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Chapter 1

1D Finite elements—Introduction

1.1 Piecewise polynomials in a single variable. In-
terpolation, Lo-projection, a priori error esti-
madtes.

In FEM, we look for the best approximation of a certain kind (piecewise polynomial)
to the solution of a given differential problem. Before we consider this question, let
us discuss the approximation of a given function that is known. The ideas that we
shall study are fundamental for FEM and we shall meet them repeatedly during the
course.

There exist two main ideas—interpolation and finding the best approxima-
tion with respect to a given norm. We shall discuss them consequently, since
they are both important for what follows.

The functions that we shall use for approximation in the present course will
be piecewise linear polynomials. On one hand, they are simple enough, so that
we can work with them easily. On the other hand, they are sufficiently flexible to
approximate functions with complex behaviour.

Let us formulate the following very general problem

Given the function u € V, find the function u; € V},, a piecewise poly-
nomial, that is “close” to u.

Let for the time being think of the function u as sufficiently smooth (e.g., in-
finitely differentiable, V' = C*[a,b]). We shall specify this question later. The
formulated problem is fundamental for the approximation theory. We want to ap-
proximate a given (in some sense, complex) function u from the infinite-dimensional
space V with something simpler, in an appropriately chosen finite-dimensional sub-
space V}, C V. The benefit of working in a finite-dimensional space is that we know
the form of all functions in it. They can be represented as Y ., a;p;(x), where
{vo(z),...,n(x)} form a given basis of the space. In other words, every function
can be defined by choosing n + 1 numbers ay, . .., a, and the question for finding a
specific function is reduced to finding (ao, .. .,a,) € R"*!. Taking into account the
latter, we first need to clear out the structure of V}, and choose an appropriate basis
to work with.

We shall present the ideas, using the space of piecewise-linear functions. All the
ideas can be easily generalized for higher-degree polynomials.
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1.1.1 The space of linear polynomials P,. Interpolation.

In order to discuss the usage of piecewise-linear functions, let us first consider the
space of linear polynomials

Py = {p(r) = ap + a1z : (ag, a1) € R*}.

The simplest basis of P; is {1,z}. Nevertheless, it is not always the most con-
venient one. As we know, every line can be uniquely determined by two arbitrary
points. Let us, e.g., choose the points (xg, qo) and (z1,¢;). The polynoimal, passing
through those points satisfies the linear algebraic system

p(x0) = ap + a1xo = qo,
plx1) =ap+ a1z = ¢

or, written in a vector-matrix form,

IR

The latter system has a Vandermonde matrix, which is well known to have poor
properties in numerical computations, especially for higher dimensions. It would be
much more convenient if we chose the basis {yo(z), v1(z)}, such that the system

wo(z0) 1(20) ap | _ | 9o
po(z1) p1(21) ax 1
had a diagonal matrix. This gives us the reason to choose the basis functions ¢;(z),
1= 0,1 in such a way that
L i=j,
pi(x;) = {

0, ©# 7.
We shall call such a basis an interpolation or nodal basis. In this particular case,
the nodal basis is given with the Lagrange basis polynomials:

r — I r — 2o

po(r) = p1(z) =

550—96’1’ 951—1’0'

The graphs of the basis functions have the following form:
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Then, if we have a function u(z), which is given, we obtain

ur(x) = u(zo)po(w) + u(r1)p1(z).

U(X1)

U(Xo)

X0 X1

1.1.2 The space of piecewise-linear polynomials V). Interpo-
lation.

It is clear, however, that if want to approximate a given function with complex
behaviour over a large interval, this cannot be achieved using a linear function.
A standard idea in numerical analysis is to divide the interval into subintervals

and approximate in each subinterval individually, e.g.:

X1 X2 X3

This leads us to consider the space of piecewise-polynomials (in this case, linear).
Let us have the nodes o < 1 < --- < x, chosen and let h; := z; — x;_1, I; :=
[;_1,7;], i = 1,n. We shall call the subintervals I; elements. We define

Vi i= {p(x) € Cla,b] : p(x) € Py for v € I;;i € T,n}.

The nodal basis of this functional space must look as follows:



(f’n—l (bn

X

Xn-2  Xp-1 Xn

Those are the so called “hat”-functions. We can analytically define them as

(T — T;_
—217 €x E IZ’
Ti — Ti—1
_ ) Tiy1—x
902($> - L, xr € Ii+17 (11)
Tit1 — X4
0, otherwise.

\

Obviously, this definition should be trivially modified for the first and the last basis
functions.

A very important property of the functions ¢;(z) is that they have a finite
support, i.e. they have non-zero values only over two elements:

supp %@) = [ﬂfi—l,ﬂfi] U [ﬂfi,fﬁiﬂ], 1=1,n—1,

except for the first and the last basis function, whose support is the first and the
last element, correspondingly.
Thus, the interpolant of the function u(z) at the nodes z, ..., x, is

ur(z) = Zu(fﬂz‘)%@)-
=0
1.1.3 A priori error estimates for interpolation with functions
from P;

One of the main questions that we shall deal with in this course, is about obtaining
a priori error estimates for a given approximation. One of the norms, most widely
used for estimating the error, is the Lo-norm. It gives an idea of the “average
magnitude” of a given function:

1/2
ol = (/Iv2da:) .

We shall prove the following estimates



Proposition 1. The interpolant ur € Py for the function u in the interval I = |a, b
satisfies
lu = urll oy < CR* || Loy,

Ju" = il 2oy < ChllW”| o)
for fized constants C' and h := b — a.

Proof. Let us denote the error by
e(z) :=u(x) — us(z).

We want to estimate the Lo(I)-norm of the error, i.e

/I ¢2(2)dz.

For this purpose, we shall firstly estimate the error at an arbitrary point x. We
have

e(r) = e(xg) + /z e (x)dx

o

= / e'(z)dx
" w 1/2 x 1/2
< ( / 1dw) ( / e'Q(x)dx> (Schwarz inequality)
o xo

Y ( / 6'2($)d$) v

<Vh ( / e/Q(LE)d:E) v

= Vh|e'l| .

Therefore,
e*(x) < hlle']|7, -

Integrating both sides of the latter inequality, we obtain
lell ) < B2l ll L0y,

ie.
lell oy < PllE N ae)-

We similarly derive
' Lo(ry < hll€" |-

The difference lies in the fact that the equality €’(xy) = 0 does not hold. Using the
Rolle’s Theorem, however, we know that there exists a point £ € (g, z1), such that

e (§) = 0. Then, we can write
x
e(z) = / e"di
3
and proceed as we did above.
Using the fact that ¢’ = «” — v/ = u”, we conclude the proof. O]
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Remark 1. We have proved the estimates for C' = 1. Nevertheless, we leave the
constant C, since this is the general form of the estimates we shall obtain.

Remark 2. Let us note the important fact that the error estimate for ||u —uz|| 1,1
is of an order, higher with one than the estimate for the derivative of the error.

1.1.4 A priori error estimate for interpolation with functions
from V),

As we shall repeatedly see during the course, working with piecewise polynomials
can be reduced directly to working with polynomials in each of the subintervals.

Proposition 2. The interpolant u; € Vj, satisfies

Hu - uIHLg(I) < ChZHUHHLz(I)v

[0 = il 2oy < ChllW”| Loy
for given constants C' and h := max h;.

Proof. Obtaining the estimates is straightforward by examining the error over each
subinterval and applying the previous proposition. We consecutively obtain

n
|u — Uz’”%z(z) = Z |u — Uz’H%Q(m
i=1

< Zcih?HU”H%Q(m

=1

n
4 2
<Ch Z HU”HLQ(Q)
i=1
4 2
=Ch HUNHL2(I)>
where C':= max;_1; C;, h := max;_1, h;.
By taking square roots of both sides, we obtain the first inequality in the propo-
sition. Analogously, we obtain the second one. O

Remark 3. In order to derive the estimate, we have used the crucial fact that we
can compute the square of the Lo-norm over [ as the sum of the squares of the
Lo-norms over all elements. We specifically note this fact, since we will be using it
often.

1.1.5 Ls-projection

As we shall see, the interpolation theory is fundamental in the theory of FEM.
The idea of FEM itself, however, is much more related to the other main approach
to approximating functions—looking for the best approximation with respect to a
given norm. In particular, in this section, we shall be interested in obtaining the best
approximation with respect to the Ly-norm since it can be computed algorithmically.
We, therefore, formulate the following problem:



Given the function u € Ly([), find u, € V}, such that

|w — un|| £y — uf}?el\f}h :

Let us remind that the space Lo([) is defined as

Ly(I) := {u : /IUde < oo}

and is equipped with the norm

||u||i2(1) = /Iqux.

A crucial fact about the space Lo(I) is that we can define the Ly-norm via the scalar

product
(u,v) == /uvdz,
I
e [Jull?, ) = ().

The advantage of having a scalar product, defined in the space, is
that it introduces geometry. In particular, we can define the notions of
angles, orthogonality, and projections. Using this fact, we can approach the
question of finding the best approximation in the following way.

The natural “candidate” for being the best approximation of u from Vj} is the
orthogonal projection of u, i.e. the function u; € V},, such that

u—u, Lv, YveV,

or, which is the same,
(u—up,v) =0, Yv eV, (1.2)

10



Best approximation result. A priori error estimate.

Before we proceed with giving an algorithm for computing u;, we shall first prove
that this is indeed the best approximation and derive an a priori error estimate.

Proposition 3 (Best approximation result). The orthogonal projection uy is the
best approzimation of u from Vy, with respect to the Lo(I)-norm, i.e.

[ = unll Loy < [l = vllLory, Vv € Vi (1.3)

Proof. We have

||lu — uh||%2(]) = /I(u —v+v—up)(u—up)dr = /I(u —v)(u — up)dz.

In the latter equality, we have used the fact that v —u, € V,, and u—wuy;, L V. Now,
we apply the Schwarz inequality and obtain

e = unll Ly < lw = vl llw = unll oy
Dividing both sides to [[u — up|[z,(r), we obtain the proposition. O

Using the latter proposition, we can easily obtain an a priori error estimate for
the Lo-projection.

Proposition 4. For the Ly-projection uy,, the following error estimates hold:

lw = wnl oy < CR2{[U"|| Ly,
" — [ Loy < ChllW”|| Loy

Proof. The estimate (1.3) holds true for every v € V,,. We can, therefore, use it
with v = uy, for which we already have an error estimate. We obtain

lu = unllioery < llu—url| oy < CP? U || Ly
Analogously, we obtain the estimate for the derivative of the error. m

Remark 4. The orthogonality and the best approximation result (and, thus, a
priori error estimate) are closely related. We shall prove that the approximation
obtained with FEM is “the orthogonal projection” of the unknown function in Vj.
We will obtain analogous results to the ones in the present section, but they will be
with respect to the so-called energy norm or, more generally, H'-norm. Therefore,
the “natural” a priori error estimates will be with respect to those norms.

Remark 5. In order to use the best approximation result for obtaining a priori error
estimates, in general, we shall need error estimates from the theory of interpolation.
We shall later formulate, prove, and use a result (the Bramble—Hilbert lemma) that
is much more general than the a priori error estimates for 1D linear interpolation
that we derived in the previous subsection.

11



Computing uy,

We are now ready to develop an algorithm for computing u;. The problem (1.2) is
equivalent to the problem for finding u; € V}, such that

(up,v) = (u,v), Yv € V.

Using the fact that we work in a finite-dimensional space, the latter will be satisfied
if

(uh’ @i) = (u790i)a L= O,_TL
Taking into account that we know the form of u, = Y77 (g (x), where @;(z)

are the hat-functions, and the linearity of the scalar product, we finally obtain the
following linear algebraic systems for the unknown coefficients:

Z%’(‘Pja pi) = (u, 1), i=0,n
§=0
or, written in a vector-matrix form,
(0s00)  (po,1) -+ (#ns0) 4o (u; o)

: : . : | = : . (1.4)
(0s0n) (P1,00) = (PnsPn) Gn (u, on)

This is, actually, the most general form of the system that would be
obtained when we look for the orthogonal projection of a given function
u in the subspace, spanned by g, ..., ¢,, with respect to a scalar product, defined
in the space. In our particular case, i.e. looking for the Lo-projection in Vj, we
obtain

f[ @%dm f[ prpodr - - fI Onpod do flugoodx

f[ SOOQOndf f] gOlgﬁndZE T f[ @idl’ dn f[ UQOTLCZZE

For short, we write the system as

where M is the so called global mass matrix and b is the global load vector.

Therefore, in order to compute the unknown coefficients, we need to assemble
the matrix M and the vector b and solve the system. We shall use the fact that the
basis functions of V}, have finite support, in order to compute M and b efficiently.
Since ¢; has non-zero values only over I; and [;;; it makes sense to write M as a

12



sum of matrices, containing integrals over each element individually, i.e.

n fz pida f[i prpodz - - f,l_ Onpodr
M=} : : :
= eoende [y orpadr - [ phde
[ Ji,6dr [, p1podz O --- 00 1 [0 0 0
0 [,eide [, erpada
Sy poonde [, ptdz 0 -0 000 :
0 paprdr pidx
= 0 0 0O --- 00 + ffl f[l 2
0 0 0 0 0 0 0 0
L 0 0 0 0 0] [0 0 0
teeet : :
|00 0 --- f]n OnPn_1dx fI’n gpidx ]

Of course, in practice, it would be absolutely impractical to store all those matrices
in the sum, having most of their elements equal to zero. Thus, we only compute
the 2 x 2 non-zero blocks and put them “at the correct places” in M. This process
is called assembling the global mass matrix.

The element mass 2 X 2 matrices can be defined as follows:

m, — f[i w7 dr f[,i Pi—1pidr _ & 2 1
' [ piviadr [, pide 6 |1 2]
The last equality can be easily shown and we leave it as an exercise. We shall com-
pute particular element mass matrices, when we discuss the solution of differential
equations with FEM.
We can proceed analogously for the load vector b, by introducing

b [ piciudz
YL fpiudr |

We formulate the following general algorithm for obtaining the best approxima-
tion of a given function u € Lo(I) with respect to the Ly-norm.

13




ALGORITHM (COMPUTING L,-PROJECTION):

1.

Discretize the interval [ by introducing the mesh zq < 2y < -+ < x,, [; :=
[%’—1,%], hy = x; — 3.

. Define the nodal basis ¢;(), i = 0, n, the hat-functions.

Implement functions, computing the element mass matrices, M;, and element
load vectors, b;.

. Assemble the global mass matrix M and load vector b.

Solve the linear algebraic system Mq = b.

Using the solution q, obtain

Up = Z qipi(2)-
i=0

Let us remark that ¢; = u,(z;) are exactly the values of u, at the nodes.

g4 e

an

Un

Xo X1 Xo .. .. Xn

In order to get further intuition about what we have discussed so far,
before you proceed, see the worked-out examples in Section 1 of the notes
from the exercise classes.
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1.2 FEM for 1D problems with homogeneous Dirich-
let boundary conditions. Variational formula-
tion. Ritz—Galerkin method. A priori error
estimate in energy norm. Discretization and
derivation of a linear algebraic system. Gen-
eral boundary conditions.

1.2.1 General idea of the method.

We are now ready to apply the ideas, introduced in the previous section, to solving
differential equations. We shall present the ideas over a simple example. We consider
the differential problem

—u"(x)=f, ©€(0,L),

u(0) =u(L) =0, (D)

where f € Ly([I) is a given function, I := [0, L]. Stated otherwise, we are looking
for a function u from the space

D ={veC*0,L)NnC0,L]:v(0) =v(L) =0}

that satisfies the differential equation. We shall call such a function a strong
solution or a classical solution of the differential problem (D).

Our approach will be to obtain an integral problem that has the same solution,
since working with integrals has certain benefits in complex geometries, discretized
by using arbitrarily-shaped objects (e.g., triangles). In those cases the classical
finite-difference methods have serious drawbacks. On the other hand,
it makes no difference whether we compute an integral over rectangles
(from a rectangular mesh), or over other domains. We can accomplish this
by using the idea we had for the Lo-projection. That is, we shall require that the
error (i.e., the difference between the left-hand side and the right-hand side in the
differential equation, —u” — f) be orthogonal to “every v”. We realize this idea in
the following way.

Let us take an arbitrary function v that we shall call a test function and take
the scalar products of both sides of the differential equation with v. We obtain

(_ullv U) = (fa U)

/—u”vdxz /fvdx.
I I

Let us consider the integral on the left-hand side in the latter equation and use
integration by parts, in order to accomplish two things:

or, which is the same,

e make the left-hand side “more symmetric”;

e decrease the order of the derivatives in the equation and, thus, relax the
requirements on the admissible functions w.

