LOx

D
=,

ICTinSES

I Geometric visualization

Lesson N220

I Goals and issues

Goals

Visualization of geometrical objects
* Coordinate system
* Segment and vector
* Sphere, cone and cylinder
* Torus

Issues

Geometry and computer graphics
* Alot of common objects
* Different visualizations

* In educational context some traditional visualizations in
computer graphics are not convenient

In this lesson
* Some examples of visualizations
* Examples for learning, not for copy-and-pasting

I Coordinate system

Coordinate system

Default visualization

* With command oxyz
Missing

* Long axes

* Arrows

 Grid marks

* Axes in negative directions

 Labels, etc.

Arrows

Coordinate system arrows

* Three styles:
black — defines the black colour
ox — orients object as axis X
oy — orients object as axis Y

black = {color:[0,0,0]};

OX
oy

{focus:[1,0,0]};
{focus:[0,1,0]};

Objects
* Three axes as segments of given length
* Arrows are black unlit cones
* Axes (and arrows) orientations are styled with ox and oy

s = segment([0,0,0],[0,0,50]).custom(black);
sameAs(s).custom(ox);
sameAs(s).custom(oy);

cone([9,0,50],1,4).custom(black);
cone([50,0,0],1,4).custom(black).custom(ox);
cone([0,50,0],1,4).custom(black).custom(oy);

2001 Axes arrows

c @

Li)
'\.I/

EE=)

In @0 ® =

TRYIT

Example-2001 Axes arrows/Example-2001 Axes arrows.html
Example-2001 Axes arrows/Example-2001 Axes arrows.html

All axes &

Positive and negative axes
* Alternative solution (because of several same objects)
* Creating a group object
* The group has black colour

g = group([
segment([0,0,0],[0,0,30]),
cone([0,0,30],1,4)

Ds

g.color = [0,0,0];

g.mergeColor();

Creating axes
* Cloning 5 times the vertical axis

* Changing groups orientations, so that axes point to their
directions

sameAs(g).custom({focus:[1,0,0]});
sameAs(g) .custom({focus:[0,1,0]});

sameAs(g).custom({focus:[-1,0,0]});
sameAs(g).custom({focus:[0,-1,0]});
sameAs(g) .custom({focus:[0,0,-1]});

2002 All axes b4 EI@
cC o © . W Searc n @ ® =
A
Y

TRYIT

Example-2002 All axes/Example-2002 All axes.html
Example-2002 All axes/Example-2002 All axes.html

Axes with labels

Labels with the name of axis
* The label is HTML element with CSS formatting

* Absolute position and a vertical index to position the l[abel
above the canvas

.label {
position: absolute;
Z-index: 10;
background-color: transparent;

Positioning
* For axis X - finding screen position of 3D point [35,0,0] with
function getPosition
* Calculated position is in pixels
* Transferring position to style.left and style.top (+ suffic “px”’)
* The other axes are done in the same manner

var e = document.getElementById('x");
var pos = getPosition([35,0,0]);

e.style.left = pos[@]+"px";
e.style.top = pos[1]+"px";

2003 Mames axes

c @

EE=)

LA
il

In @0 ® =

= N

Example-2003 Named axes/Example-2003 Named axes.html
Example-2003 Named axes/Example-2003 Named axes.html

Coordinate grid &

A grid of segments

 Generating two groups of segments in plane XY: one group with
segment parallel to X axis, and another one —to Y axis

* Similar segments in the other planes

for (var i=0; i<=30; i+=2.5)

{
segment([1,0,0], [1,30,0]);
segment([0,1,0], [30,1,0]);

2004 Axes grid

c @

I‘f:xl
WL

(=] O w3

e ﬁ Q, Search

In @0 ® =

TRYIT

Example-2004 Axes net/Example-2004 Axes net.html
Example-2004 Axes grid/Example-2004 Axes grid.html

