
Problems with solutions in the

Analysis of Algorithms

c© Minko Markov

Draft date April 21, 2012

Contents

1 Notations: Θ, O, Ω, o, and ω 2

2 Iterative Algorithms 24

3 Recursive Algorithms and Recurrence Relations 42

3.1 Preliminaries . 42
3.1.1 Iterators . 43
3.1.2 Recursion trees . 46

3.2 Problems . 50
3.2.1 Induction, unfolding, recursion trees 50
3.2.2 The Master Theorem . 86
3.2.3 The Method with the Characteristic Equation 94

4 Proving the correctness of algorithms 101

4.1 Preliminaries . 101
4.2 Loop Invariants – An Introduction . 102
4.3 Proving the Correctness of Insertion Sort, Selection Sort, Bubble

Sort, Merge Sort, and Quick Sort . 104
4.4 The Correctness of Algorithms on Binary Heaps 115

5 Algorithmic Problems 126

5.1 Programming fragments . 126
5.2 Arrays and sortings . 133
5.3 Graphs . 148

5.3.1 Graph traversal related algorithms 148
5.3.2 NP-hard problems on restricted graphs 155

6 Appendix 158

7 Acknowledgements 177

References 177

1

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 1

Notations: Θ, O, Ω, o, and ω

The functions we consider are assumed to have positive real domains and real codomains
unless specified otherwise. Furthermore, the functions are assumed to be asymptotically
positive. The function f(n) is asymptotically positive iff ∃n0 : ∀n ≥ n0, f(n) > 0.

Basic definitions:

Θ(g(n)) =
{
f(n) | ∃c1, c2 > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n)

}
(1.1)

O(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) ≤ c.g(n)

}
(1.2)

Ω(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) ≤ f(n)

}
(1.3)

o(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n)

}
(1.4)

ω(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) < f(n)

}
(1.5)

1.4 is equivalent to:

lim
n→∞

f(n)

g(n)
= 0 (1.6)

if the limit exists. 1.5 is equivalent to:

lim
n→∞

g(n)

f(n)
= 0 (1.7)

if the limit exists.

2

Problems with solutions in the Analysis of Algorithms c© Minko Markov

It is universally accepted to write “f(n) = Θ(g(n))” instead of the formally correct “f(n) ∈
Θ(g(n))”.

Let us define the binary relations ≈, �, ≺, �, and ≻ over functions as follows. For any two
functions f(n) and g(n):

f(n) ≈ g(n) ⇔ f(n) = Θ(g(n)) (1.8)

f(n) � g(n) ⇔ f(n) = O(g(n)) (1.9)

f(n) ≺ g(n) ⇔ f(n) = o(g(n)) (1.10)

f(n) � g(n) ⇔ f(n) = Ω(g(n)) (1.11)

f(n) ≻ g(n) ⇔ f(n) = ω(g(n)) (1.12)

When the relations do not hold we write f(n) 6≈ g(n), f(n) 6� g(n), etc.

Properties of the relations:

1. Reflexivity: f(n) ≈ f(n), f(n) � f(n), f(n) � f(n).

2. Symmetry: f(n) ≈ g(n) ⇔ g(n) ≈ f(n).
Proof: Assume ∃c1, c2, n0 > 0 as necessitated by (1.1), so that 0 ≤ c1.g(n) ≤ f(n) ≤
c2.g(n) for all n ≥ n0. Then 0 ≤ 1

c2
f(n) ≤ g(n) and g(n) ≤ 1

c1
f(n). Overall,

0 ≤ 1
c2
f(n) ≤ g(n) ≤ 1

c1
f(n). So there exist positive constants k1 =

1
c2

and k2 =
1
c1
,

such that 0 ≤ k2.f(n) ≤ g(n) ≤ k1.f(n) for all n ≥ n0. �

3. Transitivity:

f(n) ≈ g(n) and g(n) ≈ h(n) ⇒ f(n) ≈ h(n)
f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)
f(n) ≺ g(n) and g(n) ≺ h(n) ⇒ f(n) ≺ h(n)
f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)
f(n) ≻ g(n) and g(n) ≻ h(n) ⇒ f(n) ≻ h(n).

4. Transpose symmetry:

f(n) � g(n) ⇔ g(n) � f(n)
f(n) ≻ g(n) ⇔ g(n) ≺ f(n).

3

Problems with solutions in the Analysis of Algorithms c© Minko Markov

5. f(n) ≺ g(n) ⇒ f(n) � g(n)
f(n) � g(n) 6⇒ f(n) ≺ g(n)
f(n) ≻ g(n) ⇒ f(n) � g(n)
f(n) � g(n) 6⇒ f(n) ≻ g(n)

6. f(n) ≈ g(n)⇒ f(n) 6≺ g(n)
f(n) ≈ g(n)⇒ f(n) 6≻ g(n)
f(n) ≺ g(n)⇒ f(n) 6≈ g(n)
f(n) ≺ g(n)⇒ f(n) 6≻ g(n)
f(n) ≺ g(n)⇒ f(n) 6� g(n)
f(n) ≻ g(n)⇒ f(n) 6≈ g(n)
f(n) ≻ g(n)⇒ f(n) 6≺ g(n)
f(n) ≻ g(n)⇒ f(n) 6� g(n)

7. f(n) ≈ g(n) ⇔ f(n) � g(n) and f(n) � g(n)

8. There do not exist functions f(n) and g(n), such that f(n) ≺ g(n) and f(n) ≻ g(n)

9. Let f(n) = f1(n)± f2(n)± f3(n) ± . . .± fk(n). Let

f1(n) ≻ f2(n)
f1(n) ≻ f3(n)

. . .

f1(n) ≻ fk(n)

Then f(n) ≈ f1(n).

10. Let f(n) = f1(n) × f2(n) × . . . × fk(n). Let some of the fi(n) functions be positive
constants. Say, f1(n) = const, f2(n) = const, . . . , fm(n) = const for some m such
that 1 ≤ m ≤ n. Then f(n) ≈ fm+1(n)× fm+2(n) × . . .× fk(n).

