
ICT in SES

Animation

Lesson №13

Principle of animation

Animation

Etymology

• From Latin anima – giving life

• Derivative words: animator, animalist, anime, reanimation

Two-way “cheating”

• The animator “cheats on” the spectator

• The spectator “cheats on” the animator

Seeing

Biological process

• People look with the eyes, but see with the brain

• Eyes and neurons have limited capacity

Image in the brain

• Persists for around 1/15 seconds

• Less than 15 images/sec – separate images

• More than 15 images/sec – continuous motion

Implementation

High level

• Creating frames

• Showing them one by one

Low level
• Changing properties

motion – change of center

rotation – change of orientation

expanding – change of size

turning pale – change of colour

Algorithm

Idea for generating animation

• Step 1: generate a frame

• Step 2: deliver a frame

• Step 3: go to step 1

Type of deliveries

• In real time (on screen, streaming)

• Not in real time (video file)

Pseudocode

• Traditional animation loop

Preference

• Object creation is outside the animation loop

creating objects
loop for each frame
{
 clearing frame
 changing objects
 showing frame
}

Browser animation

• The program requests to show a frame

• The browser decides when will this happen

Creating objects
Requesting a frame

Clearing a frame
Changing objects
Generating a frame
Requesting to show

Browser
While there
are requests

A frame is
ready

Showing
a frame

Once, at page
loading

Once, at program
initialization

Animation loop in Suica

• Remember the Suica instance in a variable

• The instance has property nextFrame

• It contains the function for animation

• It is activated automatically at browser’s decision

function main()
{
 p = new Suica();
 p.nextFrame = loop;
}

function loop()
{...}

Loop example

• Showing the elapsed time since the start of Suica – recorder in
the variable Suica.time

• Showing the elapsed time since the previous frame Suica.dTime

• Using toFixed to round fractional numbers

function loop()
{
 document.getElementById('t').innerHTML = 'Time: '+
 Suica.time.toFixed(1)+' sec | ΔTime: '+
 Suica.dTime.toFixed(3)+' sec';
}

TRY IT

Example-1301 Animation cycle/Example-1301 Animation cycle.html
Example-1301 Animation cycle/Example-1301 Animation cycle.html

Linear motion

Linear motion

Different interpretations

• Geometrical – motion along a straight line

• Parametric – motion described with a single parameter

• Physical – motion depending linearly on time

Which one is used

• It depends on the context

For now

• Motion on a straight line with constant speed defined by a
single parameter

Implementaiton

• With velocity vector

• With target point

• With equation of trajectory

Velocity vector

Linear motion with a vector

• The vector determines the direction and the speed

• If the vector is fixed, the motion is on a straight line

Mathematical mode

• P – center of object

• v – velocity vector

• Incremental motion: PP+v

Animation in real time

• Speed is number of space units per second

• Measuring elapsed time:

Animation speed should not depend on computer cpeed

If computer is slow the animation makes larger steps

• Browsers try to equalize the speed (usually 30 or 60 fps)

• Equation: 𝑃𝑡+∆𝑡 = 𝑃𝑡 + 𝑣. ∆𝑡

Animation in not real time

• Speed is space units per frame

• Measuring frames

Animation speed depends on computer speed

If computer is slow the animation is also slow

• Equation: 𝑃𝑓+1 = 𝑃𝑓 + 𝑣

Motion along X

• Cube is on the X axis and moves towards +X

• Speed is 5 units per second

function main()
{
 p = new Suica();
 oxyz();
 a = cube([0,0,0],10);
 p.nextFrame = moveX;
}
function moveX()
{
 a.center[0] += 5*Suica.dTime;
}

TRY IT

Example-1302 Motion along X/Example-1302 Motion along X.html
Example-1302 Motion along X/Example-1302 Motion along X.html

Motion along Z

• Faster motion (15 units per second)

• Reaching a given height restart the motion from (0,0,0)

function moveZ()
{
 if (a.center[2]>30)
 a.center[2] = 0;
 else
 a.center[2] += 15*Suica.dTime;
}

TRY IT

Example-1303 Motion along Z/Example-1303 Motion along Z.html
Example-1303 Motion along Z/Example-1303 Motion along Z.html

