
ICT in SES

User objects

Lesson №12

Objects and styles

Creating graphical objects

Creating an objet

• With a class constructor new Обект(…)

• With a function обект()

Behind the scene

• Storing created objects

• Using when the frame is generated

Names of objects

Anonymous

• Created without names

• Suitable for fixed objects

prism(...)

Repository of graphical objects

Prism №1

center

radius

height

count

prism(...)

Prism №2

center

radius

height

count

Objects with names

• Assigned to variables

• Properties are accessed via the variable

a.color = ...
a.focus = ...

Repository of graphical objects

Prism №1

center

radius

height

count

b = prism(...)

Prism №2

center

radius

height

count

a = prism(...)

color

focus

b.hollow = ...

a

hollow

b

Set of properties

Observation

• Object is customized with several properties

• Many objects have the same properties

Goal

• Grouping properties in a style

• Applying a style onto many objects

Implementation

Until now

• Creating objects with names

• Setting properties one by one

• One variable could be reused for several objects

Disadvantages

• Writing code for each property

• Not comfortable for managing many objects of the same type

Style with a function

Idea №1

• Function receives an object

• Add desired properties

• Returns the object

function bluish(object)
{
 object.color = [random(0,0.5),random(0.6,1),1];
 return object;
}
a = bluish(prism(center,1/2,15+5*Math.cos(5*alpha),8));

TRY IT

Example-1201 Function styles/Example-1201 Function styles.html
Example-1201 Function styles/Example-1201 Function styles.html

Idea №2

• Using method object.custom({property:value, …})

• Defines a set of properties applied when an object is created
even if the object is anonymous

• If the style is fixed, it can be stored in a variable and reuse as
many times as it is needed

prism(center,1/2,15+5*Math.cos(5*alpha),8).custom({
 focus: [0,0,1],
 color: [1,random(0.7,1),random(0,0.5)],
 hollow: true });

style = {focus:[0,0,1], ...};
prism(center,...).custom(style);

TRY IT

Example-1202 Custom styles/Example-1202 Custom styles.html
Example-1202 Custom styles/Example-1202 Custom styles.html

Group objects

Objects in Suica

Library Suica

• Base set of graphical objects

• Sufficient for the course goals

New objects

• Base objects have some degree of customization

• When needed a base object is upgraded

• Often this is done by combining base objects or by clipping
objects

Upgrading an object

• Function creating an object with desired properties

• Parameters are only the required properties

function honeyComb(x,y)
{
 return prism([x,0.85*y,0],0.55,2,6).custom({
 color: [1,random(0.6,0.8),0],
 spin: radians(30),
 light: false,
 mode: (random(0,10)>9?Suica.SOLID:Suica.LINE)
 });
}

TRY IT

Example-1203 Function objects/Example-1203 Function objects.html
Example-1203 Function objects/Example-1203 Function objects.html

Copying an object

• Function sameAs(обект) creates a copy

• Useful to clone an object and its properties

• Example of adding wireframe to objects

a = sphere([0,0,0],5);
b = cuboid([0,0,0],[15,15,1]).custom({
 color:[1,1,0],
 focus:[1,1,1],
 spin:Math.PI/4
 });
contour = {color:[0,0,0], mode:Suica.LINE};
sameAs(a).custom(contour);
sameAs(b).custom(contour);

TRY IT

Example-1204 SameAs objects/Example-1204 SameAs objects.html
Example-1204 SameAs objects/Example-1204 SameAs objects.html

Group objects

A group of objects

• A problem to change position

• Each object must change its position

Solution

• Objects are grouped in a single object

• The group has its own position and orientation

Example

• Vertical cylinder with two spheres

• The group is rotated with focus

• The coordinates of the group remain the same

Solution

• Using class new Suica.Group or function group

• The parameter is an array of objects

• The result is a group object with own position and orientation

a = group ([
 sphere([0,0,-4],1/2),
 sphere([0,0,4],1/2),
 cylinder([0,0,-4],1/4,8)
]);
a.focus = [1,1,0];

TRY IT

Example-1205 Group objects/Example-1205 Group objects.html
Example-1205 Group objects/Example-1205 Group objects.html

Shared objects

• Graphical objects are JS objects

• Same subobjects of groups become shared objects

• Changing a shared object changes all it appearances in all
groups where it blongs

Repository

g1

0

1

2

g2 = group([a,b,c]);

g1 = group([a,b,c]);
a

c

g2

0

1

2

b

Example

• Building three groups with shared objects

• If the colour of an object is changed, this is seen in all groups

a = sphere([0,0,-4],3/4),
b = sphere([0,0,4],3/4),
c = cylinder([0,0,-4],1/4,8)

g1 = group([a,b,c]);
g2 = group([a,b,c]).custom({focus:[1,0,0]});
g3 = group([a,b,c]).custom({focus:[0,1,0]});;

c.color = [0,1,1];

TRY IT

Example-1206 Shared objects/Example-1206 Shared objects.html
Example-1206 Shared objects/Example-1206 Shared objects.html

Adding elements

• Adding objects with add(object)

• Objects could be different graphical objects

a = group([]);
for (var i=0; i<100; i++)
{
 var style = {...};
 if (random(-1,1)>0)
 a.add(cube([0,0,0],2).custom(style));
 else
 a.add(sphere([0,0,0],1).custom(style));
}

TRY IT

Example-1207 Method add/Example-1207 Method add.html
Example-1207 Method add/Example-1207 Method add.html