11. The statement “limn→∞

f(n)
g(n)

exists and is equal to some L such that 0 < L < ∞” is

stronger than “f(n) ≈ g(n)”:

lim
n→∞

f(n)

g(n)
= L ⇒ f(n) ≈ g(n) (1.13)

f(n) ≈ g(n) 6⇒ lim
n→∞

f(n)

g(n)
exists.

To see why the second implication does not hold, suppose f(n) = n2 and g(n) =

(2 + sin (n))n2. Obviously g(n) oscillates between n2 and 3n2 and thus f(n) ≈ g(n)

but limn→∞

f(n)
g(n)

does not exist.

Problem 1 ([CLR00], pp. 24–25). Let f(n) = 1
2
n2 − 3n. Prove that f(n) ≈ n2.

4

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

For a complete solution we have to show some concrete positive constants c1 and c2 and a
concrete value n0 for the variable, such that for all n ≥ n0,

0 ≤ c1.n
2 ≤ 1

2
n2 − 3n ≤ c2.n

2

Since n > 0 this is equivalent to (divide by n2):

0 ≤ c1 ≤ 1

2
−
3

n
≤ c2

What we have here are in fact three inequalities:

0 ≤ c1 (1.14)

c1 ≤ 1

2
−
3

n
(1.15)

1

2
−
3

n
≤ c2 (1.16)

(1.14) is trivial, any c1 > 0 will do. To satisfy (1.16) we can pick n ′
0 = 1 and then any

positive c2 will do; say, c2 = 1. The smallest integer value for n that makes the right-hand
side of (1.15) positive is 7; the right-hand side becomes 1

2
− 3
7
= 7

14
− 6
14

= 1
14
. So, to saisfy

(1.15) we pick c1 =
1
14 and n ′′

0 = 7. The overall n0 is n0 = max {n ′
0, n

′′
0 } = 7. The solution

n0 = 7, c1 =
1
14 , c2 = 1 is obviously not unique. �

Problem 2. Is it true that 1
1000n

3 � 1000n2?
Solution:

No. Assume the opposite. Then ∃c > 0 and ∃n0, such that for all n ≥ n0:
1

1000
n3 ≤ c.1000n2

It follows that ∀n ≥ n0:
1

1000
n ≤ 1000.c ⇔ n ≤ 1000000.c

That is clearly false. �

Problem 3. Is it true that for any two functions, at least one of the five relations ≈, �,
≺, �, and ≻ holds between them?

Solution:

No. Proof by demonstrating an counterexample ([CLR00, pp. 31]): let f(n) = n and
g(n) = n1+sinn. Since g(n) oscillates between n0 = 1 and n2, it cannot be the case that
f(n) ≈ g(n) nor f(n) � g(n) nor f(n) ≺ g(n) nor f(n) � g(n) nor f(n) ≻ g(n).

However, this argument from [CLR00] holds only when n ∈ R
+. If n ∈ N

+, we cannot
use the function g(n) directly, i.e. without proving additional stuff. Note that sinn reaches
its extreme values −1 and 1 at 2kπ + 3π

2 and 2kπ + π
2 , respectively, for integer k. As these

are irrational numbers, the integer n cannot be equal to any of them. So, it is no longer true
that g(n) oscillates between n0 = 1 and n2. If we insist on using g(n) in our counterexample
we have to argue, for instance, that:

5

Problems with solutions in the Analysis of Algorithms c© Minko Markov

• for infinitely many (positive) values of the integer variable, for some constant ǫ > 0,
it is the case that g(n) ≥ n1+ǫ;

• for infinitely many (positive) values of the integer variable, for some constant σ > 0,
it is the case that g(n) ≤ n1−σ.

An alternative is to use the function g ′(n) = n1+sin (πn+π/2) that indeed oscillates between
n0 = 1 and n2 for integer n. Another alternative is to use

g ′′(n) =

{
n2, if n is even,

1, else.

�

Problem 4. Let p(n) be any univariate polynomial of degree k, such that the coefficient in
the higherst degree term is positive. Prove that p(n) ≈ nk.
Solution:

p(n) = akn
k + ak−1n

k−1 + . . . + a1n + a0 with ak > 0. We have to prove that there exist
positive constants c1 and c2 and some n0 such that for all n ≥ n0, 0 ≤ c1nk ≤ p(n) ≤ c2nk.
Since the leftmost inequality is obvious, we have to prove that

c1n
k ≤ aknk + ak−1nk−1 + ak−2nk−2 . . . + a1n + a0 ≤ c2nk

For positive n we can divide by nk, obtaining:

c1 ≤ ak +
ak−1

n
+
ak−2

n2
+ . . . +

a1

nk−1
+
a0

nk︸ ︷︷ ︸
T

≤ c2

Now it is obvious that any c1 and c2 such that 0 < c1 < ak and c2 > ak are suitable because
limn→∞ T = 0.

�

Problem 5. Let a ∈ R and b ∈ R
+. Prove that (n + a)b ≈ nb

Solution:

Note that this problem does not reduce to Problem 4 except in the special case when b is
integer. We start with the following trivial observations:

n + a ≤ n + |a| ≤ 2n, provided that n ≥ |a|

n + a ≥ n − |a| ≥ n

2
, provided that

n

2
≥ |a|, that is, n ≥ 2|a|

It follows that:

1

2
n ≤ n + a ≤ 2n, if n ≥ 2|a|

By raising to the bth power we obtain:
(
1

2

)b
nb ≤ (n + a)b ≤ 2bnb

So we have a proof with c1 =
(
1
2

)b
, c2 = 2

b, and n0 = ⌈2|a|⌉.
Alternatively, solve this problem trivially using Problem 6. �

6

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 6. Prove that for any two asymptotically positive functions f(n) and g(n) and
any constant k ∈ R

+,

f(n) ≈ g(n)⇔ (f(n))k ≈ (g(n))k

Solution:

In one direction, assume

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

for some positive constants c1 and c2 and for all n ≥ n0 for some n0 > 0. Raise the three
inequalities to the k-th power (recall that k is positive) to obtain

0 ≤ ck1(g(n))k ≤ (f(n))k ≤ ck2(g(n))k, for all n ≥ n0

Conclude that (f(n))k ≈ (g(n))k since ck1 and ck2 are positive constants.
In the other direction the proof is virtually the same, only raise to power 1

k . �

Problem 7. Prove that for any two asymptotically positive functions f(n) and g(n), it is
the case that max (f(n), g(n)) ≈ f(n) + g(n).

