
CS 497: Concrete Models of Computation Spring 2003

7 Algebraic Decision Trees (February 27 and March 4)

7.1 How Hard Is Almost Sorting?

Almost everyone is familiar with the Ω(n log n) decision tree lower bound for sorting. Any binary
decision tree that sorts must have at least n! leaves, one for each possible permutation, and therefor
must have depth at least log2(n!) = Ω(n log n). It makes absolutely no difference what questions
are asked in the internal nodes.

Now consider the following related problems.

• Element Uniqueness: Are any two elements of the input sequence 〈x1, x2, . . . , xn〉 equal?

• Parity: Is the permutation of the input sequence 〈x1, x2, . . . , xn〉 even or odd?

• Set Intersection: Given two sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, do they intersect?

• Set Equality: Given two sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, are they equal?

We cannot apply the same purely information-theoretic argument to these problems, because there
are only two possible outputs: Yes and No. And moreover, there are trivial decision trees with
only one node that decide these problems.

Probably the most natural model to consider is the comparison tree model that we used to
study sorting partial orders. It’s possible to prove Ω(n log n) lower bounds for the number of
comparisons required to solve any of those four problems, using a fairly complicated adversary
argument. (Essentially, we must sort the data to solve any of them.)

7.2 Linear Decision Trees

However, proving these lower bounds will actually be easier if we use a more powerful model of
computation, introduced by David Dobkin and Richard Lipton in the late 1970s. In a linear decision

tree (with input size n), every internal node is labeled with a vector (a0, a1, . . . , an) and has three
outgoing edges labeled −, 0, and +. Given an input vector (x1, x2, . . . , xn), we decide which way
to branch based on the sign of the following expression:

a0 + a1x1 + a2x2 + · · ·+ anxn.

For example, in each node in a comparison tree, we have ai = 1 and aj = −1 for some i and j, and
ak = 0 for all k 6= i, j.

Linear decision trees have a very simple geometric interpretation. Our generic problem can be
thought of as a function F : IRn → {0, 1}, where the input is a point in n-space and the output is
a single bit. Every internal node defines a hyperplane with equation

a1x1 + a2x2 + · · ·+ anxn = −a0;

this equation describes a line when n = 2, a plane when n = 3, and so on. We branch at a node
depending on whether the input is above, below, or on this hyperplane.1

Now consider the set of input points R(v) ⊆ IRn that reach a particular node v in a linear decision
tree. The set R(v) contains all the points that satisfy a set of linear equalities and inequalities; such
a set is called a convex polyhedron. Recall that a set X is convex if for any two points p, q ∈ X, the
entire line segment pq is contained in X. The intersection of any two convex sets is clearly convex;

1Linear decision trees are exactly the same as the binary space partition trees used in computer graphics systems.

1



CS 497: Concrete Models of Computation Spring 2003

any hyperplane divides space into three convex sets: the hyperplane itself and two halfspaces.
Chugging through the definitions, we discover that convex polyhedra are, in fact, convex. (Whew!)

It is trivial to prove that every convex set is connected.2 This simple observation gives us our
first significant tool to prove lower bound in the linear decision tree model.

Lemma 1. For any node v in any linear decision tree, R(v) is connected.

Now let #F1 denote the number of connected components of the set F −1(1) of points x such
that F (x) = 1, and define #F0 similarly.

Lemma 2. Any linear decision tree that computes the function F : IRn → {0, 1} has depth at

least dlog3(#F0 + #F1)e.

Proof: For any point x ∈ IRn such that F (x) = 1, there must be a 1-leaf ` that is reached by x. By
the previous lemma, only points in the connected component of F −1(1) containing x can reach `.
it follows immediately that there are at least #F1 1-leaves. Similarly, there must be at least #F0

0-leaves. The lower bound now follows from the usual information-theoretic argument. �

Now we’re ready to prove some lower bounds!

Theorem 3. Any linear decision tree that computes the Element Uniqueness function has

depth Ω(n log n).

