
Royal University of Phnom Penh

Using the Singular Value
Decomposition (SVD) for Image

Compression

Author:
Teav Vuthy
(teavvuthy@yahoo.com)

Advisor:
Dr. Angel R. Pineda

(apineda@fullerton.edu)

September 25, 2010

Contents

1 Introduction 2

2 Background 3
2.1 Theorem: Singular Value Decomposition (SVD) 3
2.2 Images as matrices . 5

3 Methods 6
3.1 Property of the SVD . 6
3.2 Dimension reduction . 7

4 Results and Discussion 8

5 Conclusions 12

6 Future work 12

Appendix A . 13

Appendix B . 17

Acknowledgement . 19

References . 19

1

.
Abstract
Any m × n matrix can be factored into the product of an orthogonal matrix
times a diagonal matrix times another orthogonal matrix. This is called the
Singular Value Decomposition (SVD) of a matrix.

The goal of studying the SVD of a matrix is to create approximations of the
full m × n matrix by only using some of the terms of the diagonal matrix in
the decomposition. This approximation of the full matrix is the basis of image
compression using SVD, since images can be viewed as matrices with each pixel
being an element of a matrix.

In our project, we will prove the theorem of Singular Value Decomposition
(SVD), and compute the SVD of a matrix example by calculation and by using
Octave and MATLAB. We will also explain how the SVD can be applied to
compress images, and implement the image compression algorithm developed
for a sample image by using Octave and MATLAB.

Key Words: SVD, Image Compression.

1 Introduction

Among the methods to write a matrix as a product of matrices, Singular Value
Decomposition (SVD) is a very useful method [1, 2]. The SVD is applied to
the image compression. For example, suppose that a satellite in space is taking
photographs of Jupiter to be sent back to the earth. The satellite digitalises
the picture by subdividing it into tiny squares called pixels or picture elements.
Each pixel is represented by a single number that records the average light in-
tensity in the square.

If each photograph was divided into 400×400 pixels, it would have to send
160,000 numbers to the earth for each picture. This would take great deal of
time and would limit the number of photographs that could be transmitted.
It is much better, If we can approximate this matrix with a matrix which
requires less storage [2].

Suppose we know the SVD of a matrix. The key is in the singular values
(in Σ). Singular values are arranged in decreasing order so the first singular
value is big and the next after is smaller and smaller. Then some singular values
are extremely small. In fact, we have formula A = UΣV T with U and V are
orthogonal matrices and Σ is a diagonal matrix. We can do the multiplication
as columns times rows :

We get A = UΣV T = u1σ1v
T
1 + u2σ2v

T
2 + · · ·+ urσrv

T
r (•).

Here the u’s are columns of U and the v’s are columns of V. Any matrix is the
sum of r matrices of rank one.

Since the singular values (σ’s) are arranged in decreasing orders, some σ’s are
extremely small so some terms in (•) above are also extremely small and can be

2

ignored. If we ommit some terms that are very small from (•), we get a matrix
that has less storage than matrix A.

If only 30 terms are kept, we send only 30 times 80 numbers instead of
160,000. First, we hardly recognize the picture but as more and more singular
values are included, the quality of picture is more and more better.

2 Background

2.1 Theorem: Singular Value Decomposition (SVD)

Let A be an m× n matrix with rank r. Then there exists an m× n matrix

Σ where Σ =

[
D
0

0
0

]
,

with (m-r) rows having all zero entries, (n-r) columns having all zero entries
and D is an r× r diagonal matrix for some r not exceeding the smaller of m and
n.
The diagonal entries in D are the first r singular values of A: σ1 ≥ σ2 ≥ · · · ≥
σr > 0 and there exist an m×m orthogonal matrix U and an n× n orthogonal
matrix V such that A = UΣ V T [1].

Proof:

Since we want to get ATA = (V ΣTUT)(UΣ V T) = V ΣTΣ V T and on the other
hand, we have ATA = (ATA)T so ATA is a symmetric matrix then by the def-
inition and theorems of a symmetric matrix implies that ATA has a complete
set of orthonormal eigenvectors vi which go into the columns of V .
(Refer to the reference on pages 405-409 0f [1]).