Solution:

We are asked to prove there exist positive constants c1 and c2 and a certain n0, such that
for all n ≥ n0:

0 ≤ c1(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ c2(f(n) + g(n))

As f(n) and g(n) are asymptotically positive,

∃n ′
0 : ∀n ≥ n ′

0, f(n) > 0

∃n ′′
0 : ∀n ≥ n ′′

0 , g(n) > 0

Let n ′′′
0 = max {n ′

0, n
′′
0 }. Obviously,

0 ≤ c1(f(n) + g(n)) for n ≥ n ′′′
0 , if c1 > 0

It is also obvious that when n ≥ n ′′′
0 :

1

2
f(n) +

1

2
g(n) ≤ max (f(n), g(n))

f(n) + g(n) ≥max (f(n), g(n)) ,

which we can write as:

1

2
(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ f(n) + g(n)

So we have a proof with n0 = n
′′′
0 , c1 =

1
2
, and c2 = 1. �

7

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 8. Prove or disprove that for any two asymptotically positive functions f(n) and
g(n) such that f(n) − g(n) is asymptotically positive, it is the case that max (f(n), g(n)) ≈
f(n) − g(n).

Solution:

The claim is false. As a counterexample consider f(n) = n3+n2 and g(n) = n3+n. In this
case, max (f(n), g(n)) = n3 + n2 = f(n) for all sufficiently large n. Clearly, f(n) − g(n) =
n2 − n which is asymptotically positive but n3 + n2 6≈ n2 − n. �

Problem 9. Which of the following are true:

2n+1 ≈ 2n

22n ≈ 2n

Solution:

2n+1 ≈ 2n is true because 2n+1 = 2.2n and for any constant c, c.2n ≈ 2n. On the other
hand, 22n ≈ 2n is not true. Assume the opposite. Then, having in mind that 22n = 2n.2n,
it is the case that for some constant c2 and all n→ +∞:

2n.2n ≤ c2.2n ⇔ 2n ≤ c2
That is clearly false. �

Problem 10. Which of the following are true:

1

n2
≺ 1

n
(1.17)

2
1

n2 ≺ 2 1
n (1.18)

Solution:

(1.17) is true because

0 ≤ 1

n2
< c.

1

n
⇔ 0 ≤ 1

n
< c

is true for every positive constant c and sufficiently large n. (1.18), however, is not true.
Assume the opposite. Then:

∀c > 0,∃n0 : ∀n ≥ n0, 0 ≤ 2
1

n2 < c.2
1
n ⇔ 0 ≤ 2

1

n2

2
1
n

< c (1.19)

But

lim
n→∞

(
2

1

n2

2
1
n

)
= lim
n→∞

(
2

1

n2 −
1
n

)
= 1 because (1.20)

lim
n→∞

(
1

n2
−
1

n

)
= lim
n→∞

(
1 − n

n2

)
= lim
n→∞

(
1
n − 1

n

)
= 0 (1.21)

It follows that (1.19) is false. �

8

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 11. Which of the following are true:

1

n
≺ 1 − 1

n
(1.22)

2
1
n ≺ 21− 1

n (1.23)

Solution:

(1.22) is true because

lim
n→∞

(
1
n

1− 1
n

)
= lim
n→∞

(
1
6n
n−1
6n

)
= lim
n→∞

1

n− 1
= 0 (1.24)

(1.23) is false because

lim
n→∞

(
2

1
n

21−
1
n

)
= lim
n→∞

(
2

2
n

21

)
= const (1.25)

Problem 12. Let a be a constant such that a > 1. Which of the following are true:

f(n) ≈ g(n) ⇒ af(n) ≈ ag(n) (1.26)

f(n) � g(n) ⇒ af(n) � ag(n) (1.27)

f(n) ≺ g(n) ⇒ af(n) ≺ ag(n) (1.28)

for all asymptotically positive functions f(n) and g(n).

Solution:

(1.26) is not true – Problem 9 provides a counterexample since 2n ≈ n and 22n 6≈ 2n.
The same counterexample suffices to prove that (1.27) is not true – note that 2n � n but
22n 6� 2n.
Now consider (1.28).

case 1, g(n) is increasing and unbounded: The statement is true. We have to prove
that

∀c > 0,∃n ′ : ∀n ≥ n ′, 0 ≤ af(n) < c.ag(n) (1.29)

Since the constant c is positive, we are allowed to consider its logarithm to base a,
namely k = loga c. So, c = ak. Of course, k can be positive or negative or zero. We
can rewrite (1.29) as

∀k,∃n ′ : ∀n ≥ n ′, 0 ≤ af(n) < akag(n) (1.30)

Taking logarithm to base a of the two inequalities, we have

∀k,∃n ′ : ∀n ≥ n ′, 0 ≤ f(n) < k+ g(n) (1.31)

9

Problems with solutions in the Analysis of Algorithms c© Minko Markov

If we prove (1.31), we are done. By definition ((1.4) on page 2), the premise is

∀c > 0,∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n)

Since that holds for any c > 0, in particular it holds for c = 1
2
. So, we have

∃n0 : ∀n ≥ n0, 0 ≤ f(n) <
g(n)

2
(1.32)

But g(n) is increasing and unbounded. Therefore,

∀k,∃n1 : ∀n ≥ n1, 0 < k+
g(n)

2
(1.33)

We can rewrite (1.33) as

∀k,∃n1 : ∀n ≥ n1,
g(n)

2
< k+ g(n) (1.34)

From (1.32) and (1.34) we have

∀k,∃n ′′ : ∀n ≥ n ′′, 0 ≤ f(n) < k+ g(n) (1.35)

Since (1.35) and (1.31) are the same, the proof is completed.

case 2, g(n) is increasing but bounded: In this case (1.28) is not true. Consider

Problem 11. As it is shown there, 1n ≺ 1 − 1
n but 2

1
n 6≺ 21−

1
n .

case 3, g(n) is not increasing: In this case (1.28) is not true. Consider Problem 10.