Shared colour

• Each object in a group has own colour

• Method mergeColor() removes the individual colours, objects
use the group colour

a = group([]);
for (var i=0; i<100; i++)
{
 var style = {color: ...];
 a.add(cube([0,0,0],2).custom(style));
 ...
}
a.mergeColor();
a.color = [0.5,1,0.8];

TRY IT

Example-1208 Method mergeColor/Example-1208 Method mergeColor.html
Example-1208 Method mergeColor/Example-1208 Method mergeColor.html

Example

Brick chimney

• A row of brownish bricks in a circle

• The another row and so on

• Upper rows are shrinked

Idea

• Using a group object (only one)

Creating a row of bricks

• The row has 20 brownish bricks

• They all have modified centers (shifted 7 units)

• Rotated at 18 from one anothe

row = group([]);
for (var i=0; i<20; i++)
 row.add(
 cuboid([0,0,0],[2,4,1]).custom({
 origin: [7,0,0],
 color: [random(0.3,0.7),random(0,0.4),0],
 spin: 2*Math.PI*i/20
 })
);

TRY IT

Example-1209 Brick chimney/Example-1209 Brick chimney 1.html
Example-1209 Brick chimney/Example-1209 Brick chimney 1.html

Building other rows

• Creating a copy of the row with sameAs

• Each copy has different z coordinate

• Each row is rotated on a multiple of 18

• For overlapping each other row is rotated on additional 9

for (var i=1; i<10; i++)
 sameAs(row).custom({
 center: [0,0,i],
 spin: radians(18*Math.round(random(0,20))+9*(i%2))
 });

TRY IT

Example-1209 Brick chimney/Example-1209 Brick chimney 2.html
Example-1209 Brick chimney/Example-1209 Brick chimney 2.html

Shaping a chimney

• Each row of bricks is a group object

• Using property sizes to change the size

• Starting with scale k=1 and reducing it by 1% for each next row

var k = 1;
for (var i=1; i<80; i++)
{
 k = k*0.99;
 sameAs(row).custom({
 ...
 sizes: [k,k,1]
 });
}

TRY IT

Example-1209 Brick chimney/Example-1209 Brick chimney 3.html
Example-1209 Brick chimney/Example-1209 Brick chimney 3.html

Clipping planes

Clipping planes

Parts of objects

• Some geometrical objects are part of other objects

• Examples

Truncated cone is a part of a cone

Semisphere is a part of a sphere

Generating

• With small triangles and other faces (slow)

• With extending the library (difficult)

• With intersecting an object with planes

Clipping planes

• Defining a plane with equation аx+by+cz+d=0

• The plan split the space in two supspaces

• Onle the part of the object in the positive subspace is drawn,
this is аx+by+cz+d>0

Property clipPlanes

• Property clipPlanes is an array of 4 subarrays

• Each subarray defines one clipping plane
[[a0,b0,c0,d0], [a1,b1,c1,d1], [a2,b2,c2,d2], [a3,b3,c3,d3]]

• The property applies only to base (i.e. non-group) objcts

Coefficients

• Relative to the local coordinate system

• Define the normal vector

• Define the distance to the clipping plane

X

Y

Z
𝑛 𝑎, 𝑏, 𝑐

𝑑

𝑎2 + 𝑏2 + 𝑐2

Example

• A scene of random spheres

• Clipping with a vertical XZ plane

• Drawing only what is in the +Y subspace

X

Y

Z

𝑛

Solution

• The normal vector is +Y, i.e. (a,b,c)=(0,1,0)

• The plane goes through (0,0,0), i.e. d=0, however…

The local coordinates must be used :

• The sphere center is (0,0,0), its diameter is 1, the distance to the
plane is y/5, thus d=y/5, instead of 0

var y = random(-5,5);
sphere([0,0,0],2.5).custom({
 center: [random(-10,10),y,random(-5,5)],
 color: [random(0,1),random(0,1),random(0,1)],
 clipPlanes: [[0,1,0,y/5]]
});

TRY IT

Example-1210 Clipping plane/Example-1210 Clipping plane.html
Example-1210 Clipping plane/Example-1210 Clipping plane.html

Conic sections

Illustration of conic sections

• Four cones

• Each is truncated with a plane

• The intersections are:

Circle

Ellipse

Parabola

Hyperbola

Clipping plane

• Circle – the plane is parallel to the base

• Ellipse – the plane is at a smaller angle than the ruling line

• Parabola – the plane is at the same angle as the ruling line

• Hyperbola – the plane is at a larger angle than the ruling line

base

circle

h
yp

e
rb

o
la

Solution

• Selecting coefficients of the clipping planes

• Cloning objects, but in mode Suica.LINE,
to draw the edges

• Cloning again + applying two clipping planes
to draw a strip around the intersection

cone(...).custom({clipPlanes: [[0,0,-1,1/3]]});
cone(...).custom({clipPlanes: [[0.8,0,-1,1/2]]});
cone(...).custom({clipPlanes: [[2,0,-1,1/2]]});
cone(...).custom({clipPlanes: [[1,0,0,1/8]]});

TRY IT

Example-1211 Conic sections/Example-1211 Conic sections.html
Example-1211 Conic sections/Example-1211 Conic sections.html

Summary

Graphical objects

Anonymous and named

• Anonymous, when no changes are needed

• Names, when their properties will be changed

• The same name can be reused for several objects

Creating styles

• Assigning values of object properties

• With custom, and a style as a set of pairs {name:value, …}

Copying / cloning

• With sameAs

Group objects

• With class new Suica.Group or function group

• Method add for adding objects to existing group

• Method mergeColor to define common colour

Clipping planes

• Property clipPlanes with coefficients of 1 to 4 planes

ICT in SES

The end

Comments, questions