Proof: Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors with distinct coordinates
that are sorted in two different orders. In particular, for some pair of indices i and j, we have xi < xj

and yi > yj. Any continuous path from x to y must contain a point z such that zi = zj , by the
intermediate value theorem, but then we have F (z) = 0. Thus, points with different permutations
are in different connected components of F−1(1), so #F1 ≥ n!. The lower bound now follows
immediately from Lemma 2. �

Theorem 4. Any linear decision tree that computes the Set Intersection function has depth

Ω(n log n).

Proof: For this problem, the input is a point (x, y) = (x1, x2, . . . , xn; y1, y2, . . . , yn) ∈ IR2n, where
the x- and y-coordinates represent the two sets X and Y . If X and Y are disjoint, then we can
partition X and Y into disjoint subsets X1, X2, . . . , Xk and Y1, Y2, . . . , Yk that satisfy the partial
order

X1 < Y1 < X2 < Y2 < · · · < Xk < Yk.

Here, A < B means that every element of A is less than every element of B, but the elements
within A are incomparable. Either X1 or Yk or both could be empty.

There are exactly n!2 such partial orders where the x- and y- elements alternate, that is, where
each set Xi and Yi is a singleton, and k = n. As in the previous theorem, any two points that obey
different partial orders lie in different connected components of F −1(0). Thus, #F0 ≥ n!2, and the
theorem follows immediately from Lemma 2. �

Finally, let’s consider a function whose complexity is still open.

• 3sum: Do any three elements in the input set {x1, x2, . . . , xn} sum to zero?

2Careful with those vacuous cases: the empty set is both convex and connected!

2



CS 497: Concrete Models of Computation Spring 2003

The fastest algorithm known for this problem runs in O(n2) time, and this is conjectured to be
optimal.3 However, the following argument gives the strongest bound known in any general model
of computation:

Theorem 5. Any linear decision tree that computes the 3sum function has depth Ω(n log n).

Proof: As usual, we prove the lower bound by counting the connected components of F −1(0).
There are

(n
3

)

possible triples of input elements that could sum to zero. Each one defines a hyper-
plane of the form xi + xj + xk = 0.

Suppose the Little Birdie tells us that

−2 < xi < −1 for all i < n/2, xn/2 = 0, 1 < xi < 2 for all i > n/2.

This set of inequalities defines a convex polyhedron Π. The Little Birdie Principle implies that the
complexity of 3sum is at least the complexity of 3sum restricted to Π. Since Π is convex, we can
apply the same counting arguments as when the input space is unrestricted.

A point x ∈ Π has three coordinates that sum to zero if and only if xi = −xj for some pair
of indices i < n/2 and j > n/2. In other words, this restriction of 3sum is exactly the same as
the set intersection problem, for which we already have an Ω(n log n) lower bound. In particular,
F−1(0) ∩Π has at least (n/2)!2 connected components. �

It may come as a surprise that this is the best lower bound we can prove for 3sum using this
method. Any set H of hyperplanes in IRn defines a cell complex called the arrangement. The full-
dimensional cells are the connected components of IRn \H. A relatively straightforward inductive
argument (in any computational geometry book) implies that the number of full-dimensional cells
in an arrangement of N hyperplanes in IRn is at most

n
∑

d=0

(

N

d

)

< Nn.

(The summation bound is exact if the hyperplanes are in general position: the intersection of any
d ≤ n hyperplanes has dimension n − d.) The 0-set for 3sum consists of the full-dimensional
cells in the arrangement of

(n
3

)

hyperplanes in IRn, so its has less than
(n
3

)n
= O(n3n) connected

components. Thus, we have no hope of proving a ω(n log n) lower bound by counting connected
components.4

7.3 Algebraic Decision Trees

Now let’s consider the following obvious generalization of linear decision trees, first proposed by
Guy Steele and Andy Yao. In a dth-order algebraic decision tree, every node v is labeled with a
polynomial qv ∈ IR[x1, x2, . . . , xn] of degree at most d. As in the linear case, each node has three
branches labeled −, 0, and +, and computation at node v branches according to the sign of the
polynomial expression qv(x). A 1st-order algebraic decision tree is just a linear decision tree.