I Segment and vector

Segment and vector

Default visualization
* With segment

Missing elements
* End points
* Arrow for the vector
* Volume (width)
* Label

Random segments

2D segments
* Lines are standard segments
* End points are thick points (with pointSize) or small circles

var black = {color:[0,0,0]};

for (var i=0; i<100; i++)

{
p=circle([random(-350,350),...],3).custom(black);
g=circle([random(-350,350),...],3).custom(black);
segment(p.center,q.center).custom(black);

}

B

2005 2D segments

In @O @

2drcn

L

c @

L\

ﬁ,
B
p /7

Y9,

<
e

N)

Oy

IR

ﬁ/‘*uﬁ_ﬂ.; ,
A

LT '
WA

LA
‘\ | _ﬂo QN W

D7 W N
/) IR % |

3
/
7
...ﬂm

\)

.,__

A\

v
N

v. X

\

l/
ol

\

/

_

/]

Wi
W

TRYIT

Example-2005 2D segments/Example-2005 2D segments.html
Example-2005 2D segments/Example-2005 2D segments.html

3D segments
* Lines are cylinders of sufficient length

* End points are spheres

var color = {color:[0.1,0.7,0.8]};
for (var i=0; i<30; i++)

{

sphere([random(-50,50),...],3).custom(color);
sphere([random(-50,50),...],3).custom(color);

P
q

v = vectorPoints(qg.center,p.center);
cylinder(p.center,1,Math.sgrt(scalarProduct(v,v)))
.custom(color).custom({focus:v});

2006 3D segments X IE“EIM

g & @ s & 9 | Q search In O ® =

TRYIT

Example-2006 3D segments/Example-2006 3D segments.html
Example-2006 3D segments/Example-2006 3D segments.html

Random vectors &

Note
* End objects are at the ends of a segment

* For vectors the arrow must be shifted, so the sharp vertex is at
the end

2D and 3D vectors
* Arrow drawn with cone
* Cone offset makes its origin in the vertex, i.e. origin = [0,0,1]

Vector body
* If the body is wide, it will show up where the arrow is

Implementation
* Starting pointis circle p and, end point is vector g

* Arrow is a cone with changed origin and orientation along
vector v between the center of p and g

* Coefficient | shrinks the body by 15 units (that is the length of
the arrow)

= circle([...],3);

=[...,0];

= vectorPoints(qg,p.center);
cone(q,5,15).custom({origin:[@,0,1], focus:v});
1 = 15/Math.sqrt(scalarProduct(v,v));

q = [a[e]-1*v[e],q[1]-1*v[1],0];
segment(p.center,q);

< O T

== = |

2007 2D vectors

In @O @

R

c @

/‘,.I

_Z
£

e

TRYIT

Example-2007 2D vectors/Example-2007 2D vectors.html
Example-2007 2D vectors/Example-2007 2D vectors.html

Alternative solution (with 3D vector)

* Directly creating the initial circle p and the ending correctly
positioned non-oriented cone g

* Then fixing cone orientation (via vector v)
* Creating vector body with the correct length and orientation

p = sphere([...],3);
q = cone([...],3,10).custom({origin:[0,0,1]});
v = vectorPoints(qg.center,p.center);
g.focus = v;
cylinder(p.center, 1,
Math.sqrt(scalarProduct(v,v))-10
) .custom(color).custom({focus:v});

2008 30 vectors X Iillﬂlﬁ

g & @ s & 9 | Q search In O ® =

TRYIT

Example-2008 3D vectors/Example-2008 3D vectors.html
Example-2008 3D vectors/Example-2008 3D vectors.html

Vertices of objects

Triangular prism with shapes on sides
* Models of several objects, more complex than a segment
* Drawn with lines, but have points at ends

Implementation idea N21
* Done as segments with small circles
* Easy implementation
* Too many objects

Implementation idea N22
* Reusing the object
* Objectis drawn in line mode
* Thenis cloned in point mode

a = prism(...).custom({mode:Suica.LINE,...});
sameAs(a).custom({mode:Suica.POINT,pointSize:10});

a = cylinder(...).custom({mode:Suica.LINE,...});
sameAs(a).custom({mode:Suica.POINT,pointSize:10});