15



Thus, for the left hand-side we obtain

/I—u"vd:r; = /Iu'vldm —u'(1)v(1) + u'(0)v(0).

In order to simplify the expression further, we require that the test functions also
satisfy the boundary conditions, i.e. v(0) = v(1) = 0. This leads to a very useful
simplification, but is also perfectly natural to have the test functions v and the
unknown function u be from the same space (and, thus, satisfy the same require-
ments).

We have, thus, obtained the following integral problem that we shall refer to as
the variational form or the weak form:

Find u € V, such that
a(u,v) = F(v), VveV, (V)

where the bilinear form a(u,v) and the linear functional F'(v) are defined as follows:

a(u,v) = /u'v'dx, Fv) = /fvd:v.
I I
We shall define the space V' to be the largest functional space, for which this problem
makes sense, i.e.

V= {v ;v exists (in a weak sense),/v2 < oo,/U’2 < o00,v(0) =v(L) = 0} = Hj.
I I

Remark 6. Before we proceed, we need to make a couple of remarks:

e The space H{ is an example of a Sobolev space. We shall discuss this question
in much more detail later in the course. In particular, we shall introduce the
notion of a weak (generalized) derivative;

e We have explicitly required that the functions in this space satisfy the Dirichlet
boundary conditions, because we have used this fact in order to obtain the
variational formulation. This is a very subtle moment and we shall have a
special lecture on the subject;

e Obviously the space V = Hj is “larger” than D. On one hand, this is good—if
(D) has a solution, it is contained in H} and is, thus, a solution of (V). On
the other hand, the problem (V) in general is not equivalent to (D). However,
we shall prove under certain conditions that the problem (V) has a unique
solution. Thus, if (D) has a solution, the two problems are indeed equivalent.
Otherwise, the solution of (V) will be called a weak solution;

e In the variational formulation (V), we require that the unknown function u
and the test functions v are from the same space V = Hy (Galerkin method).
This seems the natural thing to do and we also used it as a justification for
imposing the conditions v(0) = v(1) = 0 on the test functions. This, however,
is not necessarily the case always. When the two spaces are different, we have
the so called Petrov—(Galerkin method. For the time being, we shall only be
interested in the Galerkin method, i.e. the two spaces being equal.
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Unfortunately, we cannot solve the problem (V), in general. Therefore, we shall
look for an approximate solution in a finite-dimensional subspace of H} (a problem
that can be solved). In particular, we shall look for a piecewise-linear function
with zero values on the boundaries, i.e. we shall solve the so-called Ritz—Galerkin
problem:

Find w;, € V0 C Hy, such that
a(up,v) = F(v), Yv & Vi, (R.-G.)
where
Vho = {v € Vi v(0) =v(L) =0} = span(er, ..., Pn_1).

Taking into account that we work in the finite-dimensional space V}, ¢, it is sufficient
to satisfy

a(un, pj) = F(pj), j=1,n—1.
Further, using the form of the approximate solution, wuy(z) = Z?:_ll qipi(), we
obtain the following linear algebraic system for the coefficients g;:

a(p1,¢1) a(er,p2) - a(e1, Pn-1) q (f, 1)
al(er, on-1) alp2, n-1) - a(Pn-1,Pn-1) Qn—1 (f, on-1)
(1.5)

We shall write the latter system compactly as

Mq =1,
where M is the so-called stiffness matrix

[yetde - [0l d
M = : :
fI Or1ppadr - fz 9013—1dx

Solving the system with respect to q, we obtain the desired approximate solution.

Before you proceed, see the worked-out examples in Section 2 of the
notes from the exercise classes.

1.2.2 A priori error estimate in energy norm

In order to use the idea of substituting the problem (V) with the problem (R.-G.),
we need to prove that this method is convergent, i.e. u, — u as h — 0. This is
directly related to obtaining a priori error estimates for u — uy,.

If we compare (1.5) to (1.4), we can note that the two are very much alike.
Actually, since the bilinear form af(-,-) is symmetric and positive-definite, we can
define the following scalar product and corresponding norm:

<u,v >pi=alu,v) = /u'v'dag ul| = a(u,u) = /u’2dx.
I I

They are called energy scalar product and energy norm, respectively. Then, the
matrix of the system (1.5) is a Gram matrix with respect to the energy scalar
product. Two consequences follow:
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e The Ritz—Galerkin problem has a unique solution;

e One can prove an orthogonality result and a best approximation result (with
respect to the energy norm), from which an a priori error estimate and con-
vergence follow.

Remark 7. In general, the bilinear form needs not be symmetric and it does not
define a scalar product. We shall discuss the more general case later in the course.

Proposition 5 (Galerkin orthogonality). The finite element approzimation uy, sat-
isfies

a(u —up,v), Yv € Vi
Proof. For the solution u of the variational problem (V), we have
a(u,v) = F(v), Yv € Hy D V.
For the solution u; of the Ritz—Galerkin problem, we have
a(up,v) = F(v), Yv € Vjp.

Therefore, subtracting the latter two equations and using the linearity of a(-,-), we
obtain
a(u —up,v) =0, Yv € Vj.

]

Remark 8. The obtained result is very general. It obviously holds true for every
bilinear form a(-,-) and every functional F(-).

Remark 9. Since for our model problem the bilinear form a(-,-) defines a scalar
product, we have proven that wuy is the orthogonal projection of v in V}, o with respect
to the energy scalar product < -, - >pg:

<U— U,V >g= O, Yv € Vh,g.

In general, when the bilinear form is not symmetric, the Galerkin “orthogonality” is
not really a orthogonality with respect to some scalar product. This result, however,
will still allow us to obtain a priori error estimates.

Now, as before, the best approximation result follows directly:

Proposition 6 (Best approximation result). The finite element solution uy is the
best approrimation of u with respect to the energy norm, i.e.

|lu —uplle < ||lu—2|g, Yv € Vi

Proof. We obtain consecutively

= w2 = /(u v — ) (u— up)de
I
= /(u —v)'(u—wuy)dx  (Galerkin orthogonality)

I

< |lu —v||pllu — unl| g (Schwarz inequality).
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Proposition 7. We are now ready to derive an a priori error estimate. We have
lu = unllp < [lu—urlle = [[(u =)L, < Chllu"|L,.
Two questions immediately follow from this error estimate.

1. We have proven convergence for the derivatives, uj, — v’ as h — 0. Do we
have convergence for the approximate solution?

2. Can we prove second order convergence for u;, — u in Lo-norm that holds for
the Lo-projection?

We can answer the first question affirmatively, since u(0) = u,(0) = 0 and we
have convergence for the derivatives. therefore as h — 0, the following hods:

up(x) = up(0) + /OIB up,dr — u(0) + /ox u'dr = u(z).

Concerning the second question, it is not so trivial. We shall prove in a few
lectures that under certain conditions (but not in the most general case) second-
order convergence can be shown to hold in Ls-norm.

1.2.3 FEM in 1D with more general boundary conditions

We shall now consider one more example, with which we shall illustrate the case of
Robin boundary conditions.

—(au) = f, ©€(0,L),
au'(0) = 52 (u(0) — go), (D)
— au'(L) = s (u(L) — gr),
where a(z) > 0 and f(z) are given function, sy > 0, 2, > 0, go, g1 are given
constant parameters.

We derive the corresponding variational problem by multiplying both sides with
an arbitrary test function v and integrating over I := [0, L]. For the left-hand side,
[hs, using integration by parts, we obtain

lhs = — /I(au’)'vdx = /au’v’dm — a(L)u' (L)v(L) + a(0)u'(0)v(0).

Here comes the difference with the case of Dirichlet boundary conditions. In this
case, we know something about u’ and, therefore, can include the boundary condi-
tions in the variational form. We obtain

lhs = /Iau'v'da: + ser,(w(L) — gr)v(L) + 20(u(0) — go)v(0).

By leaving on the left-hand side only the terms that include the unknown function,
we obtain the following variational problem.
Find v € H', such that

a(u,v) = F(v), Yo € H', (V)
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where

a(u,v) := /au’v’dx + sepu(L)v(L) + »u(0)v(0),

F(v) = /vadm + gov(0) + grv(L).

Since in the derivation of the variational form, we didn’t impose any explicit
conditions on the test functions v, we can work in the space H'. As we shall discuss
in more detail later in the course, the fact that we have included the boundary
conditions in the variational form means that the solution will automatically satisfy
them. Therefore, if we have Dirichlet boundary conditions, we impose them
in the functional space (e.g., we work in H}), but if we have Neumann or
Robin boundary conditions, we need not care about them and solve the
problem in H'.

Further, we approximate the variational problem (V) by searching an approx-
imate solution in the subspace Vj, := span(o, ..., pn). We obtain the following
problem.

Find u, € Vj, C H', such that

a(up,v) = F(v), Yv € Vj. (R—-G.)

Rewriting the latter as a linear algebraic system with respect to the unknown coef-
ficients in the representation u, = > ¢;; (), we obtain

Mq=f,

where

My i= [ aglgdo g (LieL) + e 0p0)

I
fi = / Foule)trergrod L) + sg0pil0).
I

Let us note that the red terms give non-zero contributions only for + = j = 0 and
1=7=n.

Since we have seen that the general approach is basically the same, no matter
what the specific problem is, we formulate the following algorithm.
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ALGORITHM (GENERAL STEPS OF 1D FEM):

1. Obtain the variational formulation of the original differential problem. De-
termine the functional space, where (V) is solved, carefully, keeping in mind
that homogeneous Dirichlet conditions need to be explicitly included in the
definition of the functional space.

2. Discretize the domain by introducing the mesh zy < --- < z,, and define the
finite dimensional subspace V},.

3. Formulate the Ritz—Galerkin problem and obtain the linear algebraic system
Mq = b,

4. Compute M and b. In practice, this is achieved by computing local element
matrices/vectors and then assembling the global ones.

5. Solve the linear algebraic system to obtain q.

6. The approximate solution is

Up = Z ¢ ().
i=0

It is easy to obtain an a priori error estimate in this case as well. Since the
bilinear form a(-, ) is again symmetric, we can define the energy scalar product and
corresponding norm in the following way:

< UV >pi= /au'v'd:l:—i—%Lu(L)v(L)—i—%ou(O)v(O), |ul|% = /au'de+%Lu2(L)+%ou2(O).
I I

Obviously, the Galerkin orthogonality holds for the above-defined energy scalar
product and, thus, we shall proceed with establishing the best approximation result.

Proposition 8 (Best approximation result). ||u — up||g < ||[u —v|| for all v € V},.
Proof. We have

| — up|® = /Ia(u —up) (u—v+v—up)dx+ sp(u(L) — up(L))(u(L) —v(L) + v(L) — uy(L))

+ 220(u(0) — up(0))(w(0) — v(0) + v(0) — uy(0)).
From the Galerking orthogonality, it follows that the red terms sum up to zero and,

therefore,
lu — un|]? =< u —up,u — v >p< |lu—upl|gllu — vz

Now, the a priori error estimate follows easily. We obtain consecutively

lw = unlls < llu—ull

:/]a(u—ul)’stc—l—MEMO

< maxal|(u — ur)'|3,

< Ch?||u"|[Z,-
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1.3 A priori error estimates in 4! and L, norms.
Nitsche’s trick.

1.3.1 Error estimates in H'-norm. Coercivity and continuity
of the bilinear form.

As we can see from the above discussions, it is very natural to obtain a priori
error estimates in the energy norm. Unfortunately, this has some drawbacks. First,
the bilinear form does not define a scalar product and, thus, a norm, if it is not
symmetric. Furthermore, the energy norm is problem-specific, which means that
concrete computations should be carried for each individual problem.

Instead of using the energy norm, we shall further show that error estimates in
the H'-norm can be obtained just as easily, but do not have the same drawbacks.
Furthermore, they are in some sense equivalent to the estimates in energy norm.
The H'-norm is defined as

= [ (e

It is a natural measure for the magnitude of an element u from H', taking into
account that we require that the elements in H' satisfy

/qux < 00, /u’2dx < 00.
I I

We shall introduce the ideas, using the first model problem, which we re-state
here for convenience:

Cua)= . ze(0,L)
u(0) = u(L) = 0.

The corresponding variational problem is:
Find u € H}, such that

(D)

a(u,v) = F(v), Yv € H&, (V)
where

a(u, v) = /I Wdr, F(v) = /I Fodz.

It turns out that if the bilinear form is coercive in H!, then we can obtain an
error estimate in H'-norm, directly from the error estimate in energy norm.

Definition 1. The bilinear form af(-, -) is said to be coercive in the functional space
Vit
a(u, u) > aljully,
for some constant « that is not dependent on w.
Even though we still need to check that the bilinear form in (V') is indeed coercive
in H', let us, for the time being, assume that it is. Then, we can straightforwardly

derive an error estimate in H'-norm, using what we know for the error in energy
norm. We obtain consecutively

lu = unllip < Calu —up,u—up) = Cllu — w3 < CH*||u"|[Z,.
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Therefore, an equivalent a priori error estimate holds in H!'-norm:
lu = unll g < Chlju”| 1, (1.6)

Actually, the estimate (1.6) has a further benefit. If we have convergence in H'
norm, i.e. if we can show that

I(w = un)l[ =0,

then it follows that both

/(u — up)?dz — 0 and /(u — up)?dx — 0.
I I

Stated otherwise, the following holds true:

lullr = Hlullz, + [l'lIZ,.

We have, thus, already proven the following error estimate for our model prob-
lem.

Proposition 9. For the finite element solution uy, of the variational problem (V),
the following a priori error estimate in H'-norm holds:

lu = wnll e < Chllu”] L,

We, nevertheless, are interested in obtaining error estimates even in the case
when the bilinear form is not symmetric and, thus, we cannot define the energy
norm like we have done so far. It turns out that the coercivity allows us to directly
obtain a “best approximation” result. Indeed, we will prove the following.

Proposition 10. For the finite element solution u, € Vi, of (V),
lu —upl|m < Cllu —vl||g, Yo € Vy,
holds true.

Proof. Using the coercivity of the bilinear form and the Galerkin orthogonality (that
is a general result and, thus, not problem-dependent) we consecutively obtain:

lu — unll3n < Calu —up,u—v+v—up)

= Ca(u —v,u — up)

—C’/uv (u —up) d{I’<C\// uv”dr\//uu; 2dx

< COllu—v|| g ||u — upl| g1

In the latter inequality, we have used the obvious fact that
/(u —v)?%dx < / [(u—v)*+ (u—v)?] da.
I I

]

' The inverted commas are used, because we won’t really obtain a best approximation result,
but a similar one, which will be sufficient for our purposes.
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Remark 10. Let us note that in the latter proof, we have used the specific problem
in the row that is coloured in red. If we change this row with the following abstract
condition on the bilinear form (we shall call the bilinear forms that satisfy this
condition continuous in H'):

a(u, v) < Cllullg|v] g,
we shall again obtain the statement of the proposition. Therefore, the statement of

the proposition holds for all bilinear forms that are coercive and continuous in H'.

1.3.2 Poincaré inequality in H}

We are now ready to deal with the question of showing coercivity in H}. This is
obviously needed for obtaining the “good” a priori estimates, in H'-norm. A crucial
result from the theory of Sobolev spaces that will allow us to do so is the so-called
Poincaré inequality.

Proposition 11 (Poincaré inequality). For every function uw € Hy(I), the following

inequality is valid:
1 1
/ wlde < C/ udx.
0 0

Proof. We shall first estimate u(z) and then square and integrate both sides. We

have 0 e
o) =)+ [ ul(a)ds
0
< / 1di / w2di
0 0
1
<<z /u’Qdi.
0
Therefore,

1
u?(z) < x/ udx
0

and, integrating both sides, we finally obtain
1 1 /1
/ w?(x)dr < —/ udz.
0 2 Jo

Remark 11. Note that the Poincaré inequality holds only in Hj. We shall later
formulate a similar result in H!, a so-called PoincaréFriedrichs inequality.

]

Remark 12. We have proven the Poincaré inequality with C' = 1/2. One can
derive a better result for the constant, C' = 1/6 if the right boundary condition is
also used (see the second set of additional problems). Nevertheless, the constant is
not important for our purposes and, thus, we shall not care about obtaining sharper
estimates for the constant.
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Since we are heading towards the main part of the course, i.e. dealing with 2D
problems, let us take this opportunity and prove the Poincaré inequality in 2D, as

Now, we are ready to prove that the bilinear form in the model problem (V) is
coercive. We have

HUH?{l = /(u2 +u?)dr < C’/u/de + /u'zdx = Ca(u,u).