First, we take { v1, v2, . . . ,vn } to be an orthonormal basis of Rn
of eigenvectors of ATA.

And second, let λ1, λ2, λ3, . . . , λn be associated eigenvalues of ATA. Then,
for 1 ≤ i ≤ n , we have:

‖ Avi ‖2 = (Avi)
T (Avi)

= vTi A
TA vi

= vTi (ATA vi)

= vTi (λivi), by the definition of vi being the eigenvectors of ATA

(ATAvi = λivi).

‖ Avi ‖2 = λiv
T
i vi

3

= λi, since vi is a unit eigenvector of ATA then vTi vi = 1.

We get ‖ Avi ‖2 = λi (1)

In general, the singular values of a matrix A are the square roots of
the eigenvalues of ATA, denoted by σ1, σ2,. . . ,σn, and they are arranged in
decreasing order. That is σi =

√
λi for 1 ≤ i ≤ n. By(1), the singular values of

A are the lengths of vectors Av1, Av2, Av3, . . . , Avn.

Third, let σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σr > 0 be the first r singular values of A
(A is an m × n matrix), and the next singular values of A are σr+1 = σr+2

= σr+3 = · · · = σn = 0. The singular values of A denoted by σi =
√
λi for

1 ≤ i ≤ r.

From (1) we get σi =
√
λi = ‖ Avi ‖ > 0, since σi > 0 for 1 ≤ i ≤ r, σi = 0

for i ≥ r + 1, and then we also get Avi = 0 for i ≥ r + 1.

Since AVi and AVj are orthogonal for i6=j,
(Because for i6=j, vi and vj are orthogonal, we get (Avi)

T (Avj) = vTi A
TAvj =

vTi (λivj) = 0 thus AVi and AVj are orthogonal), and for any y in Col(A), we
may write as y = Ax and we may also write x= c1v1 + c2v2 + · · ·+ cnvn, and

y = Ax

= c1Av1 + c2Av2 + · · ·+ crAvr + cr+1Avr+1 + · · ·+ cnAvn

= c1Av1 + c2Av2 + · · ·+ crAvr + 0 + · · ·+ 0 (Avi = 0 for i ≥ r+ 1)

Thus y is in span { Av1, Av2, · · · , Avr }, then

{ Av1, Av2, · · · , Avr } is an orthogonal basis for Col(A).

For 1 ≤ i ≤ r, define ui = 1
‖Avi‖Avi

ui = 1
σi
Avi, since σi = ‖ Avi ‖

Then we get σiui = Avi (1 ≤ i ≤ r) (2)
then { u1, u2, u3, . . . , ur } is an orthonormal basis of column space of A.

By Gram-Schmidt, these r orthonormal u’s can be extended to a complete
orthonormal basis u1, u2, u3, . . . , um then we get an orthonormal basis set
{ u1, u2, u3, . . . , um } of Rm.

Finally, let U = [u1 u2 · · ·um] and V = [v1 v2 · · · vn], then U
and V are orthogonal matrices.

Also from (2) we get AV = [Av1 Av2 · · ·Avn 0 · · · 0],

4

(since we have rank(A) = r).
= [σ1u1 σ2u2 · · ·σrur 0 · · · 0]

Let D be the diagonal matrix with the diagonal entries σ1, σ2, σ3, · · · , σr,
and

let Σ =

[
D
0

0
0

]

Then UΣ = [u1 u2 · · ·um]


[
σ1
0

. . .
0
σr

]

0

0

0

 (3)

= [σ1u1 σ2u2 · · ·σrur 0 · · · 0] = AV

Then implies UΣV T = AV V T = A,

(since V is orthogonal matrix, then V V T = I)

Therefore A = UΣV T (4)

• Specific examples are carried out in Appendix A.

2.2 Images as matrices

Each image contains pixels. Pixels are small adjoining squares in a matrix across
the length and width of the digital image. Pixels are so small that we don’t see
the actual pixels when the image is on our computer monitor. If we have an
image with m×n pixels (or m×n cells), then we can view the image as a matrix
with m rows and n columns because the m×n matrix has m×n elements too
and each pixel of the image represents each element of the matrix.