3And in fact, that bound is optimal in a weak special case of the linear decision tree model of computation; see
my PhD thesis!

4In fact, there is no general method to derive ω(n log n) lower bounds in any of these decision/computation tree
models, as long as the problem is defined by a polynomial number of equalities and inequalities. There are several
similar techniques for proving lower bounds that use different notions of the “complexity” of a semi-algebriac set—
the number of components in an intersection with a subspace, the volume, the Euler characteristic, the number of
boundary features of each dimension, various Betti numbers, etc. The POTM Theorem and its generalizations imply
that the complexity of the set 3sum, for any reasonable notion of “complexity”, is only nO(n).

3



CS 497: Concrete Models of Computation Spring 2003

Unfortunately, we can’t use the same connectedness argument for algebraic decision trees as we
did in the linear case. It’s quite easy to come up with polynomials that divide IRn into more than
three connected components, or pairs of polynomials p and q such that the sets {x | p(x) > 0} and
{x | q(x) > 0} are connected, but their intersection is not.

However, the following theorem gives us a bound on the number of connected components of
any semi-algebraic set.5

Theorem 6 (Petrovskĭı, Olĕınik, Thom, Milnor). Let X be a semi-algebraic subset of IRn

defined by m polynomial equations and h polynomial inequalities, each of degree at most d ≥ 2.
Then X has at most d(2d − 1)n+h−1 connected components.

Corollary 7. Any dth order algebraic decision tree that computes a function F : IRn → {0, 1} has

depth Ω(logd(#F0 + #F1)− n).

Proof: Suppose F can be computed by a dth order algebraic decision tree with depth h. By the
POTM Theorem, the set of points that reaches any leaf has at most d(2d + 1)n+h−1 connected
components. Since there are less than 3h leaves, we have the inequality

3hd(2d + 1)n+h−1 ≥ #F0 + #F1.

Solving for h completes the proof.

(6d + 3)h ≥ #F0 + #F1

d(2d + 1)n−1
,

h ≥ log6d+3

#F0 + #F1

d(2d + 1)n−1

=
ln(#F0 + #F1)

ln(6d + 3)
− (n− 1)

ln(2d + 1)

ln(6d + 3)
− ln d

ln(6d + 3)

= Ω(logd(#F0 + #F1)− n) �

Corollary 8. Any algebraic decision tree that computes the Element Uniqueness function has

depth Ω(n log n).

Corollary 9. Any algebraic decision tree that computes the Set Intersection function has

depth Ω(n log n).

Corollary 10. Any algebraic decision tree that computes the 3sum function has depth Ω(n log n).

7.4 Algebraic Computation Trees

Consider the following alternative algorithm for solving the Element Uniqueness problem. Given
the input vector (x1, x2, . . . , xn), we compute its discriminant

∏

1≤i<j≤n

(xi − xj)

5This used to be called ”Milnor’s theorem”, since John Milnor proved it in the late 1960s. Then some time in the
1980’s, someone noticed that René Thom had proved the same theorem a few years earlier. Then in the late 1990s,
some Russians pointed out that two Russian mathematicians, Petrovskĭı and Olĕınik, had proved the theorem several
years before Thom. Finally, in the early 2000s, someone noticed that Milnor’s paper actually cited Petrovskĭı and
Olĕınik’s earlier paper.

4



CS 497: Concrete Models of Computation Spring 2003

and compare it to zero. Clearly, the discriminant is zero if and only if some pair of elements is equal.
It’s possible to compute the discriminant in O(n log2 n) time using Fast Fourier Transforms. In
other words, we can solve the Element Uniqueness problem in near-linear time without sorting
the input first, using a straight-line program without branches.

A further generalization of algebraic decision trees, proposed by Michael Ben-Or, captures
algorithms of this type. An algebraic computation tree is a tree with two types of internal nodes.

