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In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a
parsing algorithm for context-free grammars, named after its inventors, John Cocke, Daniel Younger and
Tadao Kasami. It employs bottom-up parsing and dynamic programming.

The standard version of CYK operates only on context-free grammars given in Chomsky normal form
(CNF). However any context-free grammar may be transformed to a CNF grammar expressing the same
language (Sipser 1997).

The importance of the CYK algorithm stems from its high efficiency in certain situations. Using Landau
symbols, the worst case running time of CYK is , where n is the length of the parsed string and
|G| is the size of the CNF grammar G (Hopcroft & Ullman 1979, p. 140). This makes it one of the most
efficient parsing algorithms in terms of worst-case asymptotic complexity, although other algorithms exist
with better average running time in many practical scenarios.
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The algorithm requires the context-free grammar to be rendered into Chomsky normal form (CNF), because
it tests for possibilities to split the current sequence in half. Any context-free grammar that does not generate
the empty string can be represented in CNF using only production rules of the forms  and .

As pseudocode

The algorithm in pseudocode is as follows:

let the input be a string S consisting of n characters: a1 ... an.
let the grammar contain r nonterminal symbols R1 ... Rr.
This grammar contains the subset Rs which is the set of start symbols.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.
for each i = 1 to n

for each unit production Rj -> ai
    set P[1,i,j] = true
for each i = 2 to n -- Length of span

for each j = 1 to n-i+1 -- Start of span
for each k = 1 to i-1 -- Partition of span

for each production RA -> RB RC
if P[k,j,B] and P[i-k,j+k,C] then set P[i,j,A] = true

if any of P[n,1,x] is true (x is iterated over the set s, where s are all the indices for Rs) then
S is member of language

else
S is not member of language

As prose

In informal terms, this algorithm considers every possible subsequence of the sequence of words and sets
 to be true if the subsequence of words of length  starting from  can be generated from . Once

it has considered subsequences of length 1, it goes on to subsequences of length 2, and so on. For
subsequences of length 2 and greater, it considers every possible partition of the subsequence into two parts,
and checks to see if there is some production  such that  matches the first part and  matches
the second part. If so, it records  as matching the whole subsequence. Once this process is completed, the
sentence is recognized by the grammar if the subsequence containing the entire sentence is matched by the
start symbol.

This is an example grammar:

Now the sentence she eats a fish with a fork is analyzed using the CYK algorithm. In the following table, in
,  is the number of the row (starting at the bottom at 1), and  is the number of the column (starting

at the left at 1).

CYK table
S

VP

S
VP PP

S NP NP
NP V, VP Det. N P Det N

she eats a fish with a fork

For readability, the CYK table for P is represented here as a 2-dimensional matrix M containing a set of
non-terminal symbols, such that Rk is in M[i,j] if, and only if, P[i,j,k]. In the above example, since a start
symbol S is in M[7,1], the sentence can be generated by the grammar.

Generating a parse tree

The above algorithm is a recognizer that will only determine if a sentence is in the language. It is simple to
extend it into a parser that also construct a parse tree, by storing parse tree nodes as elements of the array,
instead of the boolean 1. The node is linked to the array elements that were used to produce it, so as to build
the tree structure. Only one such node in each array element is needed if only one parse tree is to be
produced. However, if all parse trees of an ambiguous sentence are to be kept, it is necessary to store in the
array element a list of all the ways the corresponding node can be obtained in the parsing process. This is
sometimes done with a second table B[n,n,r] of so-called backpointers. The end result is then a shared-forest
of possible parse trees, where common trees parts are factored between the various parses. This shared
forest can conveniently be read as an ambiguous grammar generating only the sentence parsed, but with the
same ambiguity as the original grammar, and the same parse trees up to a very simple renaming of
non-terminals, as shown by Lang (1994).

Parsing non-CNF context-free grammars

As pointed out by Lange & Leiß (2009), the drawback of all known transformations into Chomsky normal
form is that they can lead to an undesirable bloat in grammar size. The size of a grammar is the sum of the
sizes of its production rules, where the size of a rule is one plus the length of its right-hand side. Using  to
denote the size of the original grammar, the size blow-up in the worst case may range from  to ,
depending on the transformation algorithm used. For the use in teaching, Lange and Leiß propose a slight
generalization of the CYK algorithm, "without compromising efficiency of the algorithm, clarity of its
presentation, or simplicity of proofs" (Lange & Leiß 2009).

Parsing weighted context-free grammars

It is also possible to extend the CYK algorithm to parse strings using weighted and stochastic context-free
grammars. Weights (probabilities) are then stored in the table P instead of booleans, so P[i,j,A] will contain
the minimum weight (maximum probability) that the substring from i to j can be derived from A. Further
extensions of the algorithm allow all parses of a string to be enumerated from lowest to highest weight
(highest to lowest probability).

Valiant's algorithm

The worst case running time of CYK is , where n is the length of the parsed string and |G| is the
size of the CNF grammar G. This makes it one of the most efficient algorithms for recognizing general
context-free languages in practice. Valiant (1975) gave an extension of the CYK algorithm. His algorithm
computes the same parsing table as the CYK algorithm; yet he showed that algorithms for efficient
multiplication of matrices with 0-1-entries can be utilized for performing this computation.

Using the Coppersmith–Winograd algorithm for multiplying these matrices, this gives an asymptotic
worst-case running time of . However, the constant term hidden by the Big O Notation is so
large that the Coppersmith–Winograd algorithm is only worthwhile for matrices that are too large to handle
on present-day computers (Knuth 1997), and this approach requires subtraction and so is only suitable for
recognition. The dependence on efficient matrix multiplication cannot be avoided altogether: Lee (2002) has
proved that any parser for context-free grammars working in time  can be effectively
converted into an algorithm computing the product of -matrices with 0-1-entries in time .

GLR parser
Earley parser
Packrat parser
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CYK parsing demo in JavaScript (http://martinlaz.github.io/demos/cky.html)
Interactive Applet from the University of Leipzig to demonstrate the CYK-Algorithm (Site is in
german) (http://www.informatik.uni-leipzig.de/alg/lehre/ss08/AUTO-SPRACHEN/Java-Applets
/CYK-Algorithmus.html)
Exorciser is a Java application to generate exercises in the CYK algorithm as well as Finite State
Machines, Markov algorithms etc (http://www.swisseduc.ch/compscience/exorciser/)
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