For example :

We have a very simple image as the following :
(The image below is obtained by reading its matrix as image in MATLAB using
codes in Appendix B)

5

The image above, we saw that it has 6 cells or 6 pixels and it is the 3×2 image
so we can view the image as the 3×2 matrix which means that the matrix con-
tains 6 elements too. By using the Matlab codes for viewing matrix as image in
Appendix B, we have the matrix that represents our image above as the following 0.9572

0.4854
0.8003

0.1419
0.4218
0.9157


3 Methods

For the method of image compression, we use the programs in Appendix B and,
we also use the property and formulas as the following :

3.1 Property of the SVD

The m×n matrix A can be written as the sum of rank-one matrices.

A =

r∑
i=1

σiuiv
T
i (5)

Where r is the rank of A, and ui and vi are the ith columns of U and V,
respectively [3].

Proof:

By formula (3) in the proof of SVD theorem above, we get:

6

A = UΣV T = [u1 u2 ... ur ... um]


[
σ1
0

. . .
0
σr

]

0

0

0





vT1
...
vTr
...
vTn



=[σ1u1 σ2u2 · · ·σrur 0 · · · 0]



vT1
...
vTr
...
vTn


= σ1u1v

T
1 + σ2u2v

T
2 + · · ·+σrurvTr .

Thus : A =

r∑
i=1

σiuiv
T
i

This property is known as the low-rank approximation property of the SVD.
We get the best least squares approximation to A of rank k ≤ r by keeping only
the first k terms of A =

∑r
i=1 σiuiv

T
i and the other terms left are ignored [3].

3.2 Dimension reduction

What is the purpose of transforming the matrix A into UΣV T ? We want to
approximate the m×n matrix A by using far fewer entries than in the original
matrix. By using the rank of a matrix, we remove the information that is not
needed (the dependent entries) when r ≤ m or r ≤ n.

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r + σr+1ur+1v

T
r+1 + · · ·

Since the singular values are always greater than zero. Adding on
the dependant terms where the singular values are equal to zero does not effect
the image. Remove the terms at the end of the equation zero out, leaving us
with:

A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r . (5)

One way to compress the image A is to approximate A by a matrix of smaller
rank.

7

If k < r then the closest approximation to A, (rankA = r) - by a matrix of
rank k that is the truncation of (5) to the first k terms :

A ≈Ak = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k (6)

Proof:

We have A = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k + σk+1uk+1v

T
k+1 + · · ·+ σrurv

T
r

and Ak = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

then A−Ak = σk+1uk+1v
T
k+1 + · · ·+ σrurv

T
r

and ‖ A−AK ‖ =
√
σ2
k+1u

2
k+1(vTk+1)2 + · · ·+ σ2

ru
2
r(v

T
r)2

since u2i = ‖ ui ‖2 = 1, (vTi)2 = ‖ vTi ‖2 = 1 (u and v are unit vectors).

Then ‖ A−AK ‖2 = σ2
k+1 + σ2

k+2 + · · ·+ σ2
r .

‖ A−AK ‖=
√
σ2
k+1 + σ2

k+2 + · · ·+ σ2
r ≤ (r − k)σk+1

Since the sigular values are arranged in dereasing order, when k goes nearly
to r, σk+1 is very small (about near zero).

Then ‖ A−AK ‖ ≤(r - k)σk+1 ≈ a very small number.

Thus: A ≈ Ak (k < r).

4 Results and Discussion

•Dimension reduction

Look at the example of singular value plotting of the image (Angkor.jpg)
that we use the program for singular value plotting in Appendix B below :

8

We see that the singular values decrease rapidly. We can further
approximate a matrix by leaving off more singular terms at the end. Since the
singular values are arranged in decreasing order, the last terms will have the
least effect on the overall image. Doing this reduces the amount of space
required to store the image on a computer.

•Image processing

•Method for computing the element numbers (pixels) of an image
in the image compression, and computing the percentage of storage
space of the image:

A full m×n image has m×n numbers. In the image compression, we use one
(1×m) singular vector u, and one (1×n) singular vector v. For a singular value,
we use (m+n) numbers. Thus if we use k singular values, we store k×(m+n)
numbers.
A percentage of storage space in the image compression is the numbers that we
store in our compression over the total in the image = k×(m+n)/(m ×n)%.

