1D Piecewise Polynomials. Finite Element Method for 1D Boundary Value Problems. Additional Problems.

Problem 1. Consider the space V_h of continuous piecewise quadratic polynomials. Define a nodal basis for this space. Derive the linear algebraic system for the coefficients of the L_2 -projection of a given function f onto V_h . How do you assemble the global mass matrix and load vector? Use your results to approximate the function $\sin x$ in the interval $I := [0, \pi/2]$ for $h = \pi/6$ and $h = \pi/12$. Derive an a priori error estimate for the obtained approximation.

Problem 2. Consider the problem

$$-u'' + u = f, x \in (0, 1),$$

 $u(0) = u(1) = 0.$

Derive the corresponding variational formulation. Choose a suitable finite element space V_h . Formulate the Ritz–Galerkin problem. Derive the discrete system of equations. Derive a priori error estimates in energy norm and in H^1 -norm.

Problem 3. Compute the stiffness matrix to the problem

$$-u'' = f, x \in (0, 1),$$

 $u'(0) = u'(1) = 0.$

on a uniform mesh of I with two elements. Why is the matrix singular?

Problem 4. Consider the problem

$$-((1+x)u')' = 0, \quad x \in (0,1),$$

$$u(0) = 0, \quad u'(1) = 0.$$

Divide the interval I into three subintervals of equal length h = 1/3 and let V_h be the corresponding space of piecewise linear polynomials, vanishing at x = 0. Use V_h to formulate a finite element method. Compute the stiffness matrix and the load vector. Verify that the stiffness matrix is symmetric and positive-definite.

This problem has an analytic solution. Find it and then obtain an a priori error estimate for the finite element solution. Verify that this estimate indeed holds.