Therefore, all the results, we obtained based on the coercivity of a(-,-), are valid.

1.3.3 Error estimates in L,-norm. Nitsche’s trick.

As we have shown, the best approximation to u from V}, is the Lo-projection and the
convergence is of second order as h — 0 (w.r.t. the Ly-norm). The following natural
question arises—if we are not interested in the approximation of the derivative, can
we show a second-order convergence in Lo-norm for the FEM solution. It turns out
that this is the case under the assumption of full regularity for the exact solution:

[u"l < ClI .

This result, however, cannot be shown to hold true, solely based on interpolation
theory (as we did for the error estimate in energy norm and Hj-norm). It is ob-
tained by using the so-called Nitsche’s trick. That is, we consider the following dual
problem to (V):

Find (u) € H}, such that

a(v, @) = (u—up,v), Yo € Hy,

i.e. we solve the same variational problem, but for the right-hand side we choose
the error u — uy,.

Then, since the variational equality holds for every v, then, in particular, it holds
for v = v — u;, and we obtain

lu — up|* = a(u — up, @)
= a(u — up, & — uy) (Galerkin orthogonality)
< Cllu—unl it — s (coercivity)
< Ch||u”"||,h||0”" ||, (Error estimates for u — uy, and 4 — r)

< OR?||u"||p, |lu — unl|z, (Full regularity assumption).

Remark 13. Let us note that for the particular model problem that we considered,
the requirement for full regularity is satisfied, because —u” = f.
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Chapter 2

2D Finite elements

2.1 Piecewise linear polynomials in two variables.

Defining piecewise polynomials is directly related to the domain discretization.
Therefore, we shall begin our study with this question.

2.1.1 Triangulation
Let © C R? be a bounded region with polygonal' boundary 05.

Definition 2. A triangulation K in (2 is a set of triangles 7, such that 2 = U, ¢xc7
and the intersection of any two triangles is either a common edge, or a common
vertex, or empty.

Let us consider as an example the following discretization of the Black Sea.

As the triangulation is generated, to each of its nodes (i.e., each vertex of a
triangle) and to each element (i.e., each triangle) a number is assigned, as shown
below (we shall further use the notation Ny, ..., Ny for the mesh nodes):

!The boundary can certainly be (and in most practical situations will be) non-polygonal. This
will not change the algorithm of FEM. The discrete problem is still solved over the introduced
mesh. It, however, gives an approximation of the real domain. Therefore, this fact must be taken
into account in the error estimates. We shall deal with it in the second part of the course.
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In order to derive error estimates, we are interested in measuring the size of the
mesh. Thus, we need some characteristic length h; for each element 7,. We define
hi to be the length of the largest side of the respective triangle and h := max hy, is
a global measure for the size of the triangulation. Further, we define

Bo=
Pk
the so-called chunkiness parameter, where py is the radius of the inscribed circle.
It is a measure of the quality of triangulation. As we shall see, we need to control
the magnitude of i, in order to obtain good approximations. Stated otherwise, we
do not want “too extreme” shapes in the triangulation—too wide or too narrow (in
both cases [y is large):

27



“=N
L O !
\_‘/'

An example for a bad triangulation is the following:

Obviously, as we decrease h, then near the left vertex of the triangular domain,
Bk becomes larger and larger.

Usually, we represent and store a triangulation in the memory by two matrices—
of the nodes and the elements, respectively. E.g., the following triangulation:

N; =(0, 2) Ng =(1,2)
\\\\ E6
E5 \\\\
N = Ne = (2, 1

Ng = (0, 1)Lomommomomo 2 N5 =(1,1) 6= )

A E> l: . E4
E4 AN Es \\\
N1 =(0, 0) N> =(1,0) N3 =(2,0)

28



could be stored in the memory in the following way:

0 0
10 [1 2 4]
2 0 2 5 4
nodes = (1) 1 , elements = ?) 2 g
2 1 4 5 7
0 2 | 5 8 7|
- 1 2 -

Having numbered each node and each element, the order of the rows in the two
matrices correspond to nodes (their coordinates) and elements (the indices of the
nodes that define the corresponding element). Also, information about the bound-
aries must be given in a similar way.

Now, that we have given a few examples of triangulations, let us give an example
of a triangular discretization that is not a triangulation:

The problem of this discretization is that one cannot ensure continuity of the piece-
wise linear function—there is one linear function on the left of the main diagonal,
but two different ones on the right.

There exist various packages that generate triangulations for given regions. Nev-
ertheless, constructing a discretization with good quality is still a difficult problem,
especially in 3D domains with complex geometries. In this course, we shall assume
that the triangulation is given and will not deal with the subject of generating a
mesh.

Before we continue, let us just make the following remark.

Remark 14. The region () can be discretized using different shapes, e.g. quadri-
laterals, curvilinear triangles, etc. We shall deal with the possibilities in the second
part of the course. The algorithm of FEM is, however, unchanged no matter what
elements are used.
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2.1.2 2D linear polynomials
The space of linear polynomials in 2D over a domain {2 is defined as
Pi(Q) :={ag + a121 + asxa, (21, 22) € Q, ag, a1, as € R}.

For our purposes, we shall be interested in €2 being a triangle. Without loss of
generality, let us consider the reference triangle:

0.0 - L - L I L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

We can transform any arbitrary triangle into the reference triangle with a simple
linear change of variables. We shall do this often, as it will be our general approach
when we need to compute something (integrals, in particular, over an arbitrary
element 7).

Over the reference triangle, we introduce the following nodal basis:

Uy (21, 22) =1 — 27 — 29,
\Ij2<$171‘2> = I,

‘1’3(33'1,902) = Ta.

We shall call those three functions shape functions for the reference linear
triangular element. Then, we can write the interpolant u; of a given function u as

ur = @V + @Vs + q3Vs,

where q1, g2, g3 are, as usual, the values at the three nodes (¢; = u(N;), i = 1,2, 3).
An example for the linear interpolant of a given function is depicted below:
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2.1.3 2D piecewise linear polynomials

Given a triangulation K of €2, we define the space of continuous piecewise linear

polynomials
Vi(K) :=={v e C(Q): v|, € P(r),Vr € KL}

An example graph of a piecewise linear function is given below:

We can again introduce a nodal basis {px}Y_,, such that V, = span{epi,...,on}
It is a little bit harder to define analytically the hat-functions in 2D and, thus, we
will only illustrate one basis function graphically:
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Nevertheless, a computer program can be easily implemented that computes those
functions (see the exercise classes). It is important, however, to note that

supp ¢, = U{T € K : Nj is a vertex of 7}.

Stated otherwise, over each element the only basis functions that are
different than zero are the ones that correspond to the vertices of the
triangle.

2.1.4 Lo-projection

As we have already seen, the important question from the point of view of FEM
is how to obtain an orthogonal projection of a given function onto Vj,. Thus, we
shall again (as we did for the 1D case) consider the question of obtaining the L,-
projection. Le., given a function u € Ly(Q2), we look for u;, € V},, such that

(u—up,v) =0, Yv €V,

Obviously, a linear algebraic system, analogous to (1.4) is the general form of
the system for the unknown nodal values. In particular, for the 2D case, we have

Jo @i [Jopaprd - [loonend2 | a Sl uerd

[l erond [[opaond -+ [f03dD qn JJq upnd

Of course, we shall again compute the mass matrix M and the load vector b by
using element-wise computations. We shall illustrate the idea on the basis of the

following example. Consider the following triangulation of the rectangular domain
Q:
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Ns = (0, 2) Ny =(2,1)

N1 =(0, 0) N> =(1,0) N3 = (2, 0)

For the thus-introduced mesh, we have the following mass matrix:

O a1 o PsP
=[]0 s e
Q 2

P15 P25 - 2

Taking into account that
Supp @1 = 71 U T, SUpp 2 = To U T3,5Upp Y3 = T3,SUpPp @4 = 71 U T2 U T3, 8upp @5 = 71,

we can write M as a sum of three element matrices:

o1 0 0 @iy 901305 @3 162 0 p1ps 0
00 0 sozgol 902 0 waps 0
M// 00 0 dQ+// 0 0 0/|do
eapr 00 ¢f Paps 904901 eapr 0 ¢ 0
osp1 0 0 @sps @F 0o 0 0 0
0 0 0

ds?

Oap2 Pap3  pa
0 0 0

= M., + M, + M,,.

0

0 ¥ @203 Papa
+// 0 @303 Y301 P3¢a

0

0

S OO OO

Each global element matrix has 3 x 3 non-zero elements and, therefore, we only
need to compute those 3 x 3 (local) element mass matrices and, when assemble the
global mass matrix, to add them at the correct places. It can be shown that

1
M, = —
12

— = N

11
2 1 ||7].
1 2
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For our example, we have, therefore

1
12

1

M, = —
24

2 1 1
121, M, =
11 2

— =N

11
2 1|,
1 2

Taking into account that the matrix, representing the elements in the triangulation
is

1 4
1 2

=~ Ot

elements =

we can assemble M in the following way (colours show the contributions from each
element matrix):

0+24+1 0+1/2 0 0+1+4+1/2 0+1
L0204 0 0+1/2 0
M=—|0 0 0 0 0
2hoviv12 041)2 0 0+2+1 0+1
0+1 0 0 0+1 0+2

Analogously, we can assemble the global load vector.
We can formulate the following general algorithm for computing the Lo-projection.

ALGORITHM (L,-PROJECTION IN 2D):

1. Compute(assemble) M and b. For this purpose, iterate for k over the rows of
the matrix elements:

1.1 Compute the element mass matrix m,, and the local load vector b, ;

1.2 Add m,, and b,, to the corresponding positions (that are written in the
k-th row of elements) in M and b;

2. Solve the linear algebraic system Mq = b;

3. The Lo-projection of u is, thus,

N

up =Y Gipilw1, 22).

i=1

Remark 15. The algorithm we formulated is not specific for 2D. It only requires
that the discretization is stored in the memory as descried above. Furthermore, it
allows for arbitrary elements (not only linear triangular elements).

2.1.5 A priori error estimates

In order to generalize the a priori error estimates that we know for the 1D case, we
need to first introduce some additional notation. Let

a = (ag,as)
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be a multiindex and let |a| := a3 + as. We denote

olaly

D%y = ———.
aa1$18a2$2

We define the Sobolev norm in the space H*(Q):
Julis = [ 3 10uas.
la| <k

We also define the Sobolev semi-norms:

lul2 = /Z | D%u?dS).

|laf=k

We shall write explicitly several norms and semi-norms:

e In 1D:
M%ﬁﬂ%iz[fM;
Julfy: = [ (02 + %), ufte = [P
I I
a2 :/(u2+u'2+u"2)dx, fufZs :/de.
I I
e In 2D:

o =, = [ v

ot = ([ [+ (o) + ( él)rm
o= I (G5 (52) ]
o= [ () () () s (r2) + () o
o= J () + () + ()

The following proposition is a generalization of the result we proved for the linear
interpolant in 1D.

Q.

Proposition 12. The following a priori error estimate holds for the linear inter-
polant u; € Py of a given function wu:
lu = urllz, < Ch?Julge,

2.1
IV (= up)l, < Chlulge. (2.1)
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We shall not prove this result at the time being since we will prove a more
general one later in the course. Using those estimates, however, we are ready to
derive error estimates for the Lo-projection uy, as well. First, we can prove a best
approximation result, using the orthogonality in Lo-norm.

Proposition 13. The Ly-projection in Vy, (the function uy) is the best approxima-
tion of u with respect to the Lo-norm, i.e.

ot = wnllzagey < ot = vl agey, ¥ € Vi

Proof. We have

o= wnli o = [ (= =+ 2yl
< lu = unll @ lu = vl o).
O
Then, the a priori error estimate for the Lo-projection follows in the usual way.

Proposition 14. The following a priori error estimates hold for the Lo-projection
in Vi, of a given function u:

lu = | o) < CR|ulp2(9),
[V (u = un)|| o) < Chlul o).

Proof. We shall prove the first inequality. The second one follows similarly. We
consequtively obtain, using (2.1):

lu = unllZy@) < lu = urllZ, @)

= Z Ju— UIH%Q(T)

TEX

< ZChﬂUﬁP(T)

TEK

< Ch* Y fufigy

TEK
= Chﬂuﬁﬂ(m

]

Before you proceed, see the worked-out examples in Section 3 of the
notes from the exercise classes.

2.2 FEM for 2D stationary problems

2.2.1 Preliminaries from vector calculus

In order to generalize the ideas that we presented for the 1D case, we shall need
several notions from vector calculus.
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The analog of the ordinary differential operator (actually, one of the analogs)
for higher-dimensional problems is the V operator. We define it in Cartesian coor-

dinates as follows: 5 9
Vi=|— =—].
<8$’ 8y)

The latter operator can be applied to different objects (scalars, vectors).
If we apply it to the scalar function u, we obtain

u_ (2 0, (o on
v oz’ Oy “= ox’ oy )’

the so-called gradient vector. Let us remind the following important facts about
the gradient vector:

e it points in the direction of fastest increase of the function u;

e the projection of Vu onto a direction d (unit vector) is the directional deriva-

tive in that direction, i.e.

ou

The V operator can be applied to the vector function j = (j,, j,) in two different
ways: V-jor V x j. Both of them have important physical interpretations. For the
time being, we shall be interested only in the first one, i.e. we shall consider the

divergence
o (D 0N . 0 0y
divj:=V-.j= (%,a—y) ’(jm,jy>—%+a—y.
The divergence can be interpreted physically as the net outflow per unit area at a
given point.
Having this in mind, the following fundamental theorem for the integral calculus
of vector functions can be justified on an intuitive level:

Proposition 15 (Divergence theorem). Let Q be a compact subset of R™ that has a
piecewise smooth boundary 0. If F is continuously differentiable function, defined
in an open region that contains §2, then

/V~FdQ:/ F - nds,
Q o0

where n 18 the outer normal.

The physical intuition behind this theorem is the following. The outflux at each
point needs to result in an influx at a “neighboring” point. Therefore, the sum of
all outflows inside €2 must be equal to what goes out of the boundary 0f).

In particular, we will be interested in using this theorem for F = juv, which
will give us an analog to the Integration by parts theorem for higher-dimensional
problems. We shall formulate it in 2D. Taking into account that

//QV-(jv)dQ://Q(V-jerj-Vv)dQ,

we obtain the following integration by parts formula.

Proposition 16 (Integration by parts formula). Under the assumptions of the Di-
vergence theorem, the following relation holds true:

//Qv.jvd(z:_//Qj.wmr/m(j_n)vd&
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2.2.2 FEM for 2D stationary problems with homogeneous
Dirichlet boundary conditions

We begin presenting the ideas over the following relatively simple example:

—Au=f, in Q,

D
u =0, on 02, (D)

where Au = V - (Vu) is the Laplace operator (or Laplacian). The considered
differential equation is the so-called Poisson equation.

In order to obtain the variational form of the differential problem, we take the
scalar products of both sides of the differential equation with a test function v and
obtain

(—Au,v) = (f,0).

For the left-hand side, using the Integration by parts formula, we obtain consecu-
tively

(—Au,v) = // -V - (Vu)vdQ
Q
0, if we require v € H}(Q)

= / / Vu - V’udQM
Q o0

Thus, we have obtained the following variational problem:
Find u € H}(Q), such that

a(u,v) = F(v), Yv € H (), (V)

alu,v) = //QVU-Vde, F(v) = //vadQ.

Discretizing the domain €2, by introducing the triangulation X, we formulate the
corresponding approximate problem:
Find uy, € Vj,0(K), such that

where

a(up,v) = F(v), Yv e Vjo(K). (R.-G.)

Remark 16. We can now understand why it is important from a theoretical point
of view to have ) with polygonal boundary. In the opposite case K might not be
the same as 2 and, therefore, Vj, o(K) might not be a subet of H}(Q2). This would
be one of the “variational crimes” that we shall discuss in the second part of the
course. In those cases, we will need to work a little bit harder, in order to show
convergence of the method.

On the other hand, from an algorithmic point of view, nothing would change
if 2 has an arbitrary boundary. We would still need to solve the linear algebraic
system that follows below.