For the pictures in this presentation, we used the program for image
compression in the Appendix B.
In the first example below, the original image has size 1728×1154 pixels.

9

(13 terms) (49 terms)

The first thirteen terms actually give the shape of image but it is not a good
approximation yet. This takes up about 98.12% less storage space than the
original image.

(60 terms) (Original image)

Finally, by the first sixty terms give a near perfect image, and yet reguires
91.32% less storage space than the original image. This is very much less storage
space than the original image. This is very good !

Now look at the second example of the image processing of the
image named Cambodia-flag.gif(size 500×334) as the following :
• The plot of singular values :

10

In the plot above, we observe that if we look at the image with 150 singular
values, it should look very similar to the original image.

• Image processing :

(30 terms) (60 trems)
For the first thirty terms and sixty terms, they are not good approximation but
we can know what the pictures are.
For the first thirty terms, it takes 85% less storage space than the original. And
for the first sixty terms, it takes 70% less storage space than the original.

11

(150 terms) (Original image)

Finally, the first 150 terms give a near perfect image, and yet reguires 25%
less storage space than the original.
This is very good !

5 Conclusions

Using (SVD) for image compression can be a very useful tool to save storage
space. We are able to get an image that is indistinguishable from the original
image, but only using about 75% of the original storage space(for the second
example above).
The Singular Value Decomposition is not only used for image compression, it
has many other useful applications.

6 Future work

There are still other things relevent to the topic of the thesis left such as :

• We haven’t studied other applications of the SVD. For example, using the
SVD for statistical applications to find relations between data [3].

• We haven’t studied the other tools that are used for image compression
either. For example, the Discrete Cosine Transformation for image
compression [3].

12

Appendix A

Examples of the Singular Value Decomposition
(SVD)

Example 1 Find a singular value decomposition of A =

 2
1
0

0
2
1


Solution:

First, compute: ATA =

[
2
0

1
2

0
1

] 2
1
0

0
2
1

 =

[
5
2

2
2

]
Find the eingenvalues of ATA:

|λI-ATA |=
∣∣∣∣ λ− 5
−2

−2
λ− 5

∣∣∣∣ = (λ− 5)2 - 4 = λ2 − 10λ+ 21 = 0

We get λ1 = 7 ; λ2 = 3 are the eigenvalues of ATA.

Find unit eigenvectors corrresponding to λ1 = 7 ; λ2 = 3 :

For λ1 = 7 : (λ1I - ATA)X = 0 ;

(
2
−2

−2
2

)(
x1
x2

)
= 0{

x1 − x2 = 0
−x1 + x2 = 0

or x1 − x2 = 0 take x1 = x2 = 1

x =

(
1
1

)
. Then the unit eigenvector belongs to λ1 = 7 is:

v1 = x
‖x‖ =

(
1√
2
1√
2

)
.

For λ2 = 3: (λ2I - ATA)Y = 0;

(
−2
−2

−2
−2

)(
y1
y2

)
= 0.

We get y1 + y2 = 0

take y1 = −1 , y2 = 1 then y =

(
−1
1

)
. The unit eigenvector belongs to

λ2 = 3 is: v2 = y
‖y‖ =

(
−1√
2
1√
2

)
.

Since v1.v2 = − 1
2 + 1

2 = 0, thus { v1 , v2 } is an orthonormal basis of R2 of
unit eigenvectors of ATA.

Av1 =

 2
1
0

0
2
1

[1√
2
1√
2

]
=


2√
2
3√
2
1√
2

.

13

Av2 =

 2
1
0

0
2
1

[−1√
2
1√
2

]
=


−2√
2
1√
2
1√
2


We have the singular values of A: σ1 =

√
λ1 =

√
7 and σ2 =

√
λ2 =

√
3.

For 1 ≤ i ≤ r where r = min { 3 , 2 } = 2:

define ui = 1
‖Avi‖Avi = 1

σi
Avi (‖ Avi ‖= σi from the proof of SVD

theorem).