As it is shown there, 1
n2 ≺ 1

n but 2
1

n2 6≺ 2
1
n . �

Problem 13. Let a be a constant such that a > 1. Which of the following are true:

af(n) ≈ ag(n) ⇒ f(n) ≈ g(n) (1.36)

af(n) � ag(n) ⇒ f(n) � g(n) (1.37)

af(n) ≺ ag(n) ⇒ f(n) ≺ g(n) (1.38)

for all asymptotically positive functions f(n) and g(n).

Solution:

(1.36) is true, if g(n) is increasing and unbounded. Suppose there exist positive constants
c1 and c2 and some n0 such that

0 ≤ c1.ag(n) ≤ af(n) ≤ c2.ag(n),∀n ≥ n0

Since a > 1 and f(n) and g(n) are asymptotically positive, for all sufficiently large n, the
exponents have strictly larger than one values. Therefore, we can take logarithm to base a
(ignoring the leftmost inequality) to obtain:

loga c1 + g(n) ≤ f(n) ≤ loga c2 + g(n)

10

Problems with solutions in the Analysis of Algorithms c© Minko Markov

First note that, provided that g(n) is increasing and unbounded, for any constant k1 such
that 0 < k1 < 1, k1.g(n) ≤ loga c1+g(n) for all sufficiently large n, regardless of whether the
logarithm is positive or negative or zero. Then note that, provided that g(n) is increasing
and unbounded, for any constant k2 such that k2 > 1, loga c2 + g(n) ≤ k2.g(n) for all
sufficiently large n, regardless of whether the logarithm is positive or negative or zero.
Conclude there exists n1, such that

k1.g(n) ≤ f(n) ≤ k2.g(n), ∀n ≥ n1

However, if g(n) is increasing but bounded, (1.36) is not true. We already showed 2
1
n ≈ 21− 1

n

(see 1.25). However, since limn→∞

(
1
n

1− 1
n

)
= 0 (see (1.24)), it is the case that 1

n ≺ 1 − 1
n

according to (1.6).
Furthermore, if g(n) is not increasing, (1.36) is not true. We already showed (see (1.20))

that limn→∞

(
2

1

n2

2
1
n

)
= 1. According to (1.13), it is the case that 2

1

n2 ≈ 2
1
n . However,

1
n2 6≈ 1

n
(see (1.21)).

Consider (1.37). If g(n) is increasing and unbounded, it is true. The proof can be done
easily as in the case with (1.36). If g(n) is increasing but bounded, the statement is false.

Let g(n) = 1
n
. As shown in Problem 11, 21−

1
n ≈ 2

1
n , therefore 21−

1
n � 2

1
n , but 1

n
≺ 1 − 1

n
,

therefore 1− 1
n 6� 1

n . Suppose g(n) is not increasing. Let g(n) =
1
n . We know that 2

1

n2 � 2 1
n

but 1
n2 6� 1

n
.

Now consider (1.38). It is not true. As a counterexample, consider that 2n ≺ 22n but
n 6≺ 2n. �

Problem 14. Let a be a constant such that a > 1. Which of the following are true:

logaφ(n) ≈ logaψ(n) ⇒ φ(n) ≈ ψ(n) (1.39)

logaφ(n) � logaψ(n) ⇒ φ(n) � ψ(n) (1.40)

logaφ(n) ≺ logaψ(n) ⇒ φ(n) ≺ ψ(n) (1.41)

φ(n) ≈ ψ(n) ⇒ logaφ(n) ≈ logaψ(n) (1.42)

φ(n) � ψ(n) ⇒ logaφ(n) � logaψ(n) (1.43)

φ(n) ≺ ψ(n) ⇒ logaφ(n) ≺ logaψ(n) (1.44)

for all asymptotically positive functions φ(n) and ψ(n).

Solution:

Let φ(n) = af(n) and ψ(n) = ag(n), which means that logaφ(n) = f(n) and logaψ(n) =
g(n). Consider (1.26) and conclude that (1.39) is not true. Consider (1.36) and conclude
that (1.42) is true if ψ(n) is increasing and unbounded, and false otherwise. Consider
(1.27) and conlude that (1.40) is not true. Consider (1.37) and conclude that (1.43) is true
if ψ(n) is increasing and unbounded, and false otherwise. Consider (1.28) and conclude that
(1.41) is true if ψ(n) is increasing and unbounded, and false otherwise. Consider (1.38) and
conlude that (1.44) is not true. �

11

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 15. Prove that for any two asymptotically positive functions f(n) and g(n),
f(n) ≈ g(n) iff f(n) � g(n) and f(n) � g(n).

Solution:

In one direction, assume that f(n) ≈ g(n). Then there exist positive constants c1 and c2
and some n0, such that:

0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n), ∀n ≥ n0

It follows that,

0 ≤ c1.g(n) ≤ f(n), ∀n ≥ n0 (1.45)

0 ≤ f(n) ≤ c2.g(n), ∀n ≥ n0 (1.46)

In the other direction, assume that f(n) � g(n) and f(n) � g(n). Then there exists a
positive constant c ′ and some n ′

0, such that:

0 ≤ f(n) ≤ c ′.g(n),∀n ≥ n ′
0

and there exists a positive constant c ′′ and some n ′′
0 , such that:

0 ≤ c ′′.g(n) ≤ f(n),∀n ≥ n ′′
0

It follows that:

0 ≤ c ′.g(n) ≤ f(n) ≤ c ′′.g(n),∀n ≥ max {n ′
0, n

′′
0 }

�

Lemma 1 (Stirling’s approximation).

n! =
√
2πn

nn

en

(
1 +Θ

(
1

n

))
(1.47)

�

Here, Θ
(
1
n

)
means any function that is in the set Θ

(
1
n

)
.

