
Data Storage
in Android

Dimitar G. Dimitrov



What options do we 
have?

• SharedPreferences

• Internal storage (flash memory)

• External storage

• SQLite relational DB

• ContentProvider

• Network

http://developer.android.com/reference/android/content/ContentProvider.html


SharedPreferences

• Persistent way to store key/value pairs
– Primitive types and Strings

• Saved as XML in your application’s folder in /data/data

• Removed when the app is uninstalled

• Can be used for general settings of the application
– See PreferenceActivity 

http://developer.android.com/reference/android/preference/PreferenceActivity.html


SharedPreferences 
Privacy

• Can be obtained with different modes
– MODE_PRIVATE
– MODE_WORLD_READABLE
– MODE_WORLD_WRITABLE

• android:sharedUserId + MODE_PRIVATE

• How safe is this?

http://developer.android.com/guide/topics/manifest/manifest-element.html%252523uid


Working with 
SharedPreferences

• getSharedPreferences(String, int) or 
getPreferences(int)

• To write values:
– obtain SharedPreferences.Editor by calling edit()
– write stuff with the editor using methods such as 

putBoolean() and putString()
– apply the changes by calling commit() to your editor

• To read values:
– SharedPreferences.getBoolean(), getString(), etc.



Demo



Internal Storage

• Data saved on the internal storage of the device is 
located in your application’s folder in /data/data

• Like SharedPreferences, these files are removed, 
when the app is uninstalled

• YAFFS (Yet Another Flash File System)
– read (very fast)
– write (not very fast)
– erase (very slow)



Internal Storage - 2
Some methods in class Context:

• String[] fileList()

• FileOutputStream openFileOutput(String, int)
– MODE_PRIVATE, …, MODE_APPEND

• FileInputStream openFileInput(String)

• boolean deleteFile(String)

• File getDir(String, int)



Internal Storage - 3

• File getCacheDir()
– Application specific cache directory 

(/data/data/<package_name>/cache/)
– These files will be ones that get deleted first when 

the device runs low on storage



External Storage

• First, external storage is not always SD Card

– Samsung Galaxy Tab has both internal_sd and external_sd

• If you rely on external storage:

– always start with a check to getExternalStorageState()

– listen for broadcasts, regarding the state of the external 
storage (ACTION_MEDIA_EJECT, ACTION_MEDIA_REMOVED, 
ACTION_MEDIA_UNMOUNTED, ACTION_MEDIA_BAD_REMOVAL, 
etc.)

• Who can access the files on the external storage?

http://developer.android.com/reference/android/os/Environment.html%252523getExternalStorageState%25252528%25252529


External Storage - 2

• With Android 2.2 (API Level 8), the ability to install 
applications on the external storage have been introduced

– getExternalFilesDir(String) opens your application’s folder 
there

– getExternalCacheDir() works similar to getCacheDir(), but 
the system doesn’t monitor it as much
• available space isn’t checked
• there isn’t application sandbox security

• Media scanner and pre-defined folders (API Level 8)



External Storage - 3

• For Android 2.1-update1 (API Level 7) or below, use 
getExternalStorageDirectory() and the standard Java 
approach for creating and managing files

• Media scanner still recognizes specific folder names, 
but you have to create them manually

• “.nomedia” empty file - include in your folder, if you 
want the scanner to skip it
– if you have the Android source, look at 

/external/opencore/mediascanner.cpp



Demo

• Manage files on a device/emulator using
– DDMS
– adb push/pull
– mount



SQLite

• What is SQLite?
– Embedded RDBMS in 275 KB
– public domain (whether this classifies as open-

source is still an open debate)

• Why use RDB?

• Why SQLite?
– Android has full support for SQLite databases
– Lightweight, no separate process
– Very popular (iPhone, Skype, etc.)



SQLite - 2

• To create and use SQLite database, use SQLiteOpenHelper

– use getReadableDatabase() or getWritableDatabase()

– onCreate() of the helper is called (provide SQL CREATE statement here)

– use some of the query() methods of SQLiteDatabase

– Cursor is returned as a result of the query

• Databases are saved in your application’s folder in /data/data

• The sqlite3 tool is available for examining the contents of a table (.dump), 
the initial SQL CREATE statement (.schema) or executing queries 
dynamically (directly)

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://developer.android.com/reference/android/database/Cursor.html
http://developer.android.com/guide/developing/tools/adb.html%252523sqlite


SQLite - 3

• Cursor can hold only about 1 MB, after which it has to 
use windowing (very slow). Be careful!

• For complex queries, use SQLiteQueryBuilder

• Using only SQLite can range from being very easy to 
being pretty hard
– If you get to the pretty hard point, it’s good to use 

ContentProvider, even if you don’t have to share 
data



SQLite – Good Practices

• Consider creating a database adapter, 
which adds an abstraction layer that 
encapsulates database interactions.

• Files are not usually stored within 
database tables

• Auto-increment primary key is 
recommended



Demo



ContentProvider

• One of the fundamental components of Android 
applications

• Encapsulates data and provides common interface for 
it, independent from the implementation details

• The primary use of most ContentProviders is sharing 
data between multiple applications

• Generally, its interface is used via ContentResolver 
objects
– Usually you access the same ContentProvider via 

different ContentResolvers from the different apps



ContentProvider - 2

• The data model is similar to the RDB model

– you can think of each record as represented by a row 
in a table with columns for each type of data

• One provider can contain multiple data sets (tables)

• Every data set in the provider has a unique URI

– All URIs for providers begin with "content://"

– Different data sets have different URIs, for example 
the built-in Contacts provider has both 
android.provider.Contacts.Phones.CONTENT_URI and 
android.provider.Contacts.Photos.CONTENT_URI



ContentProvider - 3

• Because of the similarities between ContentProviders 
and RDB models, very often SQLite databases are 
used together with ContentProvider

• Querying ContentProvider data can be done via either 
ContentResolver.query() or Activity.managedQuery().
– The difference is that the latter manages the 

lifecycle of the result Cursor.
– Querying requires the URI of the provider, the fields 

that you want returned and the data types of these 
fields



ContentProvider - 4

• Cursors can be used only for reading data

• Adding, modifying or deleting data is done via 
ContentResolver objects
– adding and modifying are similar; use 

insert(Uri, ContentValues)
– for deleting use delete(Uri, String, String[])

http://developer.android.com/reference/android/content/ContentResolver.html%252523insert%25252528android.net.Uri,%25252520android.content.ContentValues%25252529
http://developer.android.com/reference/android/content/ContentResolver.html%252523delete%25252528android.net.Uri,%25252520java.lang.String,%25252520java.lang.String%25255B%25255D%25252529


ContentProvider and 
REST

• Relation between REST HTTP methods and methods 
for using ContentProvider data
– query() == GET
– insert() == POST
– update() == PUT
– delete() == DELETE



24

Resources and Links
• http://developer.android.com/guide/topics/data/data-storage.html

• http://www.youtube.com/watch?v=c4znvD-7VDA#t=4m5s

• http://www.youtube.com/watch?v=xHXn3Kg2IQE

http://www.youtube.com/watch?v=c4znvD-7VDA%23t=4m5s
http://www.youtube.com/watch?v=xHXn3Kg2IQE


Q&A + Feedback
• Questions?
• Feedback section:
– Did you hear well?
–Was there anything you didn’t understand?
–What would you like changed in our next 

lecture?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