We get u1 = 1
σ1
Av1 = 1√

7


2√
2
3√
2
1√
2

 =


2√
14
3√
14
1√
14



u2 = 1
σ2
Av2 = 1√

3


−2√
2
1√
2
1√
2

 =


−2√
6
1√
6
1√
6


Then { u1 , u2 } is an orthonormal basis of R2. We need to extend this set to
{ v1 , v2 , v3 } an orthonormal basis of R3 because U is a 3× 3 matrix.
We need one more orthonormal vector which is orthogonal to u1 and u2.

That is

{
uT1X = 0
uT2X = 0

{
2x1 + 3x2 + x3 = 0
−2x1 + x2 + x3 = 0

We get x =

 1
-2
4

. The unit eigenvector is

w = x
‖x‖ =


1√
21
−2√
21
4√
21

. By Gram-Schmidt: u3 = w - w.U1

u1u1
u1 − w.U2

u2u2
u2 = w.

Finally, let U = [u1 u2 u3] =


2√
14
3√
14
1√
14

−2√
6
1√
6
1√
6

1√
21
−2√
21
4√
21


V = [v1 v2] =

[
1√
2
1√
2

−1√
2
1√
2

]
and Σ =

 σ1
0
0

0
σ2
0

 =

 √7
0
0

0√
3

0


Then A = UΣV T 2

1
0

0
2
1

 =


2√
14
3√
14
1√
14

−2√
6
1√
6
1√
6

1√
21
−2√
21
4√
21


 √7

0
0

0√
3

0

[1√
2
−1√
2

1√
2
1√
2

]
.

Note: the SVD is not unique for a given matrix A. In defining Av1 = σu1
(see in the proof of SVD theorem), for example, replacing v1 by -v1 and u1 by
-u1 does not change the equality, but changes the matrices U and V.

14

So in accordance with the nonuniqueness of the SVD, others perfectly good
SVD for the matrix A are :

 2
1
0

0
2
1

 =


−2√
14
−3√
14
−1√
14

−2√
6
1√
6
1√
6

1√
21
−2√
21
4√
21


 √7

0
0

0√
3

0

[−1√
2
−1√
2

−1√
2
1√
2

]

or

 2
1
0

0
2
1

 =


−2√
14
−3√
14
−1√
14

2√
6
−1√
6
−1√
6

1√
21
−2√
21
4√
21


 √7

0
0

0√
3

0

[−1√
2
1√
2

−1√
2
−1√
2

]
.

The last result of SVD for the matrix A is the same as the result of SVD
computed by Octave below.

Computing the SVD by using Octave:

• For computing the SVD of a matrix A in our example above , we write
the command in Octave as the following:

> A = [2 0 ; 1 2 ; 0 1]

> A = 2 0

1 2

0 1

> [U , S , V] = svd(A) % in order to compute the SVD of

% matrix A.

Then we get the answers as the following:

U =

-0.53452 0.81650 0.21822

-0.80178 -0.40825 -0.43644

-0.26726 -0.40825 0.87287

S =

Diagonal Matrix

2.6458 0

0 1.7321

0 0

V =

-0.70711 0.70711

-0.70711 -0.70711

Example 2 Find the best rank-one approximation of the matrix A =

 2
1
0

0
2
1

.

15

Solution:

 2
1
0

0
2
1

 =


−2√
14
−3√
14
−1√
14

2√
6
−1√
6
−1√
6

1√
21
−2√
21
4√
21


 √7

0
0

0√
3

0

[−1√
2
1√
2

−1√
2
−1√
2

]

=


−2√
14
−3√
14
−1√
14

2√
6
−1√
6
−1√
6

1√
21
−2√
21
4√
21


  √7

0
0

0
0
0

+

 0
0
0

0√
3

0

 [−1√
2
1√
2

−1√
2
−1√
2

]

=
√

7


−2√
14
−3√
14
−1√
14

[−1√2
−1√
2

]
+
√

3


2√
6
−1√
6
−1√
6

[1√
2

−1√
2

]

=

 1
3
2
1
2

1
3
2
1
2

+

 1
−1
2−1
2

−1
1
2
1
2


Notice how the original matrix A is seperated into a larger contribution plus

a smaller contribution, because of the different sizes of the singular values. The
best rank-one approximation of a matrix A is given by the first rank one matrix: 1

3
2
1
2

1
3
2
1
2



The second matrix provides smaller correction to matrix A. This is the main
idea behind the dimension reduction and compression of the SVD.