Using the fact that Vi, o = span{e1,...,¢n,., }, where ¢1,...,¢n, ... are the
hat-functions, corresponding to the interior nodes of the triangulation, and uy(z) =
ij:”f” ¢;;(x), we obtain the equivalent problem:
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Find (q1,---,qn,,,.,) € RVnter such that

N'LnteT

Z CL(QOJ‘, QOZ)QJ = F(QDZ)7 1= 17 Ninter-
j=1

Substituting with the specific bilinear form, we obtain the following linear alge-
braic system with respect to the unknown coefficients, Mq = b:

fo vwl ' V(,DldQ e fo V(pl : vclONinterdQ q1 fo f@ldQ

ffg v‘:ONmtm ' v901dQ te fo V(pNinter : V@Nmterdﬂ AN;nter ffﬂ f(pNinterdQ

Here, M = M! is the stiffness matrix.

2.2.3 A priori error estimate

Of course, the Galerkin orthogonality holds:
a(u —up,v) =0, Yv € V,o(K)

and, furthermore, the bilinear form defines a scalar product:

< u,v >pi=alu,v) :// Vu - VodS2
Q

and the corresponding energy norm

ul|% = a(u,u) = //Q(vu)?dg.

Thus, we can proceed in the usual way and obtain a Best approximation result in
energy norm and, subsequently, an energy-norm error estimate:

|lu —up||g < Chlu|ge.

In this section, however, we shall derive the more general H'-norm error estimate
(which in this case is equivalent to the energy-norm estimate). As we have discussed,
the important properties that we would like to be satisfied by the bilinear form
a(-,-) are coercivity and continuity in H'. Let us check if they are satisfied for the
particular problem.

First, coercivity in H' means

a(u,u) > C||u||%p
We have

fulf = [ [ o + (Fuiae

= [lullz, + [ Vulli,
< C||Vull7, + | Vull7, (using Poincaré inequality)
= Ca(u,u).
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Thus, we have established coercivity of a(-,-) in H'.
Furthermore, we can show that it is also continuous in H!, i.e

a(u,v) < Cllullm o]

Indeed, we consecutively obtain

a(u,v) / Vu - VodS)

\// (Vu 2dQ\// (Vv)2dQ (using Schwarz inequality)
< \///Q (u? + (Vu)Q)dQ\///Q (v2 4 (Vv)?)d$

= [l zr 1v]] 1

Having established coercivity and continuity, we can obtain an upper estimate
of ||u — up||gr in the usual way.

Proposition 17. For the FEM solution uy, the following result is valid:

lu —upllm < Cllu —v||gr, Yo € Vi

Proof. Considering an arbitrary function v € Vj, o, we get

u — upll3 < Calu — up,u—v+v—up) (using coercivity)
= Ca(u — up,u —v) (using Galerkin’s orthogonality)
< Cllu — up||gr||Jw — vl g1 (using continuity).
Dividing both sides to ||u — up|| g1, we obtain the desired result. O

Using the latter result with v = u;, we obtain the following.

Proposition 18. For the FEM solution uy, the following a priori error estimate
holds:
||u — uh||H1(Q) S Ch|u|H2(Q)

Proof. Using Proposition 17, we have
Ju— Uh”%il(ﬂ) < Cllu— UIH%{l(Q)
= C(lu = w0 + IV (u = w)lZ@)
=CY (lu—wli,m + IV —uwn)lli,e) -
TEK
Now, from (2.1), it follows that for sufficiently small h
Ju— Uh”?ql(g) < Czhﬂuﬁ{?(ﬂ < Ch2|uﬁ{2(ﬂ)

TeEK
O]
Remark 17. Basically, in the latter proof we have used the main approach under-
lying FEM—we have decomposed the piecewise-linear problem into a sum of linear

problems over each element and, at the end, we assembled back the global problem
over 2.
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2.2.4 FEM for stationary 2D problems with more general
boundary conditions

Let us now consider a problem with the more general Robin boundary conditions.
We shall also include in the problem formulation a (possibly) variable coefficient
a=a(x,y) > Qpin > 0:

-V - (aVu) = f, =€,

—n - (aVu) = »(u — go) — gy, « € 09,

(D)

where n is the outer normal to the boundary.
In order to obtain the variational form, we multiply both sides with a test
function v and integrate. For the left-hand side, we obtain

—//QV-(onu)de://Qonu~Vde—/mn-(aVu)vds

_ //Q avu.vud9+/m[%(u_go) _ guluds.

In the latter inequality, we have used the Robin boundary condition. By leaving on
the left-hand side only the terms that contain the unknown function u, we obtain
the variational problem:

Find u € H'(Q), such that

a(u,v) = F(v), Yv € H'(Q), (V)

where

a(u,v) := // aVu - VodQ —I—/ wuvds, F(v) = // fod§2 —I—/ (5290 + gn)vds.
Q o0 Q o0

The corresponding Ritz—Galerkin problem is:
Find u;, € V,,(K), such that

a(up,v) = F(v), Yv € V. (R.-G.)

Here, V}, = span{p, ..., on}, where we have used the hat-functions, corresponding
to all nodes in the triangulation K.
Following the same path as usual, we obtain the linear system Mq = b, where

[JoaVer - VedQ - [f,aVe - VoydQ
M = : :
JloaVen - VeudQ - [foaVoy - VoydQ
faﬂ xp1prds - fasz »p1pnds
+ : ;
faﬂ xponprds - fag nonpnds
and
fo ferd§2 fag(%go + gn)prds
b= : + :
fo f%ONdQ faa(%go+gN)90Nds
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Note that we have decomposed the matrix M into a sum of the stiffness matrix and
a matrix, corresponding to contributions from the boundary conditions. We have
proceeded analogously with the load vector b. This has certain benefits from an
algorithmic point of view that we shall discuss later.

Since in this case the variational problem is solved over H' and the Poincaré
inequality does not hold, we still don’t have the machinery to show coercivity of the
bilinear form and, thus, derive an a priori error estimate in H'-norm. For the time
being, we will confine ourselves to presenting only an energy-norm error estimate.
It is based on the usual Best approximation result. Let us just remark that for the
variational problem (V) the bilinear form again defines an energy scalar product

< u,v >pi=a(u,v) = // aVu - VodQ +/ wuvds
Q o9

and we can define the energy norm

lullz = a(u,u) = / / o (V)20 + / sids,
Q o0

Proposition 19. For the FEM solution uy, the following holds true:
|lu —uplle < |lu—v|g, YveV,.

Proof. We obtain consecutively

Ju = upllfy = a(u — up, u— v +v—3]
- // (VaV(u - u)) (Vav(u - v))d2 + / (V/oe(u = wy)) (Voelw = v))ds

o0N

< \///QQ[V(u—uh)}QdQ\///Qa[V(u—v)fdQ
4 \//m %(u—uh)st\//m s — v)2ds

= VAVB +vVCVD.

We are now left to prove that
VAVB +VCOVD < VA+CVB+ D = |[u— | glJu — || 5.

If we square both sides of the inequality, we obtain

0, Galerkin orthogonality

AB + CD +2VABCD < (A+ C)(B + D)

or, which is the same

2VABCD < AD + BC.

The latter is obviously satisfied due to the inequality between the geometric mean
and the arithmetic mean. Thus, we have established the statement of the proposi-
tion. O

Therefore,
|u —un|le < [lu—urlle < Chlu|g:
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Chapter 3

Practical aspects of FEM.
Element-wise computations.

From our discussion so far, we should be aware that the application of FEM for a
given differential problem follows the next 5 steps:

1. Write the differential problem in its weak form (V);
2. Subdivide the region € into triangles (or, e.g., quadrilaterals);

3. Define the test space V as the span of appropriately chosen basis functions
(in what we have discussed so far, hat function);

4. Derive the Ritz—Galerkin problem over the finite-dimensional space V}, and
the corresponding linear algebraic system Mq = b;

5. Assemble M and b and solve the system.

All the computations are in step 5. But the first four steps determine whether
the method will be efficient and accurate for our specific problem. In particular,
the discretization and the choice of the finite-dimensional space V}, matter a lot.

We have already covered the basic ideas, underlying the first four steps. Now,
we need to deal with the question of computing M and b in practice. We shall work
one element at a time for reasons that we explained when we considered assembling
the mass matrix for the Lo-projection.

We shall follow the same approach we have embraced from the beginning of the
course—first, we shall obtain some intuition over a 1D example, and then generalize
in 2D.

3.1 Element-wise computations in 1D

We shall present the ideas over a much more general example than we have done so

far:
— (o) + Bu=f, xe€(0,1)

u'(0) =u'(1) =0, (D)

where a(z) > i > 0 and f(x) are sufficiently smooth known functions.
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Basically, any linear second-order boundary-value problem for ODE can be put
in the above form (the so-called divergence form). What is important to note is that
we have imposed homogeneous Neumann boundary conditions. This is the easiest
problem from computational point of view and, thus, we begin with it. Note that
here we don’t discuss the well-posedness of the problem. We are only interested in
the formal computation of the global matrix and load vector of the resulting system
and considering Neumann boundary conditions is a good place to start from.

In order to discuss the computational aspects of FEM, we need to first derive
the linear algebraic system. Here, we shall only sketch the derivation and focus
on what happens after that. First, we derive the weak form in the usual way and
obtain the following:

Find v € H', such that

a(u,v) = F(v), Yve H', (V)

where

a(u, v) = / (a't! + Buv)da / fuda.

1

Introducing a (not necessarily uniform) mesh 0 = zg < --- < z,, = 1 and denoting
hi == x; — xi—1, I; = [z;-1, 2], we define V}, == span{yo(z),...,on(x)}. Le., we
have the full basis, which consists of hat-functions, corresponding to all nodes from
the mesh.

Thus, the corresponding Ritz—Galerking problem becomes:

Find u € V},, such that

a(up,v) = F(v), Yv € V. (R—-G.)
Finally, we derive the linear algebraic system Mq = b, where

[i(af + Bed)de - [(ouphel, + Bwown)dw
N . .

[(agl oy + Benpo)d -+ [ (o +/890n)
is the sum of the mass matrix M° and the stiffness matrix M!:

f[ ﬁﬁp%dl’ e f[ ﬁ‘ﬂowndﬂﬁ f[ angde U f] OéQOIOQD;leU
MO = : : ’ M =
[: Bengpodr - [} Bpide J; a%%dx e Oésonzdw

As we have already discussed, in order to take advantage of the finite support of
the basis functions, we decompose those matrices as sums over the elements:

W [ fnBetde - [} Boopndr ]
Z M,glob Z : : ,
i=0 I fli Bonpodr - fli BSO%dl’
n n | f agy’de - fli aphol dr |
M = Z Mil,glob : Z : - :
i=0 =0 | f aglghds - fIi a2z _
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Let us, first, show how, using the latter, to assemble M°. Assembling M* follows
the same path. We know that the i-th global element matrix M? , , has only 2 x 2

i,glob
non-zero elements,
0 .- 0 0 0 0 0 7
0 0 0 0 0 0
0 0 0 fz. Bpi ydx fI. Bpi—1pidx 0 0
M; giop = y i 9 ,
1,gto 0 0 ffi ﬁgOﬁOlflde' f[i ﬁgOl dx 0 0
0 0 0 0 0 0
. 0 .- 0 0 0 0 --- 0 |

because of the finite support of the hat-functions:
We, therefore, need to compute only the 2 x 2 (local) element mass matrices:

MO — fli Bei_idx f]i Bei1pidr

2 3.1
' [, Beipiadr [, Bpide (3.1)

We can do this directly, because we have analytic definitions for ¢;_;(z) and ¢;(z) in
I; (see (1.1)). Nevertheless, this approach would cause us problems in 2D, because
we haven’t given an analytic definition for the hat functions in 2D. Furthermore,
the integrals will need to be computed over arbitrary triangles, which might cause
difficulties. Thus, we shall present here the general idea. That is, we shall first make
a change of variables that transforms [; into the reference element [ := [0, 1].
Over the reference element, all computations will become straight-forward.
It is obvious that the following change of variables will do the work:

r=x;_1+ fhz
Then, the interval z € [z;_1,x;] is transformed into £ € [0, 1]. Furthermore, we have

i—1(r) = @i (wimy +Ehy) =1 po(§) = 1 =&,
pi(z) = pi_1(zi + Ehi) = P1(§) =&,
dx = h;d€.

The choice of the functions vy and v, is correct because they are linear for £ € [0, 1]
and satisfy the same conditions as ;_1, ;, respectively, in the nodes x; 1 and z;.
The functions v and 1; are called shape functions. We have, obviously (and for
obvious reasons!), obtained the nodal basis of P;.
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Changing the variable in (3.1), we obtain

M) = hi/15(33i1 +&hy) [ Vo Yot 1 dg§
0

2
1 fljbozs fg? £ ¢ 52
= h; i1+ &h; dg.
/[) ﬂ(ZL’ 1 § ) |: 5_ 52 §2 :| é
Analogously, we obtain for the element stiffness matrix
1 1 2 1o
Mil = E/ Oé(xi—]_ + Shl) |: 1/}/ ?ﬁ/ wo}gl :| df
i 1%0 1 (3.3)

0
I _

i

In the latter, we have used the fact that

= -— = —, J=1—1,1.
dr  df dr  dE h

Remark 18. We can also write the following

1
MO = b / Bl + Ehy) BT,
0

1
Mil = h_/ B(zi—y + fhi)‘I’lT‘I’/dfa
i Jo

where W = (1, ¥1).

This vector form is very useful, because it can be shown to hold for any shape

functions (e.g., if we work with piecewise quadratic functions, we would obtain
W = (262 — 36 + 1, —4€2 + 4€,2¢% — €) for the shape functions). This is connected
to one of the benefits of FEM—we can derive results that are independent on the
specific choice of elements and reuse them in different particular cases.
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Let us consider two specific examples, in order to illustrate the ideas.

Example. Let @« = 1, 5 = 1 hold. Then, for the element mass and stiffness matrices
from (3.2) and (3.3) we obtain, correspondingly,

hi[2 1 171 -1
o_ M 12
w3 =g

Example. Now, let o and 3 be arbitrary functions. Then, the integrals cannot be
computed analytically and we need to use quadrature formulas. For this example,
we shall use Simpson’s rule:

/:F(x)dx ~ bga [F(a) +4F (a;b) +F(b)] .

Then, from (3.2), we obtain

vt (e[} 8] onim 4 Y23 ).

For the element stiffness matrix, using (3.3), we have

i 6h | -1 1

Let us note that when computing the integrals approximately, we need to choose
a quadrature formula, having at least the same order of convergence as
the FEM approximation. We shall get back to this question in much more detail
later in the course.

L { 1 -1 ] (a(@ioy) + da(ziy + hi/2) + a(x,)).

Having obtained the element mass and stiffness matrices, we can assemble the
global matrices in the usual way. We formulate the following algorithm for comput-
ing M.

ALGORITHM (ASSEMBLING GLOBAL MATRICES AND LOAD
VECTORS):

1. Implement functions that compute the local element matrices and load vectors
(those functions are specific for each particular problem);

2. Implement a function for assembling the global matrix M and the global load
vector b. For this purpose, iterate over the elements and for each element:

2.1. compute the element matrices and vectors, using the functions in 1;

2.2. add the results at the correct places in M and b.

3.2 Element-wise computations in 2D

3.2.1 Preliminaries from Multivariable Calculus

We shall first remind a few fundamental results from multivariable calculus, con-
cerning change of variables. Consider the following change of variables

z = z(§,n),
y =y n).
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For what follows, let us think that the change is linear (this case will be of interest
for us), even though the results are valid in the general case.

Proposition 20 (Chain rule). For sufficiently smooth functions, the following holds
true:

Ou  Ou 85 4 o ou 877

or 85 O an ox’

ou_ oudE | oudy

Oy 0y  Ondy
Proof. We shall prove the first equality. The second is analogous. We linearize u
and obtain (using standard notation)

ou
Au=—A —A O(]2)).
SEAE+ 5oAn +0(2)
We divide both sides to Az and let Az — 0 to obtain the first equation. m
Proposition 21. Let E be the image of a given region 2 under the transformation.
Let
or 0Oy
_ o6 08
In  On
Then,

/ / wig = [ / y(€, m))|J|dedn.

Proof. The only real challenge in proving the statement is to find the relation be-
tween df) and dédn. Consider an infinitesimal rectangle, defined by d¢ and dn,
which is the image of d2 under the transformation with respect to the new vari-
ables. Taking into account that linear change of variables preserves parallelism, df)
must be a parallelogram.

| Ya
dr
1 dn
dre
dn
dé‘: Zs‘%fﬂ) I":X(é:xﬂ)h.y(f’n)j
0 | ? =X

48



We can parameterize the boundary of the parallelogram as

r=x(&n)i+y(& )i,

where £, 1 lie on the boundary of the rectangle in & — 7. Therefore, for the sides of
the parallelogram, we obtain

oxr, Oy, }
dre = | —i+ —=j| d¢
© { o€ o)
and 3 3
_ [0, O,
dr,, {6771 + an ] dn.
Therefore,

QO = |dre x dr,| = |J|d¢dn.

