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Figure 26.1 A directed graph and the sequence of matrices D" computed by
SLOW-ALL-PAIRS-SHORTEST-PATHS. The reader may verify that DS = DWW s
equal to D'¥), and thus p™ = pW for all m > 4.

FASTER-ALL-PAIRS-SHORTEST-PATHS( W)

n — rows[W1]
DY) — W
m—1
whilen —1>m
do D™ — EXTEND-SHORTEST-PATHS(D", D)
m«— 2m
return D™
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In each iteration of the while loop of lines 4-6, we compule pim)

(D('"))z, starting with m = 1. At the end of each iteration, we double the
value of m. The final iteration computes D"~V by actually computing
pem for some n — 1 < 2m < 2n 2. By equation (26.3), D' 2m) o D1
The next time the test in line 4 is performed, m has been doubled, 8o
wow n 1< nrthe test fails, and the procedure returns the last matrx il
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Computing the shortest-path weights bottom up

Based on recurrence (26.5), the following bottom-up procedure can be used
to compute the values dff) in order of increasing values of k. Its input is
an n x n matrix W defined as in equation (26.1). The procedure returns
the matrix D" of shortest-path weights.

FLOYD-WARSHALL(W)

1 n«— rows[W]

2 DO —w

3 fork—1ton

4 do for i — 1 ton

5 do for j — 1 ton

6 dY — min (a ", +af")
7 return D)

Figure 26.4 shows a directed graph and the matrices D) computed by the
Floyd-Warshall algorithm.

The running time of the Floyd-Warshall algorithm is determined by the
triply nested for loops of lines 3-6. Each execution of line 6 takes O(1)
time. The algorithm thus runs in time ©(n3). As in the final algorithm in
Section 26.1, the code is tight, with no elaborate data structures, and so
the constant hidden in the ©-notation is small. Thus, the Floyd-Warshall
algorithm is quite practical for even moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths
in the Floyd-Warshall algorithm. One way is to compute the matrix D of
shortest-path weights and then construct the predecessor matrix IT from
the D matrix. This method can be implemented to run in O(n?) time
(Exercise 26.1-5). Given the predecessor matrix I1, the PRINT-ALL-PAIRS-
SHORTEST-PATH procedure can be used to print the vertices on a given
shortest path.

We can compute the predecessor matrix IT “on-line” just as the Floyd-
Warshall algorithm computes the matrices D). Specifically, we compute a

sequence of matrices [T, 1V, ..., TI", where IT = IT"") and nﬁf) is defined
to be the predecessor of vertex j on a shortest path from vertex i with all
intermediate vertices in the set {1,2,...,k}.

We can give a recursive formulation of ngf). When k = 0, a shortest
path from i to j has no intermediate vertices at all. Thus,
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) gives the final answer—dfj'.') = 6(i,j) for all
‘mediate vertices are in the set {1,2,...,n}.
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o _ {NIL ifi=jor wjj = o0, (266)

ij I ifi;éjandw,j<oo.
For k > 1, if we take the path i ~ k ~ j, then the predecessor of j
we choose is the same as the predecessor of j we chose on a shortest path
from k with all intermediate vertices in the set {1,2, ...,k — 1}. Otherwise,
we choose the same predecessor of j that we chose on a shortest path
from i with all intermediate vertices in the set {1,2,...,k — 1}. Formally,
for k > 1,

(k=1) ¢ g(k—1) (k=1) (k—1)
my = {n& 1) ; dl&.\’ 1 = d,.(,;( 1 +d}((. 1) ’ (26.7)
ij = : — = = .

Uy ifd; " >d, " +dy

We leave the incorporation of the IIX) matrix computations into the
FLoYD-WARSHALL procedure as Exercise 26.2-3. Figure 26.4 shows the
sequence of I1K) matrices that the resulting algorithm computes for the
graph of Figure 26.1. The exercise also asks for the more difficult task
of proving that the predecessor subgraph G, is a shortest-paths tree with
root i. Yet another way to reconstruct shortest paths is given as Exer-
cise 26.2-6.

Transitive closure of a directed graph

Given a directed graph G = (V, E) with vertex set V' = {1,2,...,n}, we
may wish to find out whether there is a path in G from i to j for all
vertex pairs i, j € V. The transitive closure of G is defined as the graph
G* = (V,E*), where

E* = {(i,j) : there is a path from vertex i to vertex j in G} .

One way to compute the transitive closure of a graph in ©(n®) time
is to assign a weight of 1 to each edge of E and run the Floyd-Warshall
algorithm. If there is a path from vertex i to vertex j, we get d;; < n.
Otherwise, we get d;; = oo.

There is another, similar way to compute the transitive closure of G in
©(n3) time that can save time and space in practice. This method involves
substitution of the logical operations V and A for the arithmetic operations
min and + in the Floyd-Warshall algorithm. For i, j,k = 1,2,...,n, we
define tgf) to be 1 if there exists a path in graph G from vertex i to vertex j
with all intermediate vertices in the set {1,2,...,k}, and 0 otherwise. We
construct the transitive closure G* (V, E*) by putting edge (7, /) into

(n)

v . . ' . e . k)
E* if and only if ¢, I. A recursive definition of Iil , analogous to