• Computation: A computation node v has an associated value fv determined by one of the
instructions

fv ← fu + fw fv ← fu − fw fv ← fu · fw fv ← fu/fw fv ←
√

fu

where fu and fw are either values associated with ancestors of v, input values xi, or arbitrary
real constants.6 Every computation node has one child.

• Branch: A branch node u contains one of the test instructions

fu > 0 fu ≥ 0 fu = 0

where fu is either a value associated with an ancestor of v or an input value xi. Every branch
node has two children.

Given an input (x1, x2, . . . , xn), we follow a path from the root of the tree down to a leaf. At
each computation node, we perform the corresponding arithmetic operation; at each branch node,
we branch according to the result of the corresponding test. When we reach a leaf, its value is
returned as algorithm’s output. As usual, the running time of the algorithm is the length of the
path traversed, and the worst-case running time is the depth of the tree.

The algebraic computation tree model can be equivalently described using a real random access

machine or real RAM. A real RAM is pretty close to an actual (abstract) computer: it has random
access memory, instructions, control flow, an execution stack, and so forth. The big difference is
that the main memory in a real RAM stores arbitrary real numbers. Real arithmetic operations
+,−, ·, /,√ and comparisons between real numbers all take constant time. A real RAM may also
have integer variables, but we are not allowed to convert between integer variables and
real variables.7 In particular, the real RAM model does not allow use of the floor function bxc.

Given any algorithm written for the real RAM model, we can extract an algebraic computation
tree by recording all possible branches and real arithmetic operations in any execution of the
algorithm. Thus, any lower bound derived in the algebraic computation tree model immediately
applies in the real RAM model as well.

Lemma 11. Any algebraic computation tree that computes a function F : IRn → {0, 1} has depth

Ω(log(#F0 + #F1)− n).

Proof: Suppose F can be computed by an algebraic computation tree T with depth h. I claim that
2h+13n+h−1 ≥ #F0 +#F1; the lemma follows immediately from this claim by the usual arguments.

Let ` be a leaf of T with depth at most h. We can describe the set R(`) of points that reach `
as a semi-algebraic set by manipulating the arithmetic and test instructions on the path from the

6Obviously, dividing by zero or taking the square root of a negative number is never allowed.
7If we could freely convert between integers and reals, and still do exact real arithmetic in constant time, we could

solve some NP-hard problems in linear time.

5



CS 497: Concrete Models of Computation Spring 2003

root to `. If v is a computation node, we obtain an algebraic equation as follows:

Operation Equation

fv ← fu + fw fv = fu + fw

fv ← fu − fw fv = fu − fw

fv ← fu · fw fv = fu · fw

fv ← fu/fw fu = fv · fw

fv ←
√

fu fu = f2
v

Similarly, for any branch node v, we obtain either a new equation or a new inequality, depending
on the outcome of the test.

Test True False

fu > 0 fu > 0 −fu ≥ 0
fu ≥ 0 fu ≥ 0 −fu > 0
fu = 0 fu = 0 fu · fv = 1

Note that an unsuccessful equality test introduces a new variable.
The points (x1, x2, . . . , xn, f1, f2, . . . , fh) that satisfy this list of polynomial equalities and in-

equalities describe a semi-algebraic set U(`) ⊆ IRn+h. Since every polynomial in this list has degree
at most 2, the POTM Theorem implies that U(`) has at most 2 · 3n+h−1 connected components.

A point x ∈ IRd reaches leaf ` if and only if there exists a point f = (f1, f2, . . . , fh) ∈ IRh

such that (x, f) ∈ U(`). In other words, we can obtain R(`) by projecting U(`) onto its first n
coordinates. Since projection can only decrease the number of connected components, we conclude
that R(`) has at most 2 · 3n+h−1 components. The claim, and thus the lemma, now follows from
the fact that T has at most 2h leaves. �

The lower bound argument requires only that we pay for multiplications, divisions, roots, and
branches; additions and subtractions could be performed for free. In fact, the lower bound holds
in a more general model where each computation node computes an arbitrary bilinear function of
its ancestor values. At the cost of a factor of d, we can also include an operation that computes
the roots of an arbitrary polynomial of degree d, whose coefficients are ancestor values.8 We can
even allow computations with complex numbers, by representing each z = x + yi as a pair (x, y),
or equivalently, allowing the projection operators < and = to be performed at no cost.

