## Finite Element Method-1 <br> Additional Problems. Part 2.

## 2D Piecewise Polynomials. Finite Element Method for Stationary 2D Boundary Value Problems.

Problem 1. Determine the basis functions for piecewise-linear polynomials on an arbitrary triangle with corner coordinates

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)
$$

Problem 2. Consider the problem

$$
\begin{aligned}
-\Delta u+u=f, & x \in \Omega \\
u=0, & x \in \partial \Omega .
\end{aligned}
$$

(a) Write a variational formulation of this problem in a suitable space $V$.
(b) Write down a finite-element method (R.-G.), based on the variational problem.
(c) Derive an a priori error estimate in $H^{1}$ norm.

Problem 3. Consider the problem

$$
\begin{aligned}
-\nabla \cdot(\alpha \nabla u)+\beta u & =f, x \in \Omega \\
u & =0, x \in \Gamma_{1} \\
-\alpha \nabla u & =10, x \in \Gamma_{2}
\end{aligned}
$$

where $\Gamma_{1} \cup \Gamma_{2}=\partial \Omega$.
(a) Write a variational formulation of this problem in a suitable space $V$.
(b) Write down a finite-element method (R.-G.), based on the variational problem.

## Coercivity and Continuity of the Bilinear Form. Related Inequalities.

Problem 4. Derive the following Poincaré ineaqualities:

$$
\begin{aligned}
& \int_{0}^{1} u^{2} d x \leq \frac{1}{2} \int_{0}^{1} u^{\prime 2} d x, \quad \forall u \in \mathcal{A}=\left\{u \in H^{1}[0,1]: u(1)=0\right\} \\
& \int_{0}^{1} u^{2} d x \leq \frac{1}{4} \int_{0}^{1} u^{\prime 2} d x, \quad \forall u \in H_{0}^{1}[0,1]
\end{aligned}
$$

Problem 5. Show that for every $u \in C^{1}[0,1]$, the following inequalities hold:

$$
\begin{aligned}
& \int_{0}^{1} u^{2} d x \leq \frac{1}{6} \int_{0}^{1} u^{\prime 2} d x+\left(\int_{0}^{1} u d x\right)^{2} ; \\
& \max _{x \in[0,1]}|u(x)|^{2} \leq 2 u^{2}(1)+2 \int_{0}^{1} u^{\prime 2} d x \\
& \int_{0}^{1} u^{2}(x) d x \leq 2 u^{2}(1)+2 \int_{0}^{1} u^{\prime 2} d x \\
& \max _{x \in[0,1]}|u(x)|^{2} \leq 2 \int_{0}^{1}\left(u^{2}+u^{\prime 2}\right) d x .
\end{aligned}
$$

Problem 6. Derive the weak formulation of the following fourth-order boundaryvalue problem, using a suitable test space $V$ :

$$
u^{(4)}+u=f(x), x \in(0,1), u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0 .
$$

Show that the bilinear form $a(\cdot, \cdot)$ is coercive and continuous in $V$.
Problem 7. Consider the variational problem

$$
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x+u(1) v(1)=\int_{0}^{1} f v d x, \forall v \in V
$$

Derive the strong (differential) form of this problem if

- $V=\left\{v \in H_{0}^{1}(0,1): v(0)=0\right\} ;$
- $V=H^{1}(0,1)$.

Show that in both cases the bilinear form is coercive and continuous in $H^{1}$. Derive a priori error estimates in $H^{1}$-norm for the FEM solutions, which are piecewise linear functions. Using Nitsche's trick, derive a priori error estimates in $L_{2}$-norm.