2009 Reusing objects X o[|

C @ © s & 9 | Q search In O ® =

TRYIT

Example-2009 Reusing objects/Example-2009 Reusing objects.html
Example-2009 Reusing objects/Example-2009 Reusing objects.html

I Sphere, cylinder and cone

Sphere, cylinder and cone

Default visualization
* With sphere, cylinder, and cone
* With segment

Missing elements
* Nothing is missing, there are extra elements
* Manually drawing only necessary elements
* Feci quod potui, faciant meliora potentes

D peweeEEEEmEEEENE L =
2010 Sphere vl + -

N - ‘@ ses @ﬁHQSearch | I @O @

TRYIT

Example-2010 Sphere/Example-2010 Sphere.html
Example-2010 Sphere/Example-2010 Sphere.html

2011 Cylinder vl + = ==

“~ =S Q6 ‘@ ses @ﬁHQSearch | I @O @

—r— [T

g

TRYIT

Example-2011 Cylinder/Example-2011 Cylinder.html
Example-2011 Cylinder/Example-2011 Cylinder.html

2012 Cone x s =] =

c > C R0 e @ ¥ | Q search N @ ®

=

TRYIT

Example-2012 Cone/Example-2012 Cone.html
Example-2012 Cone/Example-2012 Cone.html

I Torus

Torus visualization

General problems
* No such object in Suica
* No object, that can be configured to look like a torus
* Torus must be defined by the user

Creating a torus &

Approach N21 - vertical circles
e Torus is a circle, rotated around an axis
* Defining and rotating an offset circle

Problem

* If offset with center, then spin will rotate it around the center,
not around the axis

* Property spin should be unaware, that center is modified
* If offset is done with origin, there will be a problem with focus

Solution

* Hiding well oriented circle in a group object

* Thus both the circle and the group has own focus, spin and
center, independent on each other

* Cloning and rotating the group

a = group([circle([0,30,5],10).custom({
mode:Suica.LINE,
color:[0,0.5,1],
focus:[1,0,0]})

1);

for (var i=0; i<60; i++)
sameAs(a).custom({spin:i*2*Math.PI/60});

X

of vertical slices

>R 0

2013 Torus

N @ ®

e ¥ 'f.?| | O\ Search

TRYIT

Example-2013 Torus of vertical slices/Example-2013 Torus of vertical slices.html
Example-2013 Torus of vertical slices/Example-2013 Torus of vertical slices.html

Approach N22 - horizontal circles

* Creating horizontal circles, their Z coordinates and radii traverse
... acircle

for (var i=0; i<20; i++)
{
var a = 2*Math.PI*i/20;
circle([0,0,10*Math.sin(a)],
20+10*Math.cos(a)).custom({
mode:Suica.LINE,
color:[0,0.5,1]1});

N @ ®

© ﬁ‘ | O\ Search

L N 11

« > celo

TRYIT

Example-2014 Torus of horizontal slices/Example-2014 Torus of horizontal slices.html
Example-2014 Torus of horizontal slices/Example-2014 Torus of horizontal slices.html

Approach N23 - combined circles
* Torus appears to be made of plates

Creating vertical circles
Creating horizontal circles

* All circles are in a group — thus the torus could be manipulated
as a single object

2015 Wireframe torus

“ > O G |® ses @ﬁHQSearch | I @O @

J11

TRYIT

Example-2015 Wireframe torus/Example-2015 Wireframe torus.html
Example-2015 Wireframe torus/Example-2015 Wireframe torus.html

I Summary

Visualization

Visualization of geometrical objects

* Images of geometrical objects are not always the same as the
images of graphical objects

« Composing images from several objects
* Creating images from scratch

* Suica defines only a few objects, all the rest are to be
constructed by the user

Note

* Every object could be represented graphically in several
different ways

* It is a matter of design, style and skills which one to use

LOx

>
-

ICTinSES

I The end

Comments, questions