3.2.2 Model problem

Now, we are ready to discuss how the linear algebraic system is assembled in 2D on
the basis of the following example.

—Au = f, in §,

D
8u_0 on Of). (D)
on

The corresponding Ritz—Galerkin problem, obtained in the usual way, is (Check!):
Find u, € V}, such that

a(up,v) = F(v), Yv € V, (R.-G.)

a(u,v) // Vu-VodQ), F(v / fodS2.

We are, therefore, interested in solving the linear algebraic system M'q = b,
where

where

Vi1 - Vo fsol

e ff T T e )

VQON Vor -+ Von-Voy

3.2.3 Computing the element matrices

In order to implement FEM, derived in the previous section, in practice, we need
to assemble the stiffness matrix and the load vector. We do this, as usual, working
one element at a time. We have

Vi -V -+ Vo -Von
Mlz// : : d
" Ven-Vor -+ Ven - Vo
Vo Vo - V- Voy
=Z// : : dQ.
TeK T VQONV% VQDNV(,ON



Therefore, we are interested in computing the following 3 x 3 matrices (containing
the only non-zero elements in the global element matrices):
Vor-Vor Vo Vo Vg - Ve
M; = // V- Vo Vou-Vor V-V, | d9,
| Vo -Vor Vo, Vo Vo, Vo,
where the element 7 is defined by nodes k, [, m with coordinates (zx, yx), (21, 1),

(Tiny Ym)-
We shall make those computations by making a transformation to the standard
element:

Ym]

Yk-

Vi

This has serious benefits. First, the shape functions are well-known and do not
depend on the coordinates of the vertices. Furthermore, quadrature formulas can
be easily found for the standard element.

The change in question is

R el s
) Y=Y Ym — Yk n Yk
Exercise. Derive the change of variables, by taking into account the correspondence
between points with (z, y)-coordinates and (£, n)-coordinates.

Based on Section 3.2.1, we need to make some computations, in order to be
ready to make the change for the gradient and the integral. By differentiating (3.4)
with respect to £ and 7, we correspondingly obtain

o 0c

o8 | _ | T Xk on | _ | Tm— Tk
%y {yz—yk}’ 9y {ym—yk}
o0& an
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Therefore
or Oy

_ 3_5 3_5 | i =%k Y — Yk
/= 9z Oy | {xm_xk Ym — Yk }
on I
The latter is needed for the change under the integral.
We also need to be able to make the following change:

9 o9 o[ 9
Oy dy Oy an

By differentiating (3.4) with respect to x and y and then using Cramer’s rule, we
obtain

0 ]
ar | - L [ Um—w w—w ¢
é detJ[Ik_fEm 901-%1 9
dy e on

Having the above results in mind, we are ready to compute the elements of M!.
All of them have the form

//Q V(z,y)gpa : V(z,y)gpﬁdQv

where «, § are among k, [, m. Making a change to the standard element, we obtain
consecutively

9 9
Vo) P - Viayppd = % o) (]2 0
Jf[TenseFewent= [[ (| ]e)-(| & ] )
_ L [ % L opf e det J|déd
‘//E<detj [a%]%)'(deu {%]‘@’e ldéd
1
= Tdet J] //E (BV emytha) - (BV emyhs) dédn

1
= m//E(V(&n)%)TBTBV(E,n)%dfdﬁa

where 1,, 13 must be interpreted in the following way: @i — o, o1 = Y1, Pm —

¥s.

Therefore, the matrix M} is
1
M= —— U)" BT BVWdsd
E ‘detJ,//JE(V) VW dédn,

where W = (1, 11, 12) and

o Obg  OYr Oy

a 6 a a -1 10
V¥ = é (1/10,%7%) = 8150 6151 8752 - |: -1 0 1 :| '

on on  9on I

ol



For the load vector, we obtain

Pk
bT://Tf(a:,y) ;07; dQ://Ef(ﬂf(f,n),y(&n))\If |det J|dedn.

As a separate example, we shall show that we can analogously compute an
element mass matrix. The following equality obviously holds:

//Q%wdﬁz//Ewawg|det J|dédn,

and, therefore, the local mass matrix is

G dotn ot
MO = |det J| // Gido WR iy | dédn
B ahothy oty 3

= | det J| // W dedn.
E

Exercise. Make the necessary computations to show that the latter result agrees
with what we stated in Section 2.1.4 for M,.

3.2.4 Element-wise computations for more general boundary
conditions

For more general boundary conditions, there might be additional contributions to
the left-hand side matrix and the load vector that include integrals over the bound-
ary. Consider the following example

V- [(@®*+ P+ 1)Vu] = f, 2 €Q,
(D)

9,
—(:)32%—?/24—1)6)—31 =u, x € 0N.

The corresponding variational problem becomes (Check!):
Find u € H'(Q), such that

a(u,v) = F(v), (V)

where

a(u,v) = //9(362 +9? + 1)Vu - VodQ + /69 wvds, F(v) = //Q fodQ.

Approximating the latter variational problem in the finite-dimensional subspace V},
we obtain eventually the linear algebraic system

(M'+T)q=b.
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Here, M* and b are the stiffness matrix and load vector. We have already shown
in the previous section how to assemble those. Let us consider the matrix

O P oner
F:/ ; : : ds.
o0 2
P1PN 20N PN

Following our usual procedure, we can write it as a sum over all boundary segments
v in the triangulation:

©i P eNgr
= Z/ : : : ds.
v P1PN PPN QO?V

For the local matrix that corresponds to the boundary segment ~(lm), defined by
nodes | = (x,y;), m = (T, Ym), We are interested only in the 2 x 2 non-zero elements

2
Ly = / [ 7 (plfm } ds.

We make a change of variables, so that the segment, defined by nodes [, m is trans-
formed into the standard 1D element, £ € [0, 1], over which the basis functions
©1, P are transformed into 1,9 = 1 — £ and v, ; = . The change of variables is

()I)vi()usly
|:l':| |:£El:| §|:$m—l'l:|
Yy Yi Ym — Y

ds = \/('Z'm - wl)Z + (ym - yl>2d€-

For the local matrix, we finally obtain

2 1 2
¥ P1Pm ds = / |: 1/17,0 ¢770¢7,1 :| o — )2 T — 5
/v(lm) { PmPL P ] o L Yty 2 V(@m =20 + (Y — y1)°dS

and, therefore,

3.2.5 Quadrature formulae for the standard triangular ele-
ment

In order to compute the local element matrices and load vectors, we need to com-
pute integrals over the standard triangle. Here, we summarize several quadrature

formulas:
Nodes Weights Exact for polynomials of degree

1/2,1/2) 1/2 1

(
(0,0),(1,0),(0,1) 1/6,1/6, 1/6 1
(1/2,0),(1/2,1/2),(0,1/2) 1/6,1/6, 1/6 2
(0,0), (1,0), (0,1) 3/120, 3/120, 3/120 3
(1/2,0),(1/2,1/2),(0.1/2) | 8/120,8/120,8/120
(1/3,1/3) 27/120
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Example. If we compute approximately the matrix

Vg Yot Yot
M= / / G Y iy | dedn,
E w2¢0 wal ng

using the second formula, we obtain

Exercise. Which formula would guarantee exact computation of the integral in the
last example?

3.3 Imposing Dirichlet boundary conditions

When we have Dirichlet boundary conditions, there is a certain inconvenience, when
we try to assemble the linear algebraic system. Usually, we write the matrix of the
system as a sum of element matrices. The latter are computed by making a change
to a standard element, in order to unify the computations. However, when Dirichlet
boundary conditions are imposed, the variational problem is solved in Hj, i.e. the
basis functions, corresponding to boundary nodes, are excluded. Let us reconsider
the 1D example from Section 1.2.1. We need to solve the system

or o PP @ ©1
/ : .. : dx : = /f : dx.
I I
IIQO;L—I e Qolnz—l dn—1 f7 Pn—1

If we start computing the element matrices as usual, then the matrix that corre-
sponds to element [ is different than the rest, because there is only one non-zero
element ( [, ¢?dx). The same holds for the element matrix for I,,.

In order to be able to use our general approach, in practice we assemble the
matrix as usual (as if we had Neumann boundary conditions) and obtain an (n +

1) x (n + 1) linear system:
do %Yo
dre | @ | = / fl + |dx
Q’n ! 9071

J

Let 7y and b;, i = 0,n, j = 0,n, denote the elements of the so-obtained matrix
and right-hand side vector, correspondingly.

Only then, we impose the boundary conditions by changing the first and last
rows of the system as well as the first and last column as follows:

OF P

Oheh e P2

10 - 0 0 0
mi s ml,nfl 0 qo by
0 mn—l,l Tt mn—l,n—l 0 dn 5n—l
I 0 0 R 0 1 1 | 0 |
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The change in the columns is made, so that the structure of the matrix is kept

symmetric.

If the boundary conditions are not homogeneous, but

then the system becomes

(1 0 ... 0
0 ’ﬁln ml,nfl
0 mn—l,l mn—l,n—l

0
1

qo0

an

U(O) = Uleft, u<1) = Uright,

Uleft
by — MioUieft — MinUright

bn—l — Mnp—1,0Ueft — Mn—1,nUright
Uright

We can proceed analogously in the 2D case, by changing the rows and columns
of the matrix, that correspond to the boundary nodes, after we have assembled as

if there were Neumann boundary conditions.
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Chapter 4

FEM for time-dependent problems

Until now, we have only considered stationary problems. This is, in some sense,
natural, since FEM is usually a method for spatial discretization. We shall now see
what can it give us for time-dependent problems. We shall discuss the ideas on the
basis of two examples—the linear 1D diffusion equation and the 2D wave equation.
Thus, by the end of this section we will have covered the main linear second-order
linear PDEs that serve as a foundation for many mathematical models, used in
practice. We shall postpone the transport equation until the second part of the
course, since there are certain problems, concerning solving it numerically.
Furthermore, we shall only consider homogeneous Dirichlet boundary conditions
in our examples, since our focus will be on the time-dependent part of the problem.
We already know what to do in cases when the boundary conditions are different.

4.1 FEM for the 1D linear diffusion/heat equation

We consider the following differential problem over the domain z € I := [0, L],
yeJ:=1[0,T]:

ou  u

9 o f;

w(0,1) = u(L, ) = 0, (D)

u(z,0) = ug(x).

We proceed in the usual way to obtain the variational formulation. We multiply
both sides with a test function v and integrate with respect to the spatial
variable.

For the left hand-side we obtain

ou  0*u

ou ou Ov ou
—/]Evd:v—i— ——dx —

; Ox Ox T,

0, if V¢ € J,v(-,t) € HY(I)

Then, the variational problem becomes:
For every t € J, find u(-,t) € H}(I), such that

(%, U) + a(u,v) = F(v),¥o € HY, (v)
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where

Ou Ov
a(u,v) = I%%dx, F(v)—/lfvdx.

Remark 19. In the variational equation, we treat ¢ as something fixed and then
we want to solve the variational equation for every fixed ¢t. Thus, in some sense, we
have decomposed the problem into a spatial and a time-dependent problem.

Remark 20. Note that the left-hand side is not symmetric anymore.

Further, we discretize the spatial domain in the usual way (i.e., we ob-
tain a semi-discretization of the numerical domain I X J) and look for an
approximate solution of the form

w= Y 0(00,(z).

which is a piecewise-linear polynomial for every fixed ¢. In the latter, ¢;(z), j =
1,n — 1 are the hat-functions, corresponding to the internal nodes of the discretiza-
tion of I. Then, we can approximate the variational problem (V') with the following
one:!

For every t € J, find the function wy, such that Vj, 0 > up(-,t) = Z;L;ll a; (), (),

and

(%,v) + a(up,v) = F(v), Yv € V. (R-G.)

This leads to the equivalent semi-discrete problem:
For every t € J, find (qi(t),-..,qn_1(t)) € R"! such that

n—1 n—1
dq; R
j=1 j=1

If we denote q(t) = (q1(¢), ..., q.—1(t))T, we can write the problem compactly as

d
MO g = b, (4.1)
dt
where M° and M! are the usual mass and stiffness matrices, respectively, and b is
the usual load vector. The differential problem can be closed with

q(0) = qy,

where g, are the coefficients in a piecewise linear approximation wuyo(z) of ug(z).
For instance, we can choose uy(x) to be the piecewise-linear interpolant or the
Ly-projection of ug(x) onto Vj,o. We shall discuss this in a little more detail when
we discuss stability and convergence.

Thus, using FEM for the time-dependent problem, we have obtained
a spatial discretization and we have reduced the original PDE boundary-
value problem to an initial-value problem for a system of ODEs. In this

Tt would be more correct to call the obtained semi-discrete problem a Faedo-Galerkin formu-
lation, but we shall continue to use the abbreviation R.-G.
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case the ODEs are linear, since the original problem is also linear. A remarkable
fact is that in the ODE problem the same mass and stiffness matrices take part.

We shall give two examples, concerning how we can solve numerically the arising
ODE system (4.1). For simplicity, we shall assume that f does not depend on time
and, therefore b is constant.

Example. Let us introduce the uniform time discretization
O=to<---<tp,=1L
and let 7 be the time discretization step. If we use the backward Euler method, we

obtain Q Q
MO i+1 7 + MlQiJrl — b,
T
where Q, is the approximate solution at time ¢;, i = 0, m — 1. We start with Q, = q,
and then solve the resulting system on each time layer.

Example. Using the improved Euler method, we obtain the following Crank—
Nicolson scheme. The difference with respect to the previous example is that the
linear algebraic system that needs to be solved on each time layer is

Mo Qi+1 _ Q i+1 + Qz _

T 2 b.

In both examples, we have approximated the ODE system and obtained a linear
algebraic system that needs to be solved.

Actually, we can use any numerical method for first-order ODEs (e.g., Euler
methods, Runge-Kutta methods, Adams-like methods, etc.), if we put the problem
in the appropriate form.

Inverting the mass matrix, however, destroys its sparse structure. One possible
solution to this problem that is done from practical considerations, is the so-called
mass lumping. This means to add all off-diagonal elements of the mass matrix to
the diagonal one and, thus, obtain a diagonal approximation to the original matrix.
Then, inverting it, will also result in a diagonal matrix.

4.2 Stability and convergence for the semi-discrete
problem

One key concept, concerning the numerical solution of time-dependent problems is
the one of stability. We need to understand what is the effect of some errors that
are introduced in the computations (e.g. round-off errors, approximation errors,
etc.) on the final result. We consider the effect of the non-exact representation
of the initial data and right-hand side for the example problem from the previous
section (the boundary conditions were homogeneous there and can, therefore, be
represented exactly). Let us remark that an error can be obtained at any time-layer
(not only in the initial data), but we can use the same results with this time-layer
as “initial”.

In this section, || - || will mean the Lo-norm.

First, we shall prove that the following stability result holds true.
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Proposition 22. For the FEM solution, it holds that

WMJMSMMNN+AHNJWM

i.e. it 15 stable with respect to initial conditions and right-hand side.

Remark 21. Before we prove this result, let us first clarify what it means. Let us
consider the solution 4, of the semi-discrete problem with slightly perturbed initial
data u,(x,0) and right-hand side f. Then, the difference between the two solutions
up, — Uy, satisfies the problem with initial data up(x,0) — @y (z, 0) and right-hand side
f — f and is, therefore, bounded by

t
||uh('7 t) - ah('a t)” < ||uh('7 O) - ah('v O)H + /0 ||f(7 8) - f(7 S)”dS
In this sense, small perturbations in the initial data and right-hand side (e.g. from
round-off errors) have small effect on the solution and it is stable.
Now, we are ready to continue with the proof of the stability estimate.

Proof. Since (R.—G.) holds for every v € V},, it holds, in particular, for v = uy, i.e.

/@whH%ﬁwz/ﬂwhéwwww (4.2)

1 I

Let us work a little with the left-hand side. We obtain consecutively

[t re = [ 132 4

10 ,
= 5 hunll) + o
d||u

> o 2l

From the latter inequality and (4.2), we obtain

Olunl|
ot

< I£1l-

Now, using the triangle inequality, the statement of the proposition follows directly.
O

For the classical finite difference methods, it is well-known that
consistency + stability = convergence.

It turns out that we can show the same here.