Problem 16. Prove that

lgn! ≈ n lgn (1.48)

Solution:

Use Stirling’s approximation, ignoring the
(
1 +Θ

(
1
n

))
factor, and take logarithm of both

sides to obtain:

lg (n!) = lg (
√
2π) + lgn + n lgn − n lg e

By Property 9 of the relations, lg (
√
2π) + lgn+ n lgn − n lg e ≈ n lgn. �

12

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 17. Prove that for any constant a > 1,

an ≺ n! ≺ nn (1.49)

Solution:

Because of the factorial let us restrict n to positive integers.

lim
n→∞



n.(n − 1).(n − 2) . . . 2.1

a . a . a . . . a . a︸ ︷︷ ︸
n times


 =∞

lim
n→∞



n.(n − 1).(n − 2) . . . 2.1

n . n . n . . . n . n︸ ︷︷ ︸
n times


 = 0

�

Problem 18 (polylogarithm versus constant power of n). Let a, k and ǫ be any constants,
such that k > 0, a > 1, and ǫ > 0. Prove that:

(loga n)
k ≺ nǫ (1.50)

Solution:

lim
n→∞

nǫ

(loga n)
k
= let b←

ǫ

k

lim
n→∞

(nb)k

(loga n)
k
=

lim
n→∞

(
nb

loga n

)k
= k is positive

lim
n→∞

nb

loga n
= use l’Hôpital’s rule

lim
n→∞

bnb−1(
1

lna

) (
1
n

) =

lim
n→∞

(lna)bnb =∞

�

Problem 19 (constant power of n versus exponent). Let a and ǫ be any constants, such
that a > 1 and ǫ > 0. Prove that:

nǫ ≺ an (1.51)

Solution:

Take loga of both sides. The left-hand side yields ǫ. loga n and the right-hand side yields
n. But ǫ. loga n ≺ n because of Problem 18. Conclude immediately the desired relation
holds. �

13

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Definition 1 (log-star function, [CLR00], pp. 36). Let the function lg(i) n be defined re-
cursively for nonnegative integers i as follows:

lg(i) n =






n, if i = 0

lg
(
lg(i−1) n

)
, if i > 0 and lg(i−1) n > 0

undefined, if i > 0 and lg(i−1) n < 0 or lg(i−1) n is undefined

Then

lg∗ n = min
{
i ≥ 0 | lg(i) n ≤ 1

}

�

According to this definition,

lg∗ 2 = 1, since lg(0) 2 = 2 and lg(1) 2 = lg
(
lg(0) 2

)
= lg (2) = 1

lg∗ 3 = 2, since lg(0) 3 = 3 and lg
(
lg(0) 3

)
= lg (lg 3) = 0.6644 . . .

lg∗ 4 = 2

lg∗ 5 = 3

. . .

lg∗ 16 = 3

lg∗ 17 = 4

. . .

lg∗ 65536 = 4

lg∗ 65537 = 5

. . .

lg∗ 265536 = 5

lg∗
(
265536 + 1

)
= 6

. . .

Obviously, every real number t can be represented by a tower of twos:

t = 22
2.

..
2s

where s is a real number such that 1 < s ≤ 2. The height of the tower is the number of
elements in this sequence. For instance,

14

Problems with solutions in the Analysis of Algorithms c© Minko Markov

number its tower of twos the height of the tower

2 2 1

3 21.5849625007... 2

4 22 2

5 22
1.2153232957...

3

16 22
2

3

17 22
21.0223362884...

4

65536 22
22

4

65537 22
22

1.00000051642167...

5

Having that in mind, it is trivial to see that lg∗ n is the height of the tower of twos of n.

Problem 20 ([CLR00], problem 2-3, pp. 38–39). Rank the following thirty functions by
order of growth. That is, find the equivalence classes of the “≈” relation and show their
order by “≻”.

lg (lg∗ n) 2lg
∗ n

(√
2
)lgn

n2 n! (lgn)!
(
3

2

)n
n3 lg2 n lg (n!) 22

n

n
1

lgn

ln lnn lg∗n n.2n nlg lgn lnn 1

2lgn (lgn)lgn en 4lgn (n + 1)!
√

lgn

lg∗ (lgn) 2
√
2 lgn n 2n n lgn 22

n+1

Solution:

22
n+1 ≻ 22n because 22

n+1
= 22.2

n
= 22

n × 22n .

22
n ≻ (n + 1)! To see why, take logarithm to base two of both sides. The left-hand

side becomes 2n, the right-hand side becomes lg ((n + 1)!) By (1.47), lg ((n + 1)!) ≈ (n+

1) lg (n + 1), and clearly (n + 1) lg (n + 1) ≈ n lgn. As 2n ≻ n lgn, by (1.41) we have
22

n ≻ (n + 1)!

(n + 1)! ≻ n! because (n + 1)! = (n + 1)× n!

n! ≻ en by (1.49).

en ≻ n.2n. To see why, consider:

lim
n→∞

n.2n

en
= lim
n→∞

n
en

2n

= lim
n→∞

n(
e
2

)n = 0

n.2n ≻ 2n

15

Problems with solutions in the Analysis of Algorithms c© Minko Markov

2n ≻
(
3
2

)n
. To see why, consider:

lim
n→∞

(
3
2

)n

2n
= lim
n→∞

(
3

4

)n
= 0

(
3
2

)n ≻ nlg (lgn). To see why, take lg of both sides. The left-hand side becomes n. lg
(
3
2

)
,

the right-hand side becomes lgn.lg (lgn). Clearly, lg2 n ≻ lgn.lg (lgn) and n ≻ lg2 n by
(1.50). By transitivity, n ≻ lgn.lg (lgn), and so n. lg

(
3
2

)
≻ lgn.lg (lgn). Apply (1.41) and

the desired conclusion follows.

