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What options do we 
have?

• SharedPreferences

• Internal storage (flash memory)

• External storage

• SQLite relational DB

• ContentProvider

• Network

http://developer.android.com/reference/android/content/ContentProvider.html


SharedPreferences

• Persistent way to store key/value pairs
– Primitive types and Strings

• Saved as XML in your application’s folder in /data/data

• Removed when the app is uninstalled

• Can be used for general settings of the application
– See PreferenceActivity 

http://developer.android.com/reference/android/preference/PreferenceActivity.html


SharedPreferences 
Privacy

• Can be obtained with different modes
– MODE_PRIVATE
– MODE_WORLD_READABLE
– MODE_WORLD_WRITABLE

• android:sharedUserId + MODE_PRIVATE

• How safe is this?

http://developer.android.com/guide/topics/manifest/manifest-element.html%252523uid


Working with 
SharedPreferences

• getSharedPreferences(String, int) or 
getPreferences(int)

• To write values:
– obtain SharedPreferences.Editor by calling edit()
– write stuff with the editor using methods such as 

putBoolean() and putString()
– apply the changes by calling commit() to your editor

• To read values:
– SharedPreferences.getBoolean(), getString(), etc.



Demo



Internal Storage

• Data saved on the internal storage of the device is 
located in your application’s folder in /data/data

• Like SharedPreferences, these files are removed, 
when the app is uninstalled

• YAFFS (Yet Another Flash File System)
– read (very fast)
– write (not very fast)
– erase (very slow)



Internal Storage - 2
Some methods in class Context:

• String[] fileList()

• FileOutputStream openFileOutput(String, int)
– MODE_PRIVATE, …, MODE_APPEND

• FileInputStream openFileInput(String)

• boolean deleteFile(String)

• File getDir(String, int)



Internal Storage - 3

• File getCacheDir()
– Application specific cache directory 

(/data/data/<package_name>/cache/)
– These files will be ones that get deleted first when 

the device runs low on storage



External Storage

• First, external storage is not always SD Card

– Samsung Galaxy Tab has both internal_sd and external_sd

• If you rely on external storage:

– always start with a check to getExternalStorageState()

– listen for broadcasts, regarding the state of the external 
storage (ACTION_MEDIA_EJECT, ACTION_MEDIA_REMOVED, 
ACTION_MEDIA_UNMOUNTED, ACTION_MEDIA_BAD_REMOVAL, 
etc.)

• Who can access the files on the external storage?

http://developer.android.com/reference/android/os/Environment.html%252523getExternalStorageState%25252528%25252529


External Storage - 2

• With Android 2.2 (API Level 8), the ability to install 
applications on the external storage have been introduced

– getExternalFilesDir(String) opens your application’s folder 
there

– getExternalCacheDir() works similar to getCacheDir(), but 
the system doesn’t monitor it as much
• available space isn’t checked
• there isn’t application sandbox security

• Media scanner and pre-defined folders (API Level 8)



External Storage - 3

• For Android 2.1-update1 (API Level 7) or below, use 
getExternalStorageDirectory() and the standard Java 
approach for creating and managing files

• Media scanner still recognizes specific folder names, 
but you have to create them manually

• “.nomedia” empty file - include in your folder, if you 
want the scanner to skip it
– if you have the Android source, look at 

/external/opencore/mediascanner.cpp



Demo

• Manage files on a device/emulator using
– DDMS
– adb push/pull
– mount



SQLite

• What is SQLite?
– Embedded RDBMS in 275 KB
– public domain (whether this classifies as open-

source is still an open debate)

• Why use RDB?

• Why SQLite?
– Android has full support for SQLite databases
– Lightweight, no separate process
– Very popular (iPhone, Skype, etc.)



SQLite - 2

• To create and use SQLite database, use SQLiteOpenHelper

– use getReadableDatabase() or getWritableDatabase()

– onCreate() of the helper is called (provide SQL CREATE statement here)

– use some of the query() methods of SQLiteDatabase

– Cursor is returned as a result of the query

• Databases are saved in your application’s folder in /data/data

• The sqlite3 tool is available for examining the contents of a table (.dump), 
the initial SQL CREATE statement (.schema) or executing queries 
dynamically (directly)

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/guide/developing/tools/adb.html%252523sqlite


SQLite - 3

• Cursor can hold only about 1 MB, after which it has to 
use windowing (very slow). Be careful!

• For complex queries, use SQLiteQueryBuilder

• Using only SQLite can range from being very easy to 
being pretty hard
– If you get to the pretty hard point, it’s good to use 

ContentProvider, even if you don’t have to share 
data



SQLite – Good Practices

• Consider creating a database adapter, 
which adds an abstraction layer that 
encapsulates database interactions.

• Files are not usually stored within 
database tables

• Auto-increment primary key is 
recommended



Demo



ContentProvider

• One of the fundamental components of Android 
applications

• Encapsulates data and provides common interface for 
it, independent from the implementation details

• The primary use of most ContentProviders is sharing 
data between multiple applications

• Generally, its interface is used via ContentResolver 
objects
– Usually you access the same ContentProvider via 

different ContentResolvers from the different apps



ContentProvider - 2

• The data model is similar to the RDB model

– you can think of each record as represented by a row 
in a table with columns for each type of data

• One provider can contain multiple data sets (tables)

• Every data set in the provider has a unique URI

– All URIs for providers begin with "content://"

– Different data sets have different URIs, for example 
the built-in Contacts provider has both 
android.provider.Contacts.Phones.CONTENT_URI and 
android.provider.Contacts.Photos.CONTENT_URI



ContentProvider - 3

• Because of the similarities between ContentProviders 
and RDB models, very often SQLite databases are 
used together with ContentProvider

• Querying ContentProvider data can be done via either 
ContentResolver.query() or Activity.managedQuery().
– The difference is that the latter manages the 

lifecycle of the result Cursor.
– Querying requires the URI of the provider, the fields 

that you want returned and the data types of these 
fields



ContentProvider - 4

• Cursors can be used only for reading data

• Adding, modifying or deleting data is done via 
ContentResolver objects
– adding and modifying are similar; use 

insert(Uri, ContentValues)
– for deleting use delete(Uri, String, String[])

http://developer.android.com/reference/android/content/ContentResolver.html%252523insert%25252528android.net.Uri,%25252520android.content.ContentValues%25252529
http://developer.android.com/reference/android/content/ContentResolver.html%252523delete%25252528android.net.Uri,%25252520java.lang.String,%25252520java.lang.String%25255B%25255D%25252529


ContentProvider and 
REST

• Relation between REST HTTP methods and methods 
for using ContentProvider data
– query() == GET
– insert() == POST
– update() == PUT
– delete() == DELETE
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Resources and Links
• http://developer.android.com/guide/topics/data/data-storage.html

• http://www.youtube.com/watch?v=c4znvD-7VDA#t=4m5s

• http://www.youtube.com/watch?v=xHXn3Kg2IQE

http://www.youtube.com/watch?v=c4znvD-7VDA%23t=4m5s
http://www.youtube.com/watch?v=xHXn3Kg2IQE


Q&A + Feedback
• Questions?
• Feedback section:
– Did you hear well?
–Was there anything you didn’t understand?
–What would you like changed in our next 

lecture?
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