For using MATLAB [4] in order to get the rank one approximation
to matrix A, we do as the following steps:

>> A =[2 0 ; 1 2 ; 0 1]

A =

2 0

1 2

0 1

>> [u,s,v] = svd(A,0), sigma = diag(s) %to find SVD of A and singular values of A.

u =

16

-0.5345 0.8165

-0.8018 -0.4082

-0.2673 -0.4082

s =

2.6458 0

0 1.7321

v =

-0.7071 0.7071

-0.7071 -0.7071

sigma =

2.6458

1.7321

>> E1 = sigma(1)*u(:,1)*v(:,1)’ % to find rank one approximation to matrix A.

E1 =

1.0000 1.0000

1.5000 1.5000

0.5000 0.5000

Appendix B

Matlab codes for viewing matrix as image:

figure; % Matrices vs. images

m = rand(3,2); % choose elements of 3x2 matrix at random

imagesc(m) % Plot matrix as image

axis image; % Show pixel coordinates as axes

print -dpng ’3x2Imagetake.png’ % to save the image as 3x2Imagetake.png

The program used in Octave for image compression
(file’s name: Angkor.jpg)

17

A = imread(’Angkor.jpg’); % First of all, we command Octave to read our image.

imagesc(A); % After that, we command Octave to show our original image.

[u,s,v]=svd(A); % Then, we command Octave to compute svd of our image.

C=zeros(size(A)); % to produce a matrix C of zeros of the same size as A.

for j=1:k % we start iterating on k=2,3,... until we get the

% appropriate approximation of SVD of our image.

C=C+s(j,j)*u(:,j)*v(:,j).’; % This is the formula of SVD. Matrix C is

% written as sum of k matrices of rank one including rank one

% matrix associated with the largest singular value and the one associated with

%the smallest singular value. it is applied to the image compression.

end

C=floor(C); % We command Octave to make the full matrix C.

colormap(gray) % Note that the image should be black and white because

% if it is a color image, it is really three matrices, one for

% each primary color(red, blue, and green).

% We set the color map to be grayscale.

imagesc(C) % We command Octave to show our image compression.

print -dpng Angkor.png % to save the image that has been scaned as file’s name:Angkor.png.

The program used in MATLAB for plotting the singular values of
image [4](file’s name: Angkor.jpg)

[A,map]=imread(’Angkor.jpg’) % to read image into MATLAB.

colormap(gray) % the reason to put colormap(gray),

% please read the code for image compression above.

B=im2double(A,’indexed’); % to double image A in order

% to get a better image.

axis image, axis off % in order to put axis for our

% plotting.

[U,S,V]=svd(B,0); % to compute SVD of image B.

m=diag(S); % at here, m is the singula values of B =elements

% in the diagonal of matrix S.

semilogy(m,’.’) % this is the code to plot the sigular

18

% values vs their indices.

xlabel(’Index of Singular Values’,’FontSize’,12) %to put label for x-axis.

ylabel(’Magnitude of Singular Values’,’FontSize’,12) % to put label for y-axis.

print -dpng ’singularplotangkor.png’ % to save the plot.

Note: For using the programs in the appendix B, the image should be black and
white (2D image). If it is the color image (RGB image), we can not use those
codes above since in RGB images there exist three indexed images. In order to
use those codes, we have to convert the color image (RGB image) into black
and white image or convert the color image to be monochrome.

Acknowledgements

I would like to express my deep thanks and gratitude to :

Dr. Angel R. Pineda for his guidance and comments.

And Emily Bice for her monitoring the progress of thesis.

References

[1] Linear Algebra And Its Applications, 3rd ed, David C Lay, Addison-Wesley
Publishing Company, 2002.

[2] Linear Algebra And Its Applications, 3rd ed, Gilbert Strang, Thomson
Learning, Inc, 1988.

[3] Numerical Analysis Timothy Sauer, George Mason University,
Pearson Education, Inc, 2006.

[4] MATLAB An Introduction With Applications, 2nd ed, Amos Gilat,
John Wiley & Sons, Inc, 2005.

19