Proposition 23. For the FEM solution, it holds that for every t € J,
t
futt) = w0l < o1 (1 + [ 1 olas).
0
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Proof. As we mentioned, convergence is a result of consistency and stability. We
shall incorporate this idea by decomposing the error into two parts:

u—up = (u— Rpu)+ (Ryu —up) = p+0,

\ J J

TV TV
consistency stability

where Rju is the so-called Ritz projection of u onto Vj,, i.e.
(u — Rpu)',v") =0, Yv € V.

Our reasoning behind the above representation of the error is the following. We
shall show that we can approximate u with something (the Ritz projection) from
Vio (consistency of (R.~G) with (V)) and then we shall show that, starting close
to the Ritz projection, we stay close to it (stability) and, therefore, stay close to w.
Stating the same thing in a formal way, we shall bound separately p and 6 by using
approximation theory and our stability result, respectively.

First, for the Ritz projection, taking into account that it is actually the solution
of the model problem in Section 1.2.1, we have the following result (see Section
1.3.3) for sufficiently regular problems:

loC DIl < CR " (-, 1)

t
= Oh? u”(~,0)+/ (-, 8)ds

0
t
<cn? (||u3<->||+ O ||u"<-,s>||ds).

Considering 6, let us note that it is a solution of (R.—G.) with right-hand side f = —p
(Check!). Thus, it satisfies the stability estimate

I8¢, ) S/O 1, 5)llds + 1865671

t
0
= [ Gilotespas)

t
< on / il (-, ) |ds.

0, assuming that u(-,0) = Rpug(-)

O

Remark 22. From the above proof, it follows that the best initial condition for the
semi-discrete problem is the Ritz projection of ug(z). In order to guarantee second-
order accuracy, we need to either use this initial condition or an initial condition
that approximates the Ritz projection with second-order accuracy.

Remark 23. We can use what we know about the FEM solution of the correspond-
ing stationary problem (i.e. the Ritz projection), in order to study the convergence
for the time-dependent problem. Therefore, we shall concentrate on studying the
error for the stationary problems.

Remark 24. We have derived stability and convergence results for the semi-discrete
solution (for which FEM is responsible). In order to obtain convergence for the
fully-discrete solution, we must also ensure that the numerical method, used for
time-discretization, is stable and has an appropriate convergence rate.

We can also derive similar stability results in other norms, e.g. H'-norm.
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4.3 FEM for the 2D linear wave equation

Let us now consider a 2D example, as well.

2
%—czAu:f, in Q x J,
u =0, on 0N x J,

u = ug, in 2 for t =0,

ou

ot

Since there is nothing really new, we shall only sketch the FEM formulation.

Using our standard procedure, we obtain the following variational problem:
For each t € J, find u(-,t) € HJ(2), such that

=g, in Q for t = 0.

o

a(u,v) = ¢ //Qw-vmm, F(v) ://vadﬂ.

We approximate (V) with the problem
For each t € J, find u;, = Z;.V:’qt” q;(t)p;(x) € Vi0(K), such that

(82“ ) +alu,v) = F(v), Yo € HY(Q), (V)

where

o2
(a—;’l,v) + alun,v) = F(v), Yo € Vio(K), (V)
where ©1(x),...,¢n,,,.,.(X) correspond to the interior nodes of the triangulation

and V;, o(KC) = span(p1(x), ..., o, (X))-

Using the ansatz form of uy, we obtain the following semi-discrete problem—an
ODE system for the unknown coefficients (¢ (t), ..., qn,,...(t)T = q(t).

For each t € J, find q(t), such that

d2
M2 4 M'q = b.

The mass matrix and the load vector have their usual forms. The elements of the

stiffness matrix are
M) =¢ //Q Vi - Vi,dQ.

We can reduce the latter system to the following first-order ODE system:

dq
g_€7

d
Mod—f =-M'q+b.
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Chapter 5

Oobmia Teopuga na MKE 3a
eJUITUIHN 331291

AbcrpakTHaTa BapualMoOHHa MOCTAHOBKA, KOITO pasrjexkjamMe, e cjejHaTa.
Heka V' e XuibeproBo HpOCTPAHCTBO C BbBEJECHO CKATAPHO MPOU3BeIeHue (-, -)
u nopo/iena or nero nopMma || - ||. Heka a : V x V — R e Gunnneiina dbopma, KoaTo e
(i) xoepruruBHa BbB V, T.e. Ja > 0:

a(u,u) > aollul]?, Yu € V;

(ii) mempekbcuata BbB V, T.e. 3C):

a(u,v) < Collull||v||, Yu,v e V.

Heka F': V — R e nuneiina dopma (nuHeen dbyHKIHOHAT), KOHTO €

(iii) mempexksncuar BbB V, T.e. JA:

F(v) < Aljv||,Yv € V.

Topeum v € V:
a(u,v) = F(v), Yo € V.

5.1 CobmoiectByBaHe W €MHCTBEHOCT HA PEIIEHUETO
HA BapHUAIMOHHATA 33/1a43a

Proposition 24 (Riesz Representation Theorem). Hexa V' e Xuabepmoso npocmparicmeo
¢ esgedeno crxaaapno npoussedenue (-,-). Tozasa ecaxa Hnenpexscrhama Auneting
dopma F' 1V — R moorce da ce npedcmasu no eduncmeen Hawur 6668 6uda

3a naxoe durcuparno v € V.
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Proof. EaunncrBenocrra ce jpoka3sa HemnocpejacTseno. Jla jomycnem, de mma jBe
TaKuBa MPpEeACTaBAHWA:

F() = (u1,-) F() = (u,).
Torasa (u; — uz,v) = 0 3a Besko v € V' 1 caenoBaTeto u; — ug = 0.
OcraBa ;ma T0KarkKeM CBHIIEeCTBYBAHETO Ha TakoBa mpenctaBsne. Axo F(-) = 0,

TBBLPJCHUETO OUCBUIHO ¢ u3baneno ¢ v = 0. Uunage, N'(F) # V u cregoBarento
nma menyaesn egementn B N+, Hexa m36epenm 6.0.0. ug Taxa, e F(uy) = 1. Torasa

F(u— F(u)ug) =0, Yu €'V,

Te. u— F(u)ug =1 w € N u u Moxke 1a ce pa3jioXKu 110 CJIeJHHUsI HAYUH Ha
KOMIIOHEHTH B N 141 Nl:
u=w+ F(u)uo.

CIe10BaTeIHO, KATO YMHOMKHIM JBeTe CTPaHd ¢ uy € N+, momydasame

(u, up)
(w0, uo)

F(u) =

Taka nokasaxme TeopeMara ¢ v = . =

Proposition 25 (Lax—Milgram Theorem). Hekxa V' e Xuabepmoso npocmparcmeo
¢ 6B6€deno crasapro npoudsedenue (-, -) u Heka al-, ) € busuHetna Gopma, KoAMO
e Henpekscrama u xoepuyumushna 6se V. Hexa F(-) e aunetina gopma, roamo
e nenpexscuama eése V. Tozasa ceuwecmeysa eduncmeeno pewenue u € V. wHa
sapuayuonHama 3adaua

a(u,v) = F(v), Yv e V.
IIpu mosa e 6 cuna caedHama aNPuoOPHa OUERKE 3G YCMOTUUBOCN:

A
[ully < =.
a

Hoes na doxaszamencmeomo. 1lle mokazkem OCHOBHATA U HA €HO OT J0KA3ATEICTBATA
3a CBIMECTBYBaHE W €IUHCTBEHOCT, KATO IMe MPOIYyCHEM HSKOW IeTailjin, KOHTO
M3HCKBAT II0-33bJI00YEHN 3HAHUAA OT TeopHUsTa Ha XUI0ePTOBUTE IPOCTPAHCTBA.

Tvit kato F(+) e HenpekbcHara JuHeiiHa dbopma, cbiiecrBysa b € V' takoBa, ve

F(v) = (b,v), Yo e V.

Ocgen ToBa a(u, -) € HeIpeKbcHATA JTuHeiHa (hopMa BbB V' 1 CJIeI0BATETHO CHINECTBYBa
w=: Au € V, Taka 4e
a(u,v) = (Au,v), Yv € V.

Moxke na ce gokazke, de omeparopbT A e JIMHEeH W HENpPeKbCHAT. 'loraBa BMeCTO
BapHaIlMOHHATA 33/1a9a MOZKeM Ja pasrjiexkjaamMe JUHETHOTO OTlepaTOPHO ypaBHEHNE

Au = b.

3a Ja JoKazkeM, de MoCae THOTO HMa PerleHre e TOCTATHLIHO 1a nokaxkeMm Range(A) =
V. Tlocnennoro ce mostyaBa Kato ciaegacrsue ot dgakra, 1e N (A) = {0}. [eiicrBuresnno,
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aa jonycueM, ue 2 € N(A). Torasa or koepruuTuBHOCTTA Ha OuaMHeiiHaTa GopMa
IMaMe

all2|? < alz,2) = (Az,2) < Col| A2
n cjJgeagoBaTesIHo
C
ol < 22 Az =0 = = =0,
o

OcraBa jga nokaxkeMm enauHcTBeHocTTa. Heka Auy = b u Auy = b, caegoBareano
A(uy; — ug) = 0. OrHOBO H3MOA3BaMe KOEPIUTHBHOCTTA W IIOJIY YaBAME

aflur — usl” < aluy — ug, ug — uz) < [|A(us — us)l[[|us — usl| = 0.
]

Cera e mrrocTpupave Ha 0a3aTa HA HIKOJKO MPpUMepa Kak TeopeMara Ha Lax—
Milgram mozke jia ce U3M0/I3Ba 3a JOKa3BaHEe Ha CHINECTBYBAHE U €IUHCTBEHOCT HA
PelLIeHNeTo Ha JIaJieHa eJIMITHYHA 33/1a4a.

Example. Pasriexxname ypasuenuero Ha [loacon ¢ rpanundno yciosue Ha Jlupuxiie:
_Au = fu X € Qu

u=0, x € 00.

ChboTBeTHaTA BapHAIMOHHA 33/a4a € C
a(u,v) = (Vu, Vov), F(v) = (f,v),
kaTo XuabepToBoro mpoctpanctso ¢ V. = H}(Q). Buxme mormm ma mopmupame
TOBA IIPOCTPAHCTBO, U3IMOA3BANKN eHepreTndna HopMa win Hl-nopma. Paséupa ce,
e M3M0/I3BaMe Ta3W HOPMA, KOSTO IMe HU Aaje pe3yarara Mo-JeCHO. J3HaeM, Ue
OOMKHOBEHO pe3yJITATUTE U3JU3aT IIOYTH HEIOCPEJICTBEHO B eHepreTHYHaTa HOpMa
1 3aTOBA e M3II0JI3BaMe Hed:
HU’H2E =< u,u >g= CL(U, u)
[ITe mokaxxkem, de 3a BapualMOHHATA 33/1a9a Ca B CHJIA YCJIOBUATA HA TEOPEMaTa Ha
Lax—Milgram:
(i) KoepuurusaocT Ha GuinHeitnara ¢hhopma B E-HOpMa CJie/IBa TUPEKTHO OT jiebUHUITHSATA:
a(u,u) = alullg

3a o = 1. IlocyieiHOTO HECTPOTrO HEPABEHCTBO BCBIHOCT € BUHATU PABEHCTBO.

(ii) Henpekbcuarocr na buinuneiinara popma B F-HOpMa Ciie/iBa Be[HATA OT HEPABEHCTBOTO
na K.-B.-I1I.:
a(u,v) =< u,v >p< Collul|[v]e,

Kbaero Cy = 1.

(iii) HemperbcuarocrTa Ha JuHeiiHaTa hopMa MOTydaBaMe, KATO H3MOI3BaMe HEPABEHCTBOTO
na Poincaré (na 3abenezum, 4e cMe B IPOCPTPaHcTBOTO H{):

Fv) = (f,0) <l fllz.llvllz, < Clifllz, [0l
A

CJ’IG,ZLOB&TGIIHO yCJI0BHATa Ha TeOpeMaTa Ca U3II'bJIHEHH H BapHallMUOHHaTa 3a/1a4a
nUMa €JUHCTBCHO peElleHucC.
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Remark 25. /Ia oObpHemM BHUMaHMe, Y€ B cjydauTe, Koraro oujauneitnara ¢popma
neduHEpa CKAJAPHO IPOW3BEIEeHNe, CHINECTBYBAHETO W €THHCTBEHOCTTA CJIeJBAT
JINPEKTHO U OT TeopeMmaTa Ha Riesz. /leficTBuTe/iHO, OT Hesd cJjie/iBa, Y€ ChIECTBYBa
eJIMHCTBEH ejleMeHT u € V' TaKkbB, 4de

F(v) =<u,v >p=a(u,v), Yo € V.

Cera e npuBejieM IpUMep, B KOUTO I'DaHMYHHUTE YCJI0BUA He ca Ha upuxiie.
3a Tasu 1es me HE Obae HeoOXomuMo 000OIeHHe Ha HepaBeHCTBOTO Ha Poincaré,
KoeTo n1a e Baiunno B H'. Ille mpuBegeM JBe HepaBeHCTBa, KOUTO €4 M3IILJIHEHH 32
Besko u € H(Q):

/ U2d8 < CHUH%ﬂ(Q),
e)9)

// uw?dQ < C {// |Vul2d$ +/ u2ds} (Hepasencrso Ha Friedrichs).
Q Q 20

JokazaTeacTBOTO Ha Te3W JIBe HepapBeHcTBa B 1D e mocTraBeHO KaTo 3ajada BbB
BTOPHS CIIUCHK OT AOI'LJIHUTEHU 3aTa9H.
B mo-o611 Bug MoraT ga ce 3alHIIaT CAeJHHTe €eKBUBAJIEHTHU HEPaBEHCTBA
[ullZy00) < Cllullzn g
[ullZy) < C (IVullZ,@ + lullz,on)
[ullZy00) < C (Il + I Vulli,q) -

[TocsieqauTe HepaBeHCTBa ca OT T.HApD. HepaBeHCTBa 3a ciegarta (Trace inequali-
ties), Thil KaTO AABAT BPH3KA MEXKIY MOBeJeHNETO Ha (DYHKIMATA MO TDAHUIATA HA
obacrra (HellHATA CJIe/la BbPXY PAHUIATA) U HOBEIEHHEeTO W B 06J1aCTTA.

Example. Pa3sriexame ypaBuenuero Ha Jlamiac ¢bC cMeceHn IrPaHUYIHE YCJIOBUS:
—Au=0, x €,
u=0, xe€lp,
H'VU:gN, x €'y,

Kb1eTo gy € Lo(T'y).
CboTBeTHATa BapUAIMOHHA 3aa9a Ce HOIyd4aBa 34

a(uvv) = (VU, VU)» F(U) = (gNaU)Lz(FN)
B XmJI0€PTOBOTO IIPOCTPAHCTBO
V= {veH'(Q): vl =0}

KoeprmutuBHOCTTa W HENpeKbhCcHATOCTTA Ha OmymHeliHaTta dopma B eHepreTuvHa,
HOpMa, CJIe/IBAT HEIIOCPEJICTBEHO, Thil KATO OTHOBO OmituHelHaTa dhopma jgeduHupa
€HEePreTHIHOTO CKAJAPHO ITPOU3BEICHNE,

[ITe nokaxkem HelpeK'bCHATOCTTA HA JiMHeiiHaTa popMma. [losryuaBame mocse0BaTe/HO

F2(0) = (g5, Vo)
2 2
< H9N||L2(FN)”U||L2(FN) (K.-B.-11I.)
< Cllgw By (10l + V02, )  (Friedsichs)
< CHQNH%Q(FN)HUH% (Poincaré).
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Cera e gajeM npumep, B KOHTO e LIOKakeM yC/I0BUATa Ha TeopeMara Ha
Lax—Milgram B H'-nopma.