Corollary 12. Any algebraic computation tree that computes the Element Uniqueness func-

tion has depth Ω(n log n).

Corollary 13. Any algebraic computation tree that computes the discriminant
∏

1≤i<j≤n(xi−xj)
has depth Ω(n log n).

Proof: Once we compute the resultant, we can solve the Element Uniqueness problem with
just one more branch. �

More accurately, we have an Ω(n log n) lower bound on the number of multiplications required
to compute the resultant. This lower bound is actually tight; the resultant can be computed
using O(n log n) multiplications, in O(n log2 n) time. (Most of the additional time is additions and
subtractions.)

8More accurately, the natural cost of computing a root of a polynomial P (x) is the minimum time required to
evaluate P (x). In particular, the cost of computing d

√

fu is Θ(log d), by repeated squaring.

6



CS 497: Concrete Models of Computation Spring 2003

Corollary 14. Any algebraic computation tree that computes the Set Intersection function

has depth Ω(n log n).

Corollary 15. Any algebraic computation tree that computes the 3sum function has depth Ω(n log n).

7.5 Generic Width

Now consider the problem of computing the maximum element in a set of n numbers. It’s not hard
to prove a lower bound of n−1 in the comparison tree model using an adversary argument, but this
argument doesn’t generalize to arbitrary algebraic decision or computation trees. Perhaps there is
a faster algorithm to compute the maximum element using higher-degree polynomials! Alas, the
following argument of Montaña, Pardo, and Recio implies that there is no such algorithm.9

Any closed semi-algebraic set X in IRn can be written in the canonical form

X =
t

⋃

i=1

r
⋂

j=1

{pij ≥ 0},

where each pij is a polynomial with n variables. The width of X is defined as the minimum r for
which such a representation is possible. By convention, the empty set and IRn both have width
zero. The generic width of a (not necessarily closed) semi-algebraic set X is defined as

w(X) = min{width(S) | dim(S ⊕X) ≤ n},

where the minimum is taken over all closed semi-algebraic sets S. The generic width of X never
exceeds the width of X; take S = X.

Lemma 16. Any algebraic decision or computation tree that decides whether a point x ∈ IRn lies

inside a fixed semi-algebriac set X has depth at least w(X).

Proof: Let T be an algebraic decision tree, and let ` be an arbitrary leaf with depth h. Let R(`) be
the set of possible inputs that reach `. If the path to ` contains any =-branches, the dimension of
R(`) is less than n, so w(R(`)) = 0. Otherwise, R(`) is the intersection h open algebraic halfspaces,
which implies that w(R(`)) ≤ h.

Since T correctly decides membership in X, we must have

X =
⋃

1-leaves `

R(`),

which implies that

w(X) ≤ max
1-leaves `

w(R(`)),≤ max
1-leaves `

depth(`) ≤ depth(T ).

Unlike most results about algebriac decision trees, this argument does not require a constant
upper bound on the degree of the query polynomials. Thus, it immediately applies to algebaric
computation trees as well. �

Theorem 17. Any algebriac decision or computation tree that computes the largest element of

an n-element set has depth at least n− 1.

9This result is often credited to Rabin, but his proof has a bug.

7



CS 497: Concrete Models of Computation Spring 2003

Proof (sketch): In fact, we can prove an n− 1 lower bound for the simpler problem of verifying

the largest element, or equivalently, determining membership in the polyhedron

X =

n
⋂

i=2

{x1 − xi ≥ 0}.

It is a fairly tedious exercise to prove that w(X) ≥ n−1. (It is hopefully obvious that w(X) ≤ n−1;
the lower bound is considerbly less trivial.) �

8


