
ICT in SES

Interactivity

Lesson №15

Working with the mouse

Events

Events and interactivity

• Events are DOM-related objects

• Originally covered in Lesson №6

• Used to implement interactivity

Events are used to process

• Mouse movements

• Mouse button clicks

• Using the keyboard

Mouse events

Mouse movement

• mousemove – movement

• mouseenter – entering HTML element

• mouseleave – exiting HTML element

• mouseover – movement over HTML element or its subelements

• mouseout – exiting HTML element and its subelements

Mouse buttons

• mousedown – button is pressed

• mouseup – button is released

• click – click

• dblclick – double click

• contextmenu – click with the right (secondary) button

Other events

• Not directly related to graphics:

Events for drag and drop of elements and files

Events for controlling multimedia

Properties

Event object

• Every event is represented by a JS object

• The object’s properties inform about the event

Properties

• target – DOM element where the event occurred

• clientX, clientY – coordinates in the window

• screenX, screenY – coordinates in the screen

• buttons – what buttons are pressed

• altKey, ctrlKey, shiftKey – press status of Alt, Ctrl, Shift

Coordinates

Local coordinates

• Graphic element canvas

• Calculating coordinates (x, y) of the mouse cursor relative to
the upper left corner of the Suica object

x = clientX – offsetLeft

y = clienyY – offsetTop

x = clientX – offsetLeft

y = clienyY – offsetTop

 Screen

Window

 Suica Suica

clientX

offsetTop

screenX

offsetLeft

clientY

screenY

 Браузър x Браузър x

y

x

Example

Blank graphic box

• Showing mouse coordinates when it is moved

• Coordinates are relative to the graphical canvas

• No coordinates when moving outside the canvas

Idea

• Using two events

mousemove - movement inside the canvas

mouseout - exiting the canvas

Adding event listeners

• Coordinates are shown in info

• Every Suica object contains WebGL object gl, that keeps
reference to the DOM element canvas

• Creating two event listeners for p.gl.canvas

• Mouse movement is processed by mouseMove

• Exiting the canvas is processed by mouseOut

info = document.getElementById('info');

p = new Suica();
p.gl.canvas.addEventListener('mouseout',mouseOut,false);
p.gl.canvas.addEventListener('mousemove',mouseMove,false);

Processing events

• Parameter event provides mouse coordinates and the offset in
target

function mouseMove(event)
{
 var x = event.clientX-event.target.offsetLeft;
 var y = event.clientY-event.target.offsetTop;
 info.innerHTML = 'x='+x+' y='+y;
}
function mouseOut(event)
{
 info.innerHTML = 'Пример 1501:... ';
}

TRY IT

Example-1501 Mouse coordinates/Example-1501 Mouse coordinates.html

Drawing with the mouse

Graphical coordinates

Graphical coordinates

• Coordinates of objects in the canvas

• Differ from mouse coordinates

• Point (0,0) is in the center, X is towards right, Y is upwards

 Browser x Browser x

x

y

(0,0)

Mouse coordinates

 Browser x Browser x

x

y

(0,0)

Graphical coordinates

Calculating graphical coordinates

• Center offset and halves of offsetWidth and offsetHeight

• Y coordinates must have opposite sign

var x = event.clientX
 - event.target.offsetLeft
 - event.target.offsetWidth/2;
var y = -(event.clientY
 - event.target.offsetTop
 - event.target.offsetHeight/2);

TRY IT

Example-1502 Graphical coordinates/Example-1502 Graphical coordinates.html
Example-1502 Graphical coordinates/Example-1502 Graphical coordinates.html

Drawing

Drawing of points

• Mouse movement leaves trace

• Looking at a 2D scene “from top”

• Mapping 1:1 between mouse and graphical coordinates

Mouse
coordinates

Mouse
movement

Graphical
coordinates

Graphical
objects

Perspective projection

• Objects farther away appear smaller

• Function perspective (angle, from, to)

View
point

Screen

From
plane

To
plane

View
angle

Orthographic projection

• Object size does not depend on distance

• Function orthographic (from, to)

View
point

Screen

From
plane

To
plane

Implementaiton of drawing

• Using orthographic projection for 1:1 mapping

• Looking “from top” with lookAt: looking from [0,0,1] towards
[0,0,0] and [0,1,0] points up

• Finding graphical coordinates and creating a point
orthographic(-2,2);
lookAt([0,0,1],[0,0,0],[0,1,0]);
...
function mouseMove(event)
{
 var x = event.clientX - ...;
 var y = -(event.clientY - ...);
 point([x,y,0]);
}

TRY IT

Example-1503 Drawing dots/Example-1503 Drawing dots.html
Example-1503 Drawing dots/Example-1503 Drawing dots.html

Drawing lines

• Remembering the last point in last

• Drawing a segment if last has a value

• Otherwise draw nothing

var last;

function mouseMove(event)
{
 ...
 if (last) segment(last,[x,y,0]);
 last = [x,y,0];
}

TRY IT

Example-1504 Drawing lines/Example-1504 Drawing lines.html
Example-1504 Drawing lines/Example-1504 Drawing lines.html

New functionality

• Drawing starts with pressing the left mouse button

• Drawing ends with releasing the button

Idea

• When pressing – enter a drawing mode

• When releasing – exit the drawing mode

• When moving – draw if in the drawing mode

Implementation

• Listening to three events

• In mouseUp exit drawing mode and forget the last remembered
position

draw = false;
last = undefined;

...addEventListener('mousemove',mouseMove,false);

...addEventListener('mousedown',mouseDown,false);

...addEventListener('mouseup',mouseUp,false);