(lgn)lgn = nlg (lgn), which is obvious if we take lg of both sides. So, (lgn)lgn ≈ nlg (lgn).

(lgn)lgn ≻ (lgn) ! To see why, substitute lgn with m, obtaining mm ≻ m! and apply
(1.49).

(lgn) ! ≻ n3. Take lg of both sides. The left-hand side becomes lg ((lgn) !). Substi-
tute lgn with m, obtaining lg (m!). By (1.48), lg (m!) ≈ m lgm, therefore lg ((lgn) !) ≈
(lgn).(lg (lgn)). The right-hand side becomes 3. lgn. Compare (lgn).(lg (lgn)) with 3. lgn:

lim
n→∞

3. lgn

(lgn).(lg (lgn))
= lim
n→∞

3

lg (lgn)
= 0

It follows that (lgn).(lg (lgn)) ≻ 3. lgn. Apply (1.41) to draw the desired conclusion.

n3 ≻ n2.

n2 ≈ 4lgn because 4lgn = 22 lgn = 2lgn
2
= n2 by the properties of the logarithm.

n2 ≻ n lgn.

lgn! ≈ n lgn (see (1.48)).

n lgn ≻ n.

n ≈ 2lg n because n = 2lgn by the properties of the logarithm.

n ≻ (
√
2)lgn because (

√
2)lgn = 2

1
2
lgn = 2lg

√
n =

√
n and clearly n ≻ √

n.

(
√
2)lgn ≻ 2

√
2 lgn. To see why, note that lgn ≻ √

lgn, therefore 1
2
. lgn ≻

√
2.
√
lgn =√

2 lgn. Apply (1.28) and conclude that 2
1
2
. lgn ≻ 2

√
2 lgn, i.e. (

√
2)lgn ≻ 2

√
2 lgn.

2
√
2 lgn ≻ lg2 n. To see why, take lg of both sides. The left-hand side becomes

√
2 lgn and

the right-hand side becomes lg (lg2 n) = 2. lg (lgn). Substitute lgn with m: the left-hand

side becomes
√
2m =

√
2
√
m =

√
2.m

1
2 and the right-hand side becomes 2 lgm. By (1.50)

we know that m
1
2 ≻ lgm, therefore

√
2.m

1
2 ≻ 2 lgm, therefore

√
2m ≻ 2 lgm, therefore√

2 lgn ≻ lg (lg2 n). Having in mind (1.41) we draw the desired conclusion.

lg2 n ≻ lnn. To see this is true, observe that lnn = lgn
lg e .

16

Problems with solutions in the Analysis of Algorithms c© Minko Markov

lnn ≻ √
lgn.

√
lgn ≻ ln lnn. The left-hand side is

√
lnn
ln 2 . Substitute lnn with m and the claim becomes

1√
ln 2
.
√
m ≻ lnm, which follows from (1.50).

ln lnn ≻ 2lg
∗n. To see why this is true, note that ln lnn ≈ lg lgn and rewrite the claim as

lg lgn ≻ 2lg
∗n. Take lg of both sides. The left-hand side becomes lg lg lgn, i.e. a triple

logarithm. The right-hand side becomes lg∗ n. If we think of n as a tower of twos, it is
obvious that the triple logarithm decreases the height of the tower with three, while, as
we said before, the log-star measures the height of the tower. Clearly, the latter is much
smaller than the former.

2lg
∗ n ≻ lg∗ n. Clearly, for any increasing function f(n), 2f(n) ≻ f(n).

lg∗ n ≈ lg∗ (lgn). Think of n as a tower of twos and note that the difference in the height
of n and lgn is one. Therefore, lg∗ (lgn) = (lg∗ n) − 1.

lg∗ n ≻ lg (lg∗ n). Substitute lg∗ n with f(n) and the claim becomes f(n) ≻ lg f(n) which is
clearly true since f(n) is increasing.

lg (lg∗ n) ≻ 1.

1 ≈ n
1

lgn . Note that n
1

lgn = 2: take lg of both sides, the left-hand side becomes lg
(
n

1
lgn

)
=

1
lgn . lgn = 1 and the right-hand side becomes lg 2 = 1. �

Problem 21. Give an example of a function f(n), n ∈ N
+, such that for function g(n)

among the thirty functions from Problem 20, f(n) 6� g(n) and f(n) 6� g(n).

Solution:

For instance,

f(n) =

{
22

n+2
, if n is even

1
n
, if n is odd

�

Problem 22. Is it true that for any asymptotically positive functions f(n) and g(n), f(n)+
g(n) ≈ min (f(n), g(n))?

Solution:

No. As a counterexample, consider f(n) = n and g(n) = 1. Then min (f(n), g(n)) = 1,
f(n) + g(n) = n + 1, and certainly n + 1 6≈ 1. �

Problem 23. Is it true that for any asymptotically positive function f(n), f(n) � (f(n))2?

17

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

If f(n) is increasing, it is trivially true. If it is decreasing, however, it may not be true:
consider (1.17). �

Problem 24. Is it true that for any asymptotically positive function f(n), f(n) ≈ f(n2)?

Solution:

No. As a counterexample, consider f(n) = 2n. Then f(n
2
) = 2

n
2 . As we already saw,

2n 6≈ 2n
2 . �

Problem 25. Compare the growth of nlgn and (lgn)n.

Solution:

Take logarithm of both sides. The left-hand side becomes (lgn)(lgn) = lg2 n, the right-hand
side, n. lg (lgn). As n. lg (lgn) ≻ lg2 n, it follows that (lgn)n ≻ nlgn. �

Problem 26. Compare the growth of nlg lg lgn and (lgn)!

