
ICT in SES

View point

Lesson №16

View point

View point

View point

• Every scene includes a view point

• Always existing

Using

• Defining how a scene is shown

• Moving inside a 3D world

• Sliding the view (e.g. zoomin in or out)

View point structure

It is not just a 3D point

• Defines user’s viewing location

• Defines direction of looking

• Defines view orientation

Mathematical background

• The view point is a projective matrix

• Its determinant must be non-zero

View point in Suica

Function lookAt

• Defines the view point

• Function lookAt (position, target, up)

Also

• Function demo uses lookAt

• Projection with perspective or orthographic is independent on
the view point

The position is a 3D point

• Defines the location of the eye

• By default it is [86.6, 50, 30] or 100[cos 30,sin 30,0.3]

Requirements

• Sufficiently far from the scene

• But not too far from it

Y

Z

30

X 30

The target is a 3D point

• Defines the point being looked at

• It is positioned in the center of the canvas

• By default it is [0,0,0]

Requirements

• To be distinct from the position

Y

Z

X

The up is a vector

• Define the orientation (rotation) of the scene

• Points the “up” direction

• By default it is [0,0,1]

Requirements

• To be seen (from the position) as a non-zero vector

Y

Z

X

Interpretation №1

• After setting the scene
at the correct place it is
rotated so that the up
vector points upwards

Position

Target

Up

 Browser x Browser x

Interpretation №2

• After setting the scene at
the correct place we rotate
ourselves so that the up
vector points upwards

Position

Target Up

 Browser x Browser x

Role of up vector

• The same position

• The same target

• Different up vectors

 Browser x Browser x

 Browser x Browser x

 Browser x Browser x

Example

Different view points

• A scene of several figures and a coordinate system

• Different view points (the thin vector is up vector)

№1

№2

№3

№4

Implementation

• The origins of the thick vectors define positions

• The target in all four cases is (0,0,0)

• Thin vectors define the up direction

Requirements

• Positions and targets are distinct points

• Up vectors are not and are not seen as zero-vectors

lookAt([60,0,0], [0,0,0], [0,0,1]);
lookAt([0,60,0], [0,0,0], [1,0,0]);
lookAt([0,0,60], [0,0,0], [0,1,0]);
lookAt([50,50,0], [0,0,0], [0,0,-1]);

TRY IT

Example-1601 LookAt/Example-1601 LookAt no1.html
Example-1601 LookAt/Example-1601 LookAt no1.html

TRY IT

Example-1601 LookAt/Example-1601 LookAt no2.html
Example-1601 LookAt/Example-1601 LookAt no2.html

TRY IT

Example-1601 LookAt/Example-1601 LookAt no3.html
Example-1601 LookAt/Example-1601 LookAt no3.html

TRY IT

Example-1601 LookAt/Example-1601 LookAt no4.html
Example-1601 LookAt/Example-1601 LookAt no4.html

Traditional 2D drawing

Sine curve as in textbooks

• The center is (0,0), X points to the right, Y points upwards

• View position along Z, target is (0,0) and Y is up vector

orthographic(-100,100);
lookAt([0,0,10], [0,0,0], [0,1,0]);

o = [0,0,0];
line(o,[1,0,0]).custom({color:[0,0,0]});
line(o,[0,1,0]).custom({color:[0,0,0]});
...

TRY IT

Example-1602 2D drawing/Example-1602 2D drawing.html
Example-1602 2D drawing/Example-1602 2D drawing.html

Plot f(x)=ecos(x) for x[0,2]

• Position and target are shifted together, thus the viewing
direction is orthogonal to the XY plane

lookAt([100*Math.PI,50,10],[100*Math.PI,50,0],[0,1,0]);

function f(x) { return Math.exp(Math.cos(x)); }

dX = 0.1;
for (var x=0; x<4*Math.PI; x+=dX)
{
 p = [50*x,50*f(x),0];
 q = [50*(x+dX),50*f(x+dX),0];
 segment(p,q).custom({color:[1,0,0]});
}

TRY IT

Example-1603 Shifted 2D drawing/Example-1603 Shifted 2D drawing.html
Example-1603 Shifted 2D drawing/Example-1603 Shifted 2D drawing.html

View point animation

View point motion

View point as graphical element

• Can change

• Can create illusion of motion

Movement of the scene

Movement of the viewer within the scene

Example

• Change of target is perceived as self rotation

Following a 2D drawing

A plot of sin(x)

• X axis has grid marks

• View point follows the point of drawing

Problem

• Creating many points slows down the animation

Solution

• Working with only n points

• Instead of creating new points – reusing old off-screen points

Implementation

• An array of n points

• Counter i, defining which point is being generated

• Looking 2 units behind the generated point

• Value i%n defines the point index in the array

n = 160;
q = [];
for (var i=0; i<n; i++) q[i] = point([0,0,0])...

x = i/20;
lookAt([x-2,0,10], [x-2,0,0], [0,1,0]);
q[i%n].center = [x,Math.sin(x),0];
i++;

TRY IT

Example-1604 Sliding/Example-1604 Sliding.html
Example-1604 Sliding/Example-1604 Sliding.html

Spiral

• Circular motion with variable radius r and angle x

• Radius increases gradually

• View point position goes further away (it depends on r)

Question

• Why the plot disappears at some point?

r = r*1.01;
lookAt([0,0,1+4*r], [0,0,0], [0,1,0]);

x = i/10;
q[i%n].center = [r*Math.cos(x),r*Math.sin(x),0];
i++;

TRY IT

Example-1605 Zooming out/Example-1605 Zooming out.html
Example-1605 Zooming out/Example-1605 Zooming out.html