• In mouseDown start a drawing mode if the left button is
pressed and remember the current position

• In mouseMove check for the drawing mode

if (event.buttons==1)
{ ...
 draw = true;
 last = [x,y,0];
}

if (draw)
{ ...
 if (last) segment(last,[x,y,0]);
 last = [x,y,0];
}

TRY IT

Example-1505 Pressed button/Example-1505 Pressed button.html
Example-1505 Pressed button/Example-1505 Pressed button.html

Shorter code? (won’t work in some browsers, like FireFox)

• The last remembered position last is a drawing flag

• If it has a value, then the drawing mode in on

• Ignoring events mousedown and mouseup, considering only
mousemove

if (event.buttons==1)
{
 ...
 if (last) segment(last,[x,y,0]);
 last = [x,y,0];
}
else
 last = undefined;

TRY IT

Example-1506 Pressed button 2/Example-1506 Pressed button 2.html
Example-1506 Pressed button 2/Example-1506 Pressed button 2.html

Left and right buttons

• Left button draw blue line, right button – red line

Implementation

• Drawing when a button is pressed

• Storing the colour in style

if (event.buttons)
{
 ...
 var style = {color:event.buttons==1?[0,0,1]:[1,0,0]};
 if (last) segment(last,[x,y,0]).custom(style);
 last = [x,y,0];
}

TRY IT

Example-1507 Left and right buttons/Example-1507 Left and right buttons.html
Example-1507 Left and right buttons/Example-1507 Left and right buttons.html

Context menu

• Clicking the right button pop ups the context menu

• Removing the context menu by listening to event contextmenu

• Using the method preventDefault to prevent the default action,
which is to show the context menu

...addEventListener('contextmenu',contextMenu,false);

function contextMenu(event)
{
 event.preventDefault();
}

TRY IT

Example-1508 No context menu/Example-1508 No context menu.html
Example-1508 No context menu/Example-1508 No context menu.html

Sketching with the mouse

Sketching

Goal

• Making sketches with the mouse

• Drawing points, segments and circle

Drawing segments

• Pressing the left mouse button for beginning

• Dragging for construction and releasing for finalization

pressing
left button

releasing

Drawing circles

• Press right button for the center

• Drag and release when the radius is correct

Drawing points

• Clicking with the left button

pressing
right button

releasing

Help functions

• Function mouseXY calculates graphical coordinates,
corresponding to the mouse coordinates in an event

function mouseXY(event)
{
 var x = event.clientX
 - event.target.offsetLeft
 - event.target.offsetWidth/2;
 var y = -(event.clientY
 - event.target.offsetTop
 - event.target.offsetHeight/2);
 return [x,y,0];
}

Drawing points

• Capturing the pressing of a mouse button (left or right)

• Generating a point at these coordinates

• The style of all points is stored in pointStyle

pointStyle = {color:[0,0,0], pointSize:14.5};

function mouseDown(event)
{
 point(mouseXY(event)).custom(pointStyle);
}

TRY IT

Example-1509 Points/Example-1509 Points.html
Example-1509 Points/Example-1509 Points.html

Drawing segments

• How to distinguish drawing points from drawing segments?

• Solution: drawing a point when a button is pressed

• This is either individual point or the beginning of a segment

• In pnt and obj are the other end of the segment and the
segment itself – they still do not exist at the time of pressing
the buttonсъществуват

function mouseDown(event)
{
 point(mouseXY(event)).custom(pointStyle);
 pnt = undefined;
 obj = undefined;
}

• Segment obj and its end point pnt are generated at the first
mouse movement with pressed left button

• Following movements update them

function mouseMove(event)
{
 var pos = mouseXY(event);
 if (event.buttons==1)
 {
 if (!pnt) pnt = point(pos).custom(...);
 if (!obj) obj = segment(pos,pos).custom(...);
 pnt.center = pos;
 obj.to = pos;
 }
}

TRY IT

Example-1510 Points and segments/Example-1510 Points and segments.html
Example-1510 Points and segments/Example-1510 Points and segments.html

Drawing circles

• Drawing a point when pressing the right mouse button

• This is individual point or the center of a circle

• A point on the circle is in obj and the distance to the center
defines the radius (distance is a help function)

function mouseMove(event)
{ ...
 if (event.buttons==2)
 {
 if (!obj) obj = circle(pos,0).custom(...);
 obj.radius = distance(obj.center,pos);
 }
}

TRY IT

Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html

Functional testing

Finding the midpoint of a segment

Interactive procedure

• Construct two random points

• Connect them with a segment

• Draw two circle with centers these points and radii as the
segment length

• Connect the intersecting point of the circles with a segment

• This segment intersect the first segment in the mid point

TRY IT

Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html

Drawing a right triangle

Interactive procedure

• Draw a circle

• Draw a diameter – a segment passing through the center

• Pick a point on the circle

• Connect it with the segment

TRY IT

Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html
Example-1511 Points, segments and circles/Example-1511 Points, segments and circles.html

Summary

Working with the mouse

Useful events

• Mouse movement: mousemove, mouseenter, mouseleave,
mouseover and mouseout

• Mouse buttons: mousedown, mouseup, click and dblclick

• Context menu: contextmenu

Properties

• DOM element of the event: target

• Coordinates: clientX, clientY, screenX and screenY

• Buttons and keys: buttons, altKey, ctrlKey and shiftKey

Drawing and sketching

Drawing with the mouse

• Transformation of coordinates

• Selected of proper projection (usually orthographic)

• Listening to button/key pressing

• Disabling context menu with preventDefault in contextmenu

Sketching with the mouse

• Object are created once, then are only modified

ICT in SES

The end

Comments, question

