 9]
(8] [8]
I @
2] 2]
L5 . £15 -
o o
= £
1 a--8--1 =1 1
J = A o
05 1 pBa--o-8 a 05 3B E-E-8-g-a T
"~ tmEeaag? " e oaennna--a
O 1 1 1 1 1 0 1 1 1 1 1
0 10 20 30 40 60 0 10 20 30 40 60
Differences (k) Differences (k)
(@ (b)
3 T T T T T 7 3 T T T T T
A
Chala -— ¥ ChaLa <—
25 F WMM -+~ ¥/’/ _ 25 F WMM -+~ 7
’ This -8-- 7
~ 2 F ~ 2
192} [}
[S] [
@ o)
1%2] n
g15 15
(] ()
£ =
=R =
0.5 et B e 0.5 4
iEiaaatateteiotatalz MR R S R
0 1 1 1 1 1 0 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Differences (k) Differences (k)
(©) (d)
3 T T T = T T
4+
Chala <-— A
25 F WMM —+- - i
This -8-- A+
o
A+
72T -
(8]
(9]
2]
g15
)
£
(=S
B--8--0- B
05 ¥ o000 i s L B o R = i
WD 0o 0aE08--0---8--8-- 0580
0 1 1 1 1 1
0 20 40 100 120

60
Differences (k)

()
Figure 8: Timing curves for the O(kn/w) block-based algorithm (“This”) versus Chang/Lampe

(“Chal.a”) and Wu/Manber/Myers (“WMM?”), with alphabet sizes (a) o = 2, (b) 0 =4, (¢) 0 = 8,
(d) o =16, and (e) o = 32.

11