Sequential motion

Two motions

• Yellow cube 6х6х6 on top of blue cube 10x10x10

• The yellow cube slides for 2 seconds and falls for 1 seconds

• Velocity vectors are (0,4,0) and (0,0,-10)

Y

Z

+5 -5

8

10

Solution №1

• Both vector are correctly used

• Added return to the initial position

• However, the motion is wrong

function move()
{
 a.center[1] += 4*Suica.dTime;
 a.center[2] += -10*Suica.dTime;

 if (a.center[2]<-10)
 a.center = [0,0,10];
}

TRY IT

Example-1304 Wrong sequential motions/Example-1304 Wrong sequential motions.html
Example-1304 Wrong sequential motions/Example-1304 Wrong sequential motions.html

Solution №2

• One loop, split depending on coordinates

• Sliding when y<8, falling when y8 and z>0, otherwise no
motion

function move()
{
 if (a.center[1]<8)
 a.center[1] += 4*Suica.dTime;
 else if (a.center[2]>0)
 {
 a.center[1] = 8;
 a.center[2] += -10*Suica.dTime;
 }
}

TRY IT

Example-1305 Merged sequential motions/Example-1305 Merged sequential motions.html
Example-1305 Merged sequential motions/Example-1305 Merged sequential motions.html

Solution №3

• Separate loops for different animation phases

• Start with a loop for sliding – slide

• Continue with a loop for falling – fall

• Finally removing animation loops

function main()
{ ... p.nextFrame = slide; }

function slide()
{ ... if (a.center[1]>=8) p.nextFrame = fall; }

function fall()
{ ... if (a.center[2]<0) p.nextFrame = undefined;}

TRY IT

Example-1306 Separated sequential motions/Example-1306 Separated sequential motions.html
Example-1306 Separated sequential motions/Example-1306 Separated sequential motions.html

From point to point

From point to point

Motion from point to point

• Most often motion

• Primitive form of motion on a trajectory

Implementation

• With velocity vector

• With linear combination

Velocity vector

Calculating velocity vector

• Considering the segment as a vector 𝑉

• Defining the desired number of steps (frames) n

• Velocity vector 𝑣 =
1

𝑛
𝑉

• Note: 𝑣 is calculated once and the motion only uses the frames,
not the elapsed time

𝑉

𝑣

Considering time

• Considering the segment as a vector 𝑉

• Defining the desired duration 𝑇 of the motion

• Velocity vector is 𝑣 =
∆𝑡

𝑇
𝑉

• Note: 𝑣 is calculated for every frame, because Δt changes

continuously

𝑉

𝑣

Example

• Two spheres a and b on random locations

• Third sphere c moves from the first to the second sphere

• Motion lasts t=3 seconds

Implementation

• Sphere c copies the center of a with sameAs

a = sphere([random(-15,15),random(-15,15),...);
b = sphere([random(-15,15),random(-15,15),...);
c = sphere(sameAs(a.center),3).custom({ ...});

v = vectorPoints(b.center,a.center);
t = 3;

Main loop

• Until time t has not come, make motion

• The center of c is modified at every frame:

𝑥𝑐 ← 𝑥𝑐 + 𝑣𝑥

∆𝑡

𝑇

𝑦𝑐 ← 𝑦𝑐 + 𝑣𝑦

∆𝑡

𝑇

𝑧𝑐 ← 𝑧𝑐 + 𝑣𝑧

∆𝑡

𝑇

function loop()
{
 if (Suica.time<=t)
 for (var i=0; i<3; i++)
 c.center[i] += v[i]*Suica.dTime/t;
}

TRY IT

Example-1307 Vector motion/Example-1307 Vector motion.html
Example-1307 Vector motion/Example-1307 Vector motion.html

Motion along a ring

• A ring of segments

• Objects moves along the segments

• At the end of a segments it turns smoothly to the next segment

Idea

• The ring is made of connected segments

• Motion is from the beginning to the end of a segment, then
start with the next segment and so on

