1D Piecewise Polynomials. Finite Element Method for 1D Boundary Value Problems. Additional Problems.

Problem 1. Consider the space V_{h} of continuous piecewise quadratic polynomials. Define a nodal basis for this space. Derive the linear algebraic system for the coefficients of the L_{2}-projection of a given function f onto V_{h}. How do you assemble the global mass matrix and load vector? Use your results to approximate the function $\sin x$ in the interval $I:=[0, \pi / 2]$ for $h=\pi / 6$ and $h=\pi / 12$. Derive an a priori error estimate for the obtained approximation.

Problem 2. Consider the problem

$$
\begin{aligned}
& -u^{\prime \prime}+u=f, \quad x \in(0,1) \\
& u(0)=u(1)=0
\end{aligned}
$$

Derive the corresponding variational formulation. Choose a suitable finite element space V_{h}. Formulate the Ritz-Galerkin problem. Derive the discrete system of equations. Derive a priori error estimates in energy norm and in H^{1}-norm.

Problem 3. Compute the stiffness matrix to the problem

$$
\begin{aligned}
-u^{\prime \prime} & =f, \quad x \in(0,1) \\
u^{\prime}(0) & =u^{\prime}(1)=0
\end{aligned}
$$

on a uniform mesh of I with two elements. Why is the matrix singular?
Problem 4. Consider the problem

$$
\begin{aligned}
& -\left((1+x) u^{\prime}\right)^{\prime}=0, \quad x \in(0,1) \\
& u(0)=0, u^{\prime}(1)=0
\end{aligned}
$$

Divide the interval I into three subintervals of equal length $h=1 / 3$ and let V_{h} be the corresponding space of piecewise linear polynomials, vanishing at $x=0$. Use V_{h} to formulate a finite element method. Compute the stiffness matrix and the load vector. Verify that the stiffness matrix is symmetric and positive-definite.

This problem has an analytic solution. Find it and then obtain an a priori error estimate for the finite element solution. Verify that this estimate indeed holds.

