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Let’s consider a rectangle R. We define a cut of the rectangle R into n pieces
to be a set of n rectangles, each with area 1

n of the area of R, whose union is R
itself. Let CR,n be the set of all cuts of R into n pieces.

1. Let SR,n = {x ∈ CR,n| ∃ ordering of the elements of x : r1, r2, ...rn such

that ∀i,
n⋃

j=i

rj is a rectangle}. Informally, SR,n is the set of cuts that can

be achieved by always cutting a whole side from the biggest remaining
part of R with area 1

n of the area of R. For example:

All cuts above are from CR,4, but only the two on the left are from SR,4

with ordering of the elements as shown on the picture (this also corre-
sponds to the order of cutting the pieces from the informal definition).

The cut on the right is not in SR,4 because
4⋃

j=2

rj cannot be a rectangle.

Provide a formula for |SR,n| with respect to n.

2. Let R be a square. Find the number of different cuts from SR,n with
respect to rotations and symmetries. For example, these two cuts should
be counted as one:

3. Consider |CR,n| with respect to n. Provide lower and upper bounds of
|CR,n| (as strong as you can).
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Comments on the problems

The problems above were proposed to ITYM 2018 and were part of the final
problem set. See Problem 3 in [1].

Problem 1

This problem was also part of a programming competition. The task was to
compute |SR,n| with respect to 1 ≤ n ≤ 1018 modulo 109 + 7.

A recurrence relation for |SR,n| is provided here. There are four ways to
derive a cut from SR,n using cuts from SR′,n−1. They are shown bellow:

But this way we will count the following twice:

Thus the recurrence relation is

|SR,n| = 4|SR,n−1| − 2|SR,n−2|.

From the recurrence relation we can extract the general formula using the char-
acteristic equation

x2 − 4x + 2 = 0.

It has roots x1,2 = 2 ±
√

2. Obviously, SR,1 = 1, and SR,2 = 2. Now we have
to solve the system ∣∣∣∣∣ (2 +

√
2)c1 + (2−

√
2)c2 = 1

(2 +
√

2)2c1 + (2−
√

2)2c2 = 2.

We get c1,2 =
1

2(2±
√

2)
. Thus the solution is

|SR,n| =
(2 +

√
2)n−1 + (2−

√
2)n−1

2
·

An alternative way to calculate |SR,n| is the following:(
|SR,n|
|SR,n−1|

)
=

(
4 −2
1 0

)n−2(
2
1

)
,

which follows directly from the recurrence formula because one multiplication
with the matrix gives the next two elements. This formula is more suitable for
a computation on a computer because, unlike the former, it has no problem
with precision. It can be calculated by squaring in Θ(log n) time.
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Problem 2

The standard way to approach this problem is by means of Burnside’s lemma:

|X/G| =

∑
g∈G

Xg

|G|
·

In our case, G is the group of the eight rotations and symmetries of a square,
and X is SR,n. Let’s find the fixed points for each element of G.

• R0 is the identity. All the points in SR,n are fixed points of R0:

XR0 = |SR,n|.

• R90, SR90, R270, and SR270 swap the vertical and horizontal direction.
These transformations have no fixed point unless n = 1. Therefore,

XR90 = XSR90 = XR270 = XSR270 =

{
1 if n = 1;

0 if n > 1.

• R180 is the rotation by 180◦.
Let an be the number of its fixed points in SR,n. There are two ways
to get a fixed point for a particular n using a fixed point for n− 2:

So an = 2an−2. From a1 = 1 and a2 = 2 it follows that an = 2b
n
2 c, i.e.

XR180 = 2b
n
2 c.

• SR0 and SR180 are the two symmetries — the former swaps left and right;
the latter swaps up and down. They have the same number bn of fixed
points. The fixed points of SR0 look like this:

But we count the following twice:

Thus bn = 2bn−1 + bn−2 − bn−2 = 2bn−1. Obviously, b1 = 1, b2 = 2.
Therefore, bn = 2n−1, i.e.

XSR0 = XSR180 = 2n−1.
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For n > 1, by Burnside’s lemma:

|X/G| = |SR,n|+ 2b
n
2 c + 2n−1 + 2n−1

8
;

|X/G| =
(2+
√
2)n−1+(2−

√
2)n−1

2 + 2n + 2b
n
2 c

8
;

|X/G| = (2 +
√

2)n−1 + (2−
√

2)n−1 + 2n+1 + 2b
n+2
2 c

16
·

Alternative solution (without Burnside’s lemma)

We can derive the following relations by dynamic programming. The number of
different elements of SR,n with respect to rotations and symmetries is f(n, 1, 1)
where f(n, v, h) is the number of cuts of a rectangle into n pieces such that
the first piece is horizontal; n is a positive integer, v ∈ {0; 1}, h ∈ {0; 1};
v = 0 ⇐⇒ f distinguishes between the upper and lower sides of the rectangle;
h = 0 ⇐⇒ f distinguishes between the left and right sides of the rectangle.

Initial values: f(1, v, h) = 1. Recurrence relations for n > 1:

f(n, 1, 1) = 1 +

n−2∑
i=1

⌈
i

2

⌉
f(n− i, 1, 0) +

n−2∑
i=2

i – even

f(n− i, 1, 1);

f(n, 1, 0) = 1 +

n−2∑
i=1

⌈
i

2

⌉
f(n− i, 0, 0) +

n−2∑
i=2

i – even

f(n− i, 0, 1);

f(n, 0, 1) = 1 +

n−2∑
i=1

(i + 1)f(n− i, 1, 0);

f(n, 0, 0) = 1 +

n−2∑
i=1

(i + 1)f(n− i, 0, 0).

The computational complexity of this method is Θ
(
n2
)
.

Problem 3

The first seven elements of the sequence (|CR,n|)∞n=1 can be found in OEIS [3].
Even proving that CR,n is finite can be a bit difficult. Actually, it is reasonable
to use the number of rooted planar maps as an upper bound. Let’s construct
a rooted graph G for each cut from CR,n. Let the vertices of G be the rectangles
of the cut. Let the edges of G connect neighbouring rectangles, i.e. rectangles
that have a common boundary of positive length. Each edge of G is marked
as either vertical (v) or horizontal (h); it points upward or to the right.
We choose the bottom left rectangle to be the root of G.
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The paper [2] contains a neat proof that there cannot be more than one cut
with the same graph. Since these graphs are equivalent to rooted planar maps,
again from [2], we have:

|CR,n| ≤
2(2n)! 3n

n!(n + 2)!
·

From SR,n ⊆ CR,n it follows that

|SR,n| ≤ |CR,n|.

The rate of growth of the quantity |CR,n| is easily deduced. Indeed, we have

lim
n→∞

n
√
|SR,n| = 2 +

√
2 and lim

n→∞
n

√
2(2n)! 3n

n!(n + 2)!
= 12 due to Stirling’s formula.

Consequently,

1 < 2 +
√

2 ≤ lim inf
n→∞

n

√
|CR,n| ≤ lim sup

n→∞

n

√
|CR,n| ≤ 12,

which means that |CR,n| grows exponentially.
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