Example. Pazriexxiame cralimoHapHOTO ypaBHEHUE HA TOILIONPOBOJIHOCTTA
—Au+pu=f, x€Q,
n-Vu=0,x € 09,

KbIeTO p € Ly(2), p(x) = po > 0.
C'bOTBeTHaTa BapHallMOHHa 3aJa4a Ce IIoJIydaBa 3a

a(u,v) = (Vu, Vo) + (pu,v), F(v) = (f,v)
B Xun6eprororo npocrpancteo V = H' (). Jla npoBepuM yc/I0BHsITa HA TeOpeMaTa.

e Koeprurusnocr na 6ummneitnara dpopma. Iloryuasame mocienoBaTeano
a(u,u) = (Vu, Vu) + (pu, u)
> lullZ, @) + ol VullZ,q
> min{1,po} ([[ul|7,q) + VullZ,o)
—_———

(0%
2
= O‘HUHHl(Q)'
e HenpeknbcuarocT Ha OunnueiiHaTa dopma:

a(u,v) = (Vu, Vo) + (pu,v)
< Vull o IVl Lo + [P ec@llull @ 1ol 2@
< max{L, |l ..} ([IVUl @) V0l @) + [l @ 0]l o)
< Gollullm @ llvll # 9)-

[TocaeaHOTO HEPABEHCTBO ce Oy YaBa MoA00HO0 HA JOKA3aTeACTBOTO Ha TBbpaenue 19.

e HenpekbcuarocT Ha juHeiHaTa dopma:

F*(v) = (f,0)? < (|17, lvl17 500
<1120 (101700 + 1VVIZ, @)
= A?[|v]| 3 q)

sa A = || fIl7,0)-

5.2 AnpmopHu oneHku Ha rpemikara 3a MKE 3a
abcTpakTHATA BapuWallMOHHA 33a/1a4a

CrorBernara abcrpakTHa ¢gopmyauposka Ha MKE 3a abcrpakTaara Bapuarmuonna
3a/1a9a e cjegHaTa:

Topcum uy, € V, C V, KbJIeTO TPOCTPAHCTBOTO V), € KpailHOMepHO, TaKa, e

a(up,v) = F(v), Yo € V.
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OcHoBHUST pe3y/iTar, Ha KOHTO Ce OCHOBABAT APUOPHUTE ONEHKU HA I'PEIIKATA,
KaKTO 3HaeM, e oproronajsHoctTa 1mo lambopkun. I[lle mpuBemem pesysirara TyK
OTHOBO.

Proposition 26 (Galerkin orthogonality). B cuaa e
a(u — up,v) =0, Yo € Vj,.
Proof. Ot BapuammonHaTta 3aj1a4a U 3a1adara Ha Putn—lanbopkus 3HaeM, e

a(u,v) = F(v), Yo €V,
a(up,v) = F(v), Yv € V.

Baieiikn rmo4sieHHO jBeTe BapHAIlMOHHU T'bK/I€CTBa, IT0JyYaBaMe TBbpAeHneTo. [

Torapa MozkeM J1a OIeHUM T'peliKaTa Ha pelreHneTo, moaydero no MKE, ¢ rpemkara
Ha alpOKCHMAIMs 3a KO# /1a e Ipyr eJleMeHT Ha KpalHOMEPHOTO IOIIPOCTPAHCTBO
V},,, b1aromapenue Ha CJIeIHUS Pe3yJITaT.

Proposition 27 (/lema na Céa). 3a scako v € V), e 6 cuaa oyenkama
C
[ = unlly < gol\u —vllv.

Proof. 3a na mokazxem TBbPIEHUETO, I N3M0/I3BaMe KOEPIUTHBHOCTTA U HEITPEK'bCHATOCTTA
Ha omnuneitnara (opma. llomygaBame mocseoBaTe/ IHO

1
|u — upl; < aa(u—uh,u — v+ v —up)
1
= Ea(u—uh,u—v)
C
< O — v Ju — vl

]

Karo gupekTno cjiencTBue moaydyaBaMe, e MOXKEM J1a OIEHUM TI'DEIlKaTa Ha
pemenuero no MKE ¢ rpemkara na uareprnosant ot Vj:

C
|u —unlly < EOHU —uplly.

U Taka, 3a jga MOXKeM Jla HalpaBUM OIEHKa Ha TPENTKaTa, N3M0JI3BARKN TTOC/Ie/IHOTO,
HHUe TpAOBa Ja UMaMe HOJXO/IAI HHCTPYMEHT OT TeOpHs Ha arpokcuManuute. MHOTO
cujieH pesyarar e jgemata Ha Bramble—Hilbert.

Proposition 28 (J/lema na Bramble-Hilbert). Hexa T e pegepenmmua edunusna
obaacm 6 R". Hexa q(u) e dynxyuonar ¢ H* (1), sa xotimo:

(i) q(u+v) <q(u)+q(v) (sublinearity);

(i) |q(u)| < Cllullgrrrry  (02panunerocm);
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(iii) q(u) =0, axo u € Py
Toeasa csuwecmeyea KORCIMaHma OB makxaea, 4e€
|q(u>’ < CB‘U|HI@+1(T).

KakTo Bumgxme, 3a 1a npuioxkuMm jemata Ha Céa, HU e HeoOXoauMa OIeHKa 33
|l — wur|| g1 (). e npuroxum cranpaprausg noaxox na MKE, karo samumewm ||u —
urllfniq) = 2rex lu = will7n > & pascrosmnara B cymaTa oneHHM, KaTO HAPABUM
CMZHA KbM CTAHJAPTHUs eJeMeHT. V1 Taka, I'bpBO IIe 3al0YHEM C OIEHABAHETO
Ha ||V(u — ur)||oey 1 ||u — url|L,(p), KaTo 3a IHesTa e H3MOJI3BaME JIeMaTa Ha
Bramble-Hilbert.

Proposition 29. Hexa u; e unmepnosanm na u, K0Umo e no 4acmu nosuHoMm om

P,.. Toeasa
lu = wrl|pym) < Clulgrvi(my

IV (u—ur)| e < Clulgrs gy

Proof. 1lle mokazkeM IbPBOTO HEPABEHCTBO. BTOpPOTO ce mpoBepsiBa aHAJOTHYHO.

Pasriexname )
1/2
q(u) := {//E(u - u])zdﬁdn} :

[Ile nmpoBepumM, de ycaoBusTa Ha JjemaTa Ha Bramble—Hilbert ca umsnbanenn:

a(u+v) = {//E(u - v])ngdn}1/2

= |lu—us +v — vl ym)

e Sublinearity:

<|lu =i,y + v = vrll L)

= q(u) +q(v);
e OrpaHuYeHoCT:
q(u) = [Ju = urllLye)
< ullzawe) + lurllLae)
S C'||u||Hk+1.
B mocnemnoro nepasenctso msnoassaxme dakta, e ||[ullp,m < ||ullgreim),
KaKTO 1
k1
ur(w) =Y u(P)pilx)
i=1
k+1
< .
< g ) 3 )
P
< Ollull gr+r ey ot emara na Coboses (Bxk. Ilaparpad 5.4)

KBJETO ¢;(7) 00pa3yBaT WHTEPHOJIAIMOHHES OA3UC, OTTOBAPSIII HA BbH3JIATE
P i=1k+1.
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e Ouesnjuo q(u) =0, ako u € Py.

Torasa ycioBugara na Jjemarta Ha Bramble-Hilbert ca usnmbimenn u TBbPAeHHETO €
JTOKa3aHo. ]

Cera Bede cMe TOTOBH Ja JOKazKeM OCHOBHHA peE3yjITaT OT Ta3W Te€Ma.

Proposition 30. Hexa ur, no wacmu nosurom om Py, e unmepnoaarm na Gynryuima
u, Koamo e docmamauno peeysapra. Tozasa ca 6 cura crednume anNPUOPHU OUEHKU:

lu = urllpa@) < CRE | g oy,
IV (u = )| o) < CBI"ul iy,
kedemo 3 e eopna epanuya ma hy/pr, a h := max ¢x h,.

Proof. Kakro orbenszaxme, knacumdyeckara uges B MKE e ma ceemem 3amadara,
KOSITO € MOCTaBeHa BbPXy objacTtTa {2, 10 3a7ada BbPXY €JeMEHTHTE, CJIeJ KOeTO
na “acembampame”’ pesyiararure. Mmame

1/2 1/2
IV (= wr) ooy = | D [ IV(u—up)dr = (D IV(u—u)li,m
Tekcv T TEK
octarbuno € ga onenuM Q- (u) := |[|V(u — up)||r, ). 3a Ta3u e e usmnoasBame
I Qr(u) := || 2(9)

semara Ha Bramble—Hilbert u cienoBarenino TpssOBa j1a HapaBuM TpaHcdOpMAIU
K'bM CTAHIAPTHUS TPUbI'bJIEH eJeMeHT. Heka eJleMeHTbT T € OIpeiesIeH OT Bb3JIUTe
(Tks Yk)s (1, v1), (T Ym ). ToraBa cmsiHaTa HA TPOMEHIUBUTE, KOSTO TPAHCHOPMHUPA
T B CTaHJapTHUA TPU'BI'bJICH €JICMEHT, €

Yy Yk n |
B— Ty — Tk .’Bm—l'k_
Y=Y Ym — Yk |
Bk naparpad 3.2. Ocsen ToBa, V,u = B~'Veu u Veu = BT'V,u. la o6bprem
BHUMAHHE, Ye BCHIKH eJeMeHTH Ha MaTpHIaTa B ca 110 MOLYJT 110 MAJKH OT A .
Heka oznauum ome J := det B.
Toraga

KBIETO

1/2
c&wwz{énBJVAu—mmaﬂ%m&

1/2 5.1
1B {/wm—mmw@ o 6D
\—,—/ E |

N

IN

Tyk Ban3a reomeTpusdTa ~~ -
Lle usnossBame Bramble—Hlibert

1 TaKa, Hie¢ OIeHUM BCEKH OT MHOZKHUTEJ/JINTE B IIOCJE€IHOTO ITOOTAC/IHO.

e 3HaeM, Ye JeTepMHUHAHTATa MOKe Ja Obje HHTepIpeTHpaHa TeOMeTPHIHO
KaTo June. JelicTBUTEIHO, 3a JUIETO HA T UMaMe

1
= [dr= [ 121dgan =51
T E
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CJrenoBaresHo

2p:h < |J| < 3prh..

e 3a mopmara Ha B~T nmame no meduHATIA

_ B¢
|B7!|| := sup u (5.2)
¢ER? HCH
Ot apyra crpana, 3a IPOU3BOJHO ( € H3I'bJIHEHO
2
HB_1CH2: l Ym — Yk Tk — Tm G
J|L Y=y X — T G2
2
< W(Clhr + Gohy)?
ARG+ Q)
- P
a2
/]2
BamecTBaiiku nocaegHoTo B (5.2), moaydaBaMe OKOHYATETHO
1 1
1B~ < —. (5.3)
pr

o /la orbGenexkuM, ve 1o momoben Haduu ce mosydasa u ||B|| < h, Koero e
H3II0/I3BAME MAJIKO HO-K'bCHO.

e 3a mocyenHus MHOXKHUTET B (- (1) OT OPEIXOTHOTO TBbPJICHAE UMaMe
IVe(w =)l aie) < Clulgenzy < CHPI T 2 ul sy (5.4
ITocoiennoTo ce ocHOBaBa Ha CJACIHOTO HAOJIOICHUE

IVeull ram) = 1B Vaullrym < 1B NIVatllram) < Che|Voull ol 172

C npyru iyMu 3a BCSIKO NpUJIarane Ha jiudepeHInaaiHis OllepaTop IIPU CMsiHATA,
“ce nmogpasa” BT, Te. “mamuza”’ mo emno h. Twbit Kato B |u|gks+1 yuacTBar
upousBojHuTe OT pes k + 1, noaydaBame onenkara (5.4).

11 Taka, 3amecrBaiiku (5.3) u (5.4) B (5.1), nosyuaBame

I = )1y < O 2HE T2
pr
C TOBa JOKa3aXMe€ BTOPOTO HEPaBEHCTBO OT TBbBPAECHUETO.

[Io mogo6en HAYMH ce TOJIyYaBa | 'LPBOTO HepaBeHCTBO. EauHcTBeHATa pa3/nKa
e, e IPH CMsHATA OT T K'bM CTAHIAPTHUS eJeMeHT He U3/Iu3a B, HopaIn KOeTo
oJIy4aBaMe U OIEHKa, KOSITO € C €JIMH PeJl 110-BUCOKA. ]
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5.3 HNzcaenBane Ha MKE 3a obimmara etmnTuyHa 3a1a4a
Pasriexkpame obriara eJTMOTHYHA 33/a4a PU IPAaHUYHE yCaoBUsd Ha lupuxie,

V- (=K (2)Vu + b(x)u) + ¢(z)u = f(x), 2 € Q C R?,

u(z) =0, x € 09, (D)

kbaero d = 1,2,3 e pasmepHocTTa Ha 3ajadata, a K(r) € R¥™? e nosoxure/no-
onpesenena Marpuna, T.e. £ K ()€ > ko€’ € 3a Beaxo € € RY u HaKOS I0JI0MKATETHA
KoHCTaHTa, K.

Karo ymHOXKuM JiBeTE CTpaHM CKAJIAPHO C TECTOBA (DYHKIMA U U MHTErPpHPaMe
[0 9aCcTH JIgBaTa CTPaHa, MoJydaBaMe CJeJHaTa BapuallMoHHa 3a/ad9a;

[a ce namepu u € Hy () Taka, ue

a(u,v) = F(v),Yv € Hy (), (V)

KBbIETO

a(u,v) = //Q {(K(:{:)VU —b(z)u) - Vv + g(z)uv | dQ,

F(v) = / /Q FodQ.

Proposition 31. 3a sapuayuonnama sadawa (V), npu npednoaosrcerus

(i) K(z) e noroosicumenno-onpedesena mampuua, m.e. & K(x)€ > ko€ € 3a
searo € € R u naros nososcumenna xonemanma ko,

(it) q(x) + 3V - b(x) > 0, 3a écaro v € Q

BUHGRU CBULLCNBYBA, NPU Mosa eduncmeeno, pewerue. Ilpubauscenomo pewerue
666 6ud Ha No wacmu nosurom om Py, nosyueno no MKE, usnsauasa ciednama
aANPUOPHG OUEHKG Ha 2PEWKAMA:

Hu — uhHH1(Q) S C’ﬁhklu\HkH(Q).

IIpu mosa, ako MOYHOMO PEWEHUE USNBANABL YCAOBUE 34 NBAHG (EAUNMUYHA)
PERYAADHOCTL, . €.

[ulg2) < O\ flla), Y,

mo e 6 cuaa
lu = wpll o) < CBRHul i o)

Proof. HempekbcuarocTTa Ha OmInHeiinaTa ¢hbopMa  JsICHATA CTPAHA Ce IIPOBEPSABAT
JIECHO, KaTo ce u3noJ3Ba HepaseHcTBOTO Ha Komu—byngkoscku—IlIBapn. Tyk e
[IPOBEPUM, Ue ITPH HATIPABEHHUTE MPeII0JI0KeHHsI, OnnHeiiHaTa hopMa e KoepIuTHBHA.
[eiicTBuTe/iHO, UMaMe

a(u,u) = //Q[(K(x)Vu — b(x)u) - Vu + q(z)u?]dQ,
- //Q[ko(vu)2 — (b(z)u) - Vu + q(z)u’]dQ.
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M3mo/3Bailkn U3BECTHOTO ThXKIECTBO

1 1
—ub - Vu = —év - (bu?) + §u2V - b,

noJIy 1aBaMe
// —ub - Vu———//V (bu?)dQ + = // u*V - bdQ)
M+ / / w2V - bde.
Torasa

(1, ) //[kOVu (()+%V-b)u2]d9

> kQ |VUHL2
> Cllullf g

3a 1moc/IeTHOTO HEPABEHCTBO € M3IMO0JA3BAHO HEPaBEeHCTBOTO Ha Poincaré.
1 Taka, or Teopemara Ha Lax—Milgram cjensa cblecTByBaHe U €JIMHCTBEHOCT
Ha peleHneTo Ha BapHaIlHOHHATA 3aaada. lIlpu ToBa e B cuia jgemara Ha Céa, T.e.

Co
| — unl| 10 <EHU_UIHH1 ), Vv € Vy,

OTK'BIETO TOJTydaBaMe alPHOPHATA OIleHKa Ha rpermkaTa B H '-HopMa, KaTo n3moa3BamMe
Tebpaenne 30.