Solution:

Take lg of both sides. The left-hand side becomes (lgn).(lg lg lgn), the right-hand side
becomes lg ((lgn)!). Substitute lgn with m is the latter expression to get lg ((m)!) ≈
m lgm. And that is (lgn).(lg lgn). Since (lgn).(lg lgn) ≻ (lgn).(lg lg lgn), it follows that
(lgn)! ≻ nlg lg lgn. �

Problem 27. Let n!! = (n!)!. Compare the growth of n!! and (n− 1)!!× ((n − 1)!)n!.

Solution:

Let (n − 1)! = v. Then n! = nv. We compare

n!! vs (n − 1)!!× ((n − 1)!)n!

(nv)! vs v!× vnv

Apply Stirling’s approximation to both sides to get:

√
2πnv

(nv)nv

env
vs

√
2πv

vv

ev
× vnv

√
2πnv (nv)nv vs

√
2πv e(n−1)v × vv × vnv

Divide by
√
2πv vnv both sides:

√
nnnv vs e(n−1)v × vv

Ignore the
√
n factor on the left. If we derive without it that the left side grows faster,

surely it grows even faster with it. So, consider:

nnv vs e(n−1)v × vv

18

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Raise both sides to 1
v :

nn vs en−1 × v

That is,

nn vs en−1 × (n − 1)!

Apply Stirling’s aproximation second time to get:

nn vs en−1 ×
√
2π(n − 1)

(n − 1)n−1

en−1

That is,

nn vs
√
2π(n − 1) (n − 1)n−1

Since
√
2π(n − 1) (n − 1)n−1 ≈ (n − 1)(n−

1
2), we have

nn vs (n − 1)(n−
1
2)

Clearly, nn ≻ (n − 1)(n−
1
2), therefore n!! ≻ (n − 1)!!× ((n − 1)!)n!. �

Lemma 2. The function series:

S(x) =
ln x

x
+

ln2 x

x2
+

ln3 x

x3
+ . . .

is convergent for x > 1. Furthermore, limx→∞ S(x) = 0.

Proof:

It is well known that the series

S ′(x) =
1

x
+
1

x2
+
1

x3
+ . . .

called geometric series is convergent for x > 1 and S ′(x) = 1
x−1 when x > 1. Clearly,

limx→∞ S
′(x) = 0. Consider the series

S ′′(x) =
1√
x
+

1

(
√
x)2

+
1

(
√
x)3

+ . . . (1.52)

It is a geometric series and is convergent for
√
x > 1, i.e. x > 1, and limx→∞ S

′′(x) = 0.
Let us rewrite S(x) as

S(x) =
1

√
x.

√
x

ln x

+
1

(
√
x)2.

(√
x

ln x

)2 +
1

(
√
x)3.

(√
x

ln x

)3 + . . . (1.53)

For each term fk(x) = 1

(
√
x)k.

(√
x

ln x

)k of S(x), k ≥ 1, for large enough x, it is the case that

fk(x) < gk(x) where gk(x) =
1

(
√
x)

k is the kth term of S ′′(x). To see why this is true, consider

(1.50). Then the fact that S ′′(x) is convergent and limx→∞ S
′′(x) = 0 implies the desired

conclusion. �

19

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 28 ([Knu73], pp. 107). Prove that n
√
n ≈ 1.

Solution:

We will show an even stronger statement: limn→∞

n
√
n = 1. It is known that:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

Note that n
√
n = eln

n
√
n = e(

lnn
n).

e(
lnn
n) = 1+

lnn

n
+

(
lnn
n

)2

2!
+

(
lnn
n

)3

3!
+ . . .

︸ ︷︷ ︸
T(n)

Lemma 2 implies limn→∞ T(n) = 0. It follows that limn→∞

n
√
n = 1. �

We can also say that n
√
n = 1+O

(
lgn
n

)
, n
√
n = 1+ lgn

n +O
(
lg2 n
n2

)
, etc, where the big-Oh

notation stands for any function of the set.

Problem 29 ([Knu73], pp. 107). Prove that n
(

n
√
n− 1

)
≈ lnn.

Solution:

As

n
√
n = 1+

lnn

n
+

(
lnn
n

)2

2!
+

(
lnn
n

)3

3!
+ . . .

it is the case that:

n
√
n − 1 =

lnn

n
+

(
lnn
n

)2

2!
+

(
lnn
n

)3

3!
+ . . .

Multiply by n to get:

n
(

n
√
n − 1

)
= lnn +

(lnn)2

2!n
+

(lnn)3

3!n2
+ . . .

︸ ︷︷ ︸
T(n)

Note that limn→∞ T(n) = 0 by an obvious generalisation of Lemma 2. The claim follows
immediately. �

Problem 30. Compare the growth of nn, (n + 1)n, nn+1, and (n + 1)n+1.

Solution:

nn ≈ (n + 1)n because

lim
n→∞

(n+ 1)n

nn
= lim
n→∞

(
n + 1

n

)n
= lim
n→∞

(
1+

1

n

)n
= e

Clearly, nn ≺ n(n+1) = n.nn. And n(n+1) ≈ (n + 1)(n+1):

lim
n→∞

(n+ 1)n+1

nn+1
= lim
n→∞

(
1 +

1

n

)n+1
= lim
n→∞

(
1+

1

n

)n
lim
n→∞

(
1 +

1

n

)
= e.1 = e

�

20

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 31. Let k be a constant such that k > 1. Prove that

1 + k+ k2 + k3 + . . . + kn = Θ(kn)

Solution:

First assume n is an integer variable. Then

1 + k+ k2 + k3 + . . . + kn =
kn+1 − 1

k− 1
= Θ(kn)

The result can obviously be extended for real n, provided we define appropriately the sum.
For instance, if n ∈ R

+ \ N let the sum be

S(n) = 1 + k+ k2 + k3 + . . . + k⌊n−1⌋ + k⌊n⌋ + kn

By the above result, S(n) = kn +Θ
(
k⌊n⌋

)
= Θ(kn). �

Problem 32. Let k be a constant such that 0 < k < 1. Prove that

1 + k+ k2 + k3 + . . . + kn = Θ(1)

Solution:

1 + k+ k2 + k3 + . . . + kn <

∞∑

t=0

kt =
1

1− k
= Θ(1) �

Corollary 1.