• Object orientation is bound to object main axis

Ring implementation

• There n spheres in a circle, but randomly raised or lowered

• There is a segment between every two neighbour spheres

for (var i=0; i<n; i++)
{
 a = 2*Math.PI*i/n;
 b.push(sphere([10*Math.cos(a),10*Math.sin(a),
 random(-5,5)],0.15));
}
for (var i=0; i<n; i++)
{
 var j = (i+1)%n;
 segment(b[i].center,b[j].center).custom({...});
}

Implementaiton of motion

• Counting number of frame in frame

• One segment is passed for 50 frames

• Every 50th frame a new segment is started

frame++;
if (frame%50==1)
{
 from = to;
 to = (to+1)%n;
 v = vectorPoints(b[to].center,b[from].center);
 c.center = sameAs(b[from].center);
}
for (var i=0; i<3; i++) c.center[i] += v[i]/50;

Implementation of the motion

• The object is a cuboid

• Local Z axis (focus) is along the direction of motion

• Turning is with linear combination – 80% from the current
direction and 20% from the new direction (defined in v)

c = cuboid([0,0,0],[1,1,2]);
c.focus = [0,0,1];

function loop()
{ ...
 for (var i=0; i<3; i++)
 c.focus[i] = c.focus[i]*0.8+0.2*v[i];
}

TRY IT

Example-1308 Along a ring/Example-1308 Along a ring.html
Example-1308 Along a ring/Example-1308 Along a ring.html

Linear combination

Motion with linear combination

• Start and end points

• Parameter k[0,1] for coordinates

• Intermediate point A.(1-k)+k.B (if motion is AB)

Advantages

• Better control over motion

• Regular and irregular motion

• Flexible start and end points

Implementation

• Parameter k is sinusoidal, transformed from [-1,1] to [0,1]

• Sphere coordinates are a linear combination of the coordinates
of the start and end spheres

• Visible effect – motions at both ends is slower

function loop()
{
 k = 0.5+0.5*Math.sin(Suica.time);
 for (var i=0; i<3; i++)
 c.center[i] = a.center[i]*(1-k)+k*b.center[i];
}

TRY IT

Example-1309 Linear combination/Example-1309 Linear combination.html
Example-1309 Linear combination/Example-1309 Linear combination.html

Example

Tennis

• Two rackets move in parallel planes

• The turn slightly as they move

• There is a ball moving fast between them

Idea

• Rackets make harmonic motions

• The ball uses a linear combination of rackets’ centers

Rackets

• Flat cylinders

• Motion along X and Z are sinusoidal with different coefficients
in order to make motions differ from one another

• Coordinates if racket is used as the local Z axis of the other
rackets – this implements their slight rotation

sin = Math.sin;
t = Suica.time;
a.center = [15*sin(2.2*t),-30,5*sin(4.7*t)];
b.center = [15*sin(4.3*t),+30,5*sin(2.9*t)];

a.focus = b.center;
b.focus = a.center;

Implementation of the ball

• It is a sphere

• Linear combination between the centers of both rackets

• Coefficient k is not [0, 1] but [0.04, 0.96], so that the ball does
not penetrate the rackets

• The speed of the ball is 8 times faster than time

k = 0.5+0.46*sin(8*t);
for (var i=0; i<3; i++)
 c.center[i] = a.center[i]*(1-k)+k*b.center[i];

TRY IT

Example-1310 Tennis/Example-1310 Tennis.html
Example-1310 Tennis/Example-1310 Tennis.html

Summary

Animation

Essence

• Sufficiently fast showing of images

• Perception of motion is via illusion

• Animation with a browser

The application sends request to create a frame

The browser defines when this is possible

Animation loop

• Drawing a frame is a function pointer by nextFrame

• In Suica.time and Suica.dTime are the elapsed times since the
start of Suica and since the previous frame

• Function toFixed rounds fractional numbers

Animation phases

• If phases can be split, each can be implemented as a separate
animation loop

• If phases are coexisting, there is one animation loop with
conditional execution of phases

Linear motion

Velocity speed

• Defines the direction and the speed of motion

• Suitable when the target is fixed and the speed is fixed

Linear combination

• Allows dynamic change of the position of end points

• Allows non-linear motion

ICT in SES

The end

Comments, questions