3a 1a mokaxkeM olleHKaTa B Lo-HOpMa, Ile TpuIoxkuM Tpuka Ha Nitsche. Pasrimexgame
JyasHara 3agaqa zHa (V):

a(v,u) = (u— up,v), Yo € V.
B gactHOCT 33 v = u — uj, ©UMaMe
|u — uh”%Z(Q) = a(u — up, 1)

= a(u — up, 4 — uy)

< Cllu = unl| gl = 1l (@)

< CBMul e oy hli] 2 (0)-
[Ipu npesnosozkenne 3a wbjHa PEryJsipHOCT € U3IBIHEHO |1 2(0) < Cllu—usl|L,0)
¥ TBBPIECHUETO € JTOKA3aHO. O

Remark 26. 3a 1a 6b1e epbekTuBHA OIleHKATa, € HEOOXOANMO TPUAHTYJIAIIALATA
Ja ce MOCTPO#ABA MO TaK'bB HAYNH, Y€ 3 Aa ce KOHTpoJaupa. ToBa 0OMKHOBEHO
ce ITOCTHUra Ipe3 KOHTPOJIUPaHe Ha MUEHUMAJIHUTE bIJIM HA BCEKH OT TPUHI'bIHUIATE.
Tosa 0bsicHsgBa ¥ Ka3aHOTO 3a TpUaHIryjanusaTa B naparpad 2.1.1.

5.4 WN306panu temu ot Teopusta Ha CoboJjieBUTE M
XnjabepToBuUTE IIPOCTPAHCTBA

Tyxk e npuBeieM HAKOU 0030pHHU CBeJieHnsd oT TeopudaTa Ha CoboJieBuTe N XUIOEPTOBUTE
IPOCTPAHCTBA, HA KOUTO C€ OCHOBABAT HAKOH OT TEOPETUIHUTE PE3YJITATH, PA3LJIeTaHn

JOTYK.
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[Mo-poy V' mie 6bae jajieHo JIMHeHO HOPMUPAHO HPOCTPAHCTHO ¢ HOpMA || - ||
OCBEH aKO HE € Ka3aHO HeIO JPYTO.

Definition 3. Kaspawme, e peaunara @g, 1, @2, - . . € peauia va Komn (dbyHmamenTarna
peuIa), ako 3a Besako € > 0 cpmectByBa n € N Taka, e ||¢p — @] < e 3a k,l > n.

Definition 4. Kaszpame, 4e jnmHeiiHOTO HOpMHpaHO HIpocTpaHcTBO V e Bamaxopo
(I'bJIHO METPUYHO) MPOCTPAHCTBO, AKO €JHA DEeJUIa e CXOASIA TOoraBa M CaMo
TOoraBa, Koraro e peauna Ha Kormrm.

Example. [IpocTtpancrBoro R", HOpMupaHo ¢hbe cTaHmzapTHaTa EBKanmIoBa HOpMA,
e banaxoBo 1POCTPAHCTBO.

Example. Moxke na ce mokaxe, de npocranctBoto C(§)) oT HempekbCHATHTE B
obsiacTTa §2 MYHKIUKA, HOPMUPAHO ¢ paBHOMEpHATa HOpMa, ¢ baHaxoso.

Example. IIpocrpancrsoro Q ne e Banaxoso, 1bit karo B Hero uma “mynxun’. ITo-
TOYHO MOXKeM Ja HamepuMm pejauim Ha Kommu (0T paloHAIHM 9HCIA), KOUTO He
ca cxomsi B Q (cxomsmum ca wampumep B R). Takbs npumep e pegunara ot
npUG/IKEeHIs Ha /2 /10 I'bPBUs, BTOPUA W T.H. 3HAK CJIEJI J€CeTHIHATA TOYUKA.

B nbanuTe npocTpancTBa HMa ‘XybaBa’ Teopusd 3a ChIIeCTBYBaHe, e THHCTBEHOCT,
cxomumocT 1 T.H. [Ipumep 3a TakbB pe3y/aTaT € TeopeMara 3a HEIMOABHKHATA TOYKA
ot Kypca “Hucjienn MeToan Ha aHaJm3a’, KOsSITO ce 06001maBa B Teopemara Ha Banax
3a IPOM3BOJIHO BaHaX0BO MPOCTPAHCTRO.

Ocobeno j100pa CTPYKTYpa UMAT IIPOCTPAHCTBATA, B KOATO € BbBeJIeHa NeOMETPHSI
(OCPeICTBOM CKAJIAPHO TPOU3BEICHHUE).

Definition 5. Ka3zpame, de anHeiiHOTO IPOCTPAHCTBOTO V' € peaxuabepToBo IPOCTPAHCTBO,
aKO B HETO € BbBEJIEHO CKAJAPHO TTPOU3BEIEHNE.

Hait-ocHOBHHAT pe3yJsiTaT B MpeIXUIOePTOBUTE MPOCTPAHCTBA € HEPABEHCTBOTO
na Komu-bynsakoscku—IlIBapir.

Proposition 32 (Hepasencrso na Komu-Bynsakoscku-—IIIBapi). 3a scexu dea
CAEMENRTNG U, U 1A NPedrurbepmosomo npocmparncmeo V. e 6 cuiq

|(u, 0)| < lulllJo]].
Proof. 3a Bcgko peanHo o € B cuia
(u + av,u + av) = (u,u) + 2a(u, v) + o?(v,v) > 0.

Cute1oBaTe/IHO JIMCKPUMAHTATA HA IOJIy Y€HU S KBA/IPATEH TPUUJIEH € HEIIOJI0KUTE/THA,
T.C.
2
(u,0)” < (u, u)(v,v).

O

Definition 6. Kazsame, we npemaxmibeprooro mpoctpanctso H e XuabepToBo
npocTpancTBo, ako H e Banaxoso.

3a HamuTe e Haii-axkauTe Banaxosu u Xua0bepToBH IPOCTPAHCTBA €A (PYHKIIHOHATHUTE
HPOCTPAHCTBA OT UHTEIpyeMu (DYHKIIUHU.
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Definition 7. dedunupame npocrpancrsoro L,(Q) == {v : Q@ = R : [jv||1, @) <
o0}, KbJeTo

1/p
olley@ = { / rvrpcm} p<oo llollom = supo(a)].
Q xeQ)

Mozxe na ce mokazke, 4e npocTpancTsaTa L, ca banaxosn 3a BCAKO p, HO e JUHCTBEHO
3a p = 2 CbOTBETHOTO IPOCTPAHCTBO Ly € XujidepToso.

B Xwunbeprosure npocrpancrsa L, GyHKIUATE N0 NPUHIAN HE ca JOCTATHIHO
peryJsipHH, 3a /18 TOBOPUM 3a TPOU3BOIHN B KJIACHIECKNAS CMUCHI. 110 Ta3u npuanHa
ce BbBEK/IAT T.HAp. 0000muienu (c1abu) npon3BoaHu. TyK IIe yTOUHUM TOBA MOHSATHE.
Koraro obobiaBame 1ajeHO MOHATHE B MaTeMaTHKaTa, TPpAOBa 1a HU3II'LJIHUM JIBE
HeIA:

e JeiicTBuTEHO neduHUIIATA Ja 00001aBa KIACHIeCKOTO MOHATHE (T.e. TO Ja
e JacTeH cJydail Ha 0000IIeHreTO);

e Jla ce 3ama3Bar ‘xybaBuTe CBOWCTBA OT IJIeJHA TOYKA HA TEOPHATA, KOATO
pasriiexkame.

Definition 8. Heka u € L] () e magena dbynknusa. Kassame, 9e pyHKuuaTa

loc

Opu = 2% € L} (Q) e 0606mena (cr1aba) IPOA3BOIHA HA U, AKO

/&ciugpd(l = —/u@xicde, Vo € C5°(Q).
Q Q

Mozxke 1a ce mokazke, de (popmysiara 3a HHTErpUPAHE O IACTH, KAKTO U OCHOBHUTE
cBoiicTBa Ha judepeHIInaJ I OIepaTop ce 3ala3BaT Ipu 0000IIeHaTa IPOU3BO/IHA.
Topa ce ocHOBaBa Ha (bakTa, e HHTerpyeMuTe GYHKIHA MOTAT 13 Ce alPOKCUMUPAT
¢ TJIAJKN TaKWBa, HO TO3M BBIPOC M3JIU3a U3BHH PAMKUTE HA HACTOSIIUS KYPC.

Example. /la pasrienave dpyHKIUATA

r, x>0,
0, =<0,

nedunnpana B unrepsasa [—1,1]. IIpecmsrame

1 0 1 1 1
/ wp'dr = / up'dr + / up'dr = / ¢ (x)dr = —/ od.
1 1 0 0 0

Caenoarenno, ako (QYHKIHLATa 1 WMa cjaada MPOW3BOAHA, TO TOBAa TpsAOBA 1a e
Takapa (PYHKIU U, 38 KOATO

1 1
/ ' pdr = / wdz. Yo € CFF.
—1 0
TakaBa (pynknus 1eificTBUTEIHO ChINECTBYBa, HanpuMmep dynknugara na Heaviside:
0, <0,
1, =>0.



Remark 27. /la o0bpHem BHuMaHue, de cjiadara mpou30/iHa e Olpe/ieeHa ¢ TOYHOCT
JIO cToiHOCTTa U BbHpXy MHOXkecTBO ¢ Mapka (. ToBa me e mpobjem, Tbit KaTo B
npocTpancTBaTa L, Taknba (QyHKINN ce NAeHTHQUIIpAT.

Remark 28. Crabara mpou3Bo/iHa ChbBIIaIa ¢ KJIaCHIeCKaTa MPOU3BOIHA B TOUKHUTE,
K'bJIETO U € jiudepeHnupyeMa B KJIACHYeCKIs CMUCJL.

Remark 29. Hannuuero na “aymnku” B rpadukaTa Ha (PyHKIHATA, KAKTO BUZKIAME,
He e mpobJieM 3a C’bINEeCTBYBaHETO Ha caaba npousBogHa. CienoBaTeano pyHKIUATE-
KOJMOKa, KOUTO ca OCHOBHHU 3a IeJUTe Ha HaCTOAINS Kypce 3a jeficTurenano Hl-

dyHKIIH.

Example. Heka pasriename dynknugara va Heaviside H(z). Axo ts nma ciaaba
IIPOM3BOJIHA, TOBA TpsibBa na e dbynkius H' takasa, 4e 3a Besko ¢ € C° e B cuia

1 1
/ H’gpdx:—/ Hy¢'dx = (0).
-1 -1

[opHOTO MHTErpaHO THXKIECTBO Ce M3MbAHIBA OT O-pyHKIUsATa Ha JUpak, HO Ts
HE € JIOCTATBIHO PerysasdpHa, 3a Jia YIOBJeTBOPSABA MpUBeIeHaTa JTe(DUHUATIHA.

®yHKIINN, B KOUTO UMa TaKuWBa “CKOKOBe”’ He ca audepeHmupyemMu u
B cj1ab CMUCBJI.

KakTo BujagxMe B paMKHUTE HA Kypca, BaXKHO YCJIOBHE 33 (DYHKIUUTE, ¢ KOUTO
paborum B MKE, e Te j1a u3mb/JHABAT ONpe/ie/IeHd U3UCKBAHUSA 33 CbIECTBYBAaHE
Ha Mpou3BOIHU (B ¢ab CMUCHI), 34 Ja UMAT ChOTBETHUTE BAPHAIMOHHU 33JIa91
cMuChI. ETo 3a110 ecTecTBeHUTE TPOCTPAHCTBA, B KOUTO PA3L/IeK1aMe 33 1a9uTe, Ca
CoboseBute npocrpancrsa. Tosa ca mognpocTpancTsa Ha L,, B KouTo byHKIUUTE
U3I'LAHABAT ONPEJIC/IEHH YCJIOBUS 3a ChIIECTBYBaHe Ha ¢J1abu MPOU3BOIHIU.

Definition 9. CoGoseBoro mpocrpanctso WP () ce c¢bheron or tesu dbyHKIuH,
KOUTO 3aeJIHO C'bC caabute cu npomssoguu D%u ot pen |a| < k ca L,(Q)-bynknuu.
Kazano nnaue,

HU’HWIS < 00,

K'BIETO
1/p

lallwpe = | S0l o |+ 1<p<oo.
|| <k

[TpocTpaHcTBaTa, KOUTO Ce TIOJydaBaT Ipu p = 2 ca XuJIOepTOBH IPOCTPAHCTBA.
3a sa ce nogueprae To3u Gaxt, 0OUKHOBEHO ce u310/138a o3nauenuero W2 =: H.
Taka HampumMep HOpMaTa B HpocTpancTBoTo HF(I) ce mopaskga oT CKajiapHOTO
IPOM3BEIeHNe
<u,v >i= /(uv + v+ -+ uP ™) dr,
I
B cuna e cienmusar pesyarar (Jlema/Teopema na CobosteB 3a Baaranusra), KOWTO
e npuBejeM 6e3 J0Ka3aTe/ICTBO.

Proposition 33 (Jlema na Co6ones). Hexan = 1,2,3 e pasmeprocmma wa dadena
sadava. Axo u € H*(Q) u k > n/2, moeasa u e nenpexscnama u

max [u(zy, - &) < Cllufl ).
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5.4.1 MKE m rpaanvyHuUTE yCJIOBUS

Ocrana ja KOMEHTHpaMe BbLIPOCa 3a TPAHUYHHTE YCJIOBHH U IIO-TOYHO BHLIPOCA
3aI0 HAKOM TPAHUYHH YCIOBUS HajlaraMe eKCIUIMIATHO BhbB BapualioHHATA 331492
(e v HapuYaMe TJIABHU TPAHUYHU YCJOBUs), a 3a JApyru (Ie I'm Hapudame
€CTEeCTBEHM IPAHUYHM yCJOBUS) — He.

Proposition 34. IIpocmpancmesomo
Vi={ve HY(Q): Vv -n=0 sspry 0N}
He e Banazoso.

Proof. ocrarbuno e na fajgem enaud npumep. Jledunrupame penumara

x, r<1-1
3

LA PRI

Y

OdeBUIHO TOBA € peINIa Ha IKOIIH HO TSI He e CXOI4IIa BbB V, T'hbil KATO IPOU3BOIHATA,
Ha rpanuyHaTa dHyHKIwsa mpu = 1 e 1 (Hanpasere deprex!). [

Proposition 35. Ilpocmpancmeomo H) e Banazoso.

Proof. 1lle nokaxem B 1D. 3a Bcexu aBa ejementa v,, v, Ha H} e B cuia
x 2
) = o (@) =| [ (00 = v da
0

/ |(Un — V) [Pd
0

< lvn = vmlz-

IN

Heka {v;} e peauna na Koum s H}. Torasa
[on = vmllg1 — 0
I CLIIECTBYBa FpaHuIa Ha Tasu peanna B H'. Ot apyra crpana, moKazaxme, de
[vn = v || 2 max |v,(2) = v ()] = |[on = vinllcran

U cJIe/I0BaTeIHo peautara e peauna na Konmn B Cla, b] u HefinaTa rpaHuiia ¢ HeMmpeKbCHATA
dbyuknua v takasa, ge v(0) = 0. O

I/I TaKa, aKO B Hl HaJIO?KUM €KCIJIMIUTHO 'PaHUYHU YCJIOBUA, B KOUTO y4acCTBaT
IPOM3BOIHU, TO ITOJYYEHOTO MPOCTPAHCTBO HsaMa ja Obie XuadepToBO H ISLIATa
TeopHus, KOdATO pa3BuxMe, He 6u Omi1a B cuia. Okassa ce obade, de eKCIIUIUTHOTO
HaJIaraHe Ha Te3W YCJIOBHSA He e u HeoOxoammo. DakTbT, Ue cMe ' U3I0JI3BAIN
upu (GopMyJaHpaHETO HA BapUAIMOHHOTO ypaBHEHHE, O3HadaBa, e Te Ime Obaar
aBTOMATHIHO U3II'bJIHEHI OT PEIIEHNeTO Ha Bapualnonaara 3aaa4a. 11le miocrpupame
uaesTa Ha Oa3ara Ha CAeTHUS IPHMEP.
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Exercise. Kos e mudepennuainara 3a1a49a, KOSTO, IPU HPEIIOJ0KEHHAE 32 TOCTATHIHA,
? Y
PEryIapHOCT Ha PEIICHHeTO, ChOTBETCTBA Ha CAIHATA BAPHAINOHHA 3213494
Ma ce namepu u € H'(I) Taka, ue

a(u,v) = F(v), Yo € H'(I),
K'BIETO

a(u,v) = —/Iu’v’dx, F(v) = /vadx.

Ynemeane. Nurerpupaiite o vactu a(u, v) n n3noa3paiite hakta, e HHTEIPATHOTO
TBKJICCTBO € H3IIbJIHEHO 3a BCAKO v. V36epere mocsre10BaTesHo TeCTOBN (DyHKINUH,
KOUTO Ce HyJTMpAT Ha JBeTe TPAHMIM, Ha JgBaTa IPAHUIA, Ha IgCHATA IPAHANA. [
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