Plot of r=3+2sin(5x)

• The scene is rotating by rotating the up vector

• The drawing position is always upwards

• It is marked with the ray l, which second point rotates as the
scene rotates

x = i/40;
r = 3+2*Math.sin(5*x);
l.to = [Math.cos(x),Math.sin(x),0];

lookAt([0,0,20],[0,0,0],[Math.cos(x),Math.sin(x),0]);

q[i%n].center = [r*Math.cos(x),r*Math.sin(x),0];
i++;

TRY IT

Example-1606 Rotating/Example-1606 Rotating.html
Example-1606 Rotating/Example-1606 Rotating.html

Animation in 3D

Scene rotation

Double interpretation

• Different motions with the same visual representation

• They have different performance impact

Examples

• A scene with objects rotating around the Z axis

• A view point orbiting a fixed scene with objects

Implementation of scene rotation

Scene rotation via orbiting

• Simulation of the function demo

• Scene contains immobile objects, positioned randomly

• View point position make a circular motion, target is fixed

function rotateViewpoint()
{
 t = Suica.time;
 lookAt([100*Math.cos(t),100*Math.sin(t),30],
 [0,0,0], [0,0,1]);
}

TRY IT

Example-1607 3D rotating/Example-1607 3D rotating.html
Example-1607 3D rotating/Example-1607 3D rotating.html

Sine rotation

• View point orbiting the scene

• Going near and further while orbiting

• Slightly waggling by changing the up vector
(direction is variable, but is predominantly vertical)

function rotateViewpoint()
{
 t = Suica.time;
 d = 100+40*sin(2*t);
 lookAt([d*cos(t),d*sin(t),30],
 [0,0,0],
 [sin(2*t),cos(3*t),2]);
}

TRY IT

Example-1608 Sinusoidal view point/Example-1608 Sinusoidal view point.html
Example-1608 Sinusoidal view point/Example-1608 Sinusoidal view point.html

Examples

Chasing an object

Scene

• Square matrix of building

• Object moving randomly in the matrix

• View point chasing the object

Idea

• The object is the target of the view point

• Position and targets will be modified by a linear combination
(this produces smoother motion)

A matrix of buildings

• Cuboids at odd coordinates

• Random heights

• Random bluish colours

for (var x=-12; x<11; x+=2)
for (var y=-12; y<11; y+=2)
{
 var c = random(0.5,1);
 cuboid([x+1,y+1,0],[0.8,0.8,random(0.4,2)]).custom({
 origin: [0,0,-0.5],
 color: [0,c/2,c]
 });
}

Object motion

• The object ball is a sphere

• Its direction of motion dir is an angle

• Parameter k defines the number of steps to travel from one
intersection to another intersection (distance 2 units)

dir=0;
k=20;
function chase()
{
 ball.center[0] += 2/k*Math.cos(dir);
 ball.center[1] += 2/k*Math.sin(dir);
}

Turning left or right

• Turning is done on every k steps (number of frames is store in
frame)

• Turning adds -/2, 0 or /2 to the direction angle – this makes
turning left, going forwards or turning right

if (frame%k==0)
{
 dir += Math.PI/2*(Math.round(random(-1.5,1.5)));
 ball.center[0] = Math.round(ball.center[0]);
 ball.center[1] = Math.round(ball.center[1]);
}

Motion restriction

• The object does not leave the matrix

• Building are position within coordinates 10

• When at the border, clearing frame forcing a new direction

if (Math.abs(ball.center[0])>10 ||
 Math.abs(ball.center[1])>10)
{
 ball.center[0] = Math.max(ball.center[0],-10);
 ball.center[0] = Math.min(ball.center[0],+10);
 ball.center[1] = Math.max(ball.center[1],-10);
 ball.center[1] = Math.min(ball.center[1],+10);
 frame = 0;
}

Motion of view point

• Position and target change smoothly towards the moving
object

• There is a distance between them

• Coefficients in the linear combinations define how smooth is
the motion of the view point

for (var i=0; i<3; i++)
{
 target[i] = target[i]*0.96+0.04*ball.center[i];
 pos[i] = pos[i]*0.98+0.02*ball.center[i]+0.3/(4-i);
}

lookAt(pos,target,up);

TRY IT

Example-1609 Urban chasing/Example-1609 Urban chasing.html
Example-1609 Urban chasing/Example-1609 Urban chasing.html

Motion in scene

Scene

• The same matrix of building

• The view point is “in” the moving object

Implementation

• Position is the same as the position of the object
(actually there is no need to have an object)

• Direction of motion and position define the target

Smooth motion

• A second position pos2 and direction dir2, which follow pos and
dir with a linear combination

• Target target2 is a point from a circular motion at angle dir2
around center pos2

for (var i=0; i<3; i++)
 pos2[i] = pos2[i]*0.95+0.05*pos[i];

dir2 = dir2*0.95+0.05*dir;
target2 = [pos2[0]+Math.cos(dir2),
 pos2[1]+Math.sin(dir2),0.5];

lookAt(pos2,target2,up);

TRY IT

Example-1610 Urban running/Example-1610 Urban running.html
Example-1610 Urban running/Example-1610 Urban running.html

Summary

View point

View point

• Defined by lookAt

Parameters

• Position – 3D point of the eye

• Target – 3D point to look at, projected in the canvas center

• Up vector – 3D vector rotating the scene, it is always upwards

View point motion

Two effects

• Illusion of moving the whole scene and all its objects

• Implementation of navigation within a scene

Smoothness

• Motion of view point is sensitive to sharp changes, smoothing
motion is recommended

ICT in SES

The end

Comments, questions