1 + k+ k2 + k3 + . . . + kn =






Θ(1), if 0 < k < 1

Θ(n), if k = 1

Θ(kn), if k > 1

�

Problem 33. Let f(x) = 22
⌊x⌋

and g(x) = 22
⌈x⌉

where x ∈ R
+. Determine which of the

following are true and which are false:

1. f(x) ≈ g(x)

2. f(x) � g(x)

3. f(x) ≺ g(x)

4. f(x) � g(x)

5. f(x) ≻ g(x)

21

Problems with solutions in the Analysis of Algorithms c© Minko Markov

f(x) = 22
⌊x⌋

g(x) = 22
⌈x⌉

x

Figure 1.1: f(x) and g(x) from Problem 33.

22

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Note that ∀x ∈ N
+, ⌊x⌋ = ⌈x⌉, therefore f(x) = g(x) whenever x ∈ N

+. On the other hand,

∀x ∈ R
+ \N+, ⌈x⌉ = ⌊x⌋+ 1, therefore g(x) = 22⌊x⌋+1

= 22.2
⌊x⌋

=
(
22

⌊x⌋)2
= (f(x))2 whenever

x ∈ R
+ \ N+. Figure 1.1 illustrates the way that f(x) and g(x) grow.

First assume that f(x) ≺ g(x). By definition, for every constant c > 0 there exists x0,
such that ∀x ≥ x0, f(x) < c.g(x). It follows for c = 1 there exists a value for the variable,
say x ′, such that ∀x ≥ x ′, f(x) < g(x). However,

⌈x ′⌉ ≥ x ′

Therefore,

f(⌈x ′⌉) < g(⌈x ′⌉)

On the other hand,

⌈x ′⌉ ∈ N
+ ⇒ f(⌈x ′⌉) = g(⌈x ′⌉)

We derived

f(⌈x ′⌉) = g(⌈x ′⌉) and f(⌈x ′⌉) < g(⌈x ′⌉)

We derived a contradiction, therefore

f(x) 6≺ g(x)

Analogously we prove that

f(x) 6≻ g(x)

To see that f(x) 6≈ g(x), note that ∀x̃ ∈ R
+,∃x ′′ ≥ x̃, such that g(x ′′) = (f(x ′′))2. As f(x)

is a growing function, its square must have a higher asymptotic growth rate.

Now we prove that f(x) � g(x). Indeed,

∀x ∈ R
+, ⌊x⌋ ≤ ⌈x⌉⇒

∀x ∈ R
+, 2⌊x⌋ ≤ 2⌈x⌉ ⇒

∀x ∈ R
+, 22

⌊x⌋≤ 22⌈x⌉ ⇒ ∃c > 0, c = const, such that ∀x ∈ R
+, 22

⌊x⌋ ≤ c.22⌈x⌉

Finally we prove that f(x) 6� g(x). Assume the opposite. Since f(x) � g(x), by property 7
on page 4 we derive f(x) ≈ g(x) and that contradicts our result that f(x) 6≈ g(x). �

23

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 2

Iterative Algorithms

In this section we compute the asymptotic running time of algorithms that use the for and
while statements but make no calls to other algorithms or themselves. The time complexity
is expressed as a function of the size of the input, in case the input is an array or a matrix,
or as a function of the upper bound of the loops. Consider the time complexity of the
following trivial algorithm.

Add-1(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 a ← a + i

4 return a

We make the folloing assumptions:

• the expression at line 3 is executed in constant time regardless of how large n is,

• the expression at line 1 is executed in constant time, and

• the loop control variable check and assignment of the for loop at line 2 are executed
in constant time.

Since we are interested in the asymptotic running time, not in the precise one, it suffices to
find the number of times the expression inside the loop (line 3 in this case) is executed as
a function of the upper bound on the loop control variable n. Let that function be f(n).
The time complexity of Add-1 will then be Θ(f(n)). We compute f(n) as follows. First
we substitute the expression inside the loop with a← a+ 1 where a is the counter variable
that is set to zero initially. Then find the value of a after the loop finishes as a function
of n where n is the upper bound n of the loop control variable i. Using that approach,
algorithm Add-1 becomes Add-1-modified as follows.

Add-1-modified(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 a ← a + 1

4 return a

24

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The value that Add-1-modified outputs is
∑n
i=1 1 = n, therefore its time complexity

is Θ(n). Now consider another algorithm:

Add-2(n: nonnegative integer)
1 return n

Clearly, Add-2 is equivalent to Add-1 but the running time of Add-2 is, under the said
assumptions, constant. We denote constant running time by Θ(1)†. It is not incorrect to
say the running time of both algorithms is O(n) but the big-Theta notation is superior as
it grasps precisely—in the asymptotic sense—the algorithm’s running time.

Consider the following iterative algorithm:

Add-3(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← 1 to n

4 a ← a + 1

5 return a

The value it outputs is
n∑

i=1

n∑

j=1

1 =

n∑

i=1

n = n2, therefore its time complexity is Θ(n2).

Algorithm Add-3 has two nested cycles. We can generalise that the running time of k
nested cycles as follows.

Add-generalised(n: nonnegative integer)
1 for i1 ← 1 to n

2 for i2 ← 1 to n

3 . . .
4 for ik ← 1 to n

5 expression

where expression is computed in Θ(1), has running time Θ(nk).

Let us consider a modification of Add-3:

Add-4(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← i to n

4 a ← a + 1

5 return a

†All constants are bit-Theta of each other so we might have as well used Θ(1000) or Θ(0.0001) but we
prefer the simplest form Θ(1).

25

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The running time is determined by the output a and that is:

n∑

i=1

n∑

j=i

1 =

n∑

i=1

(n∑

j=1

1

︸ ︷︷ ︸
n

−

i−1∑

j=1

1

︸ ︷︷ ︸
i−1

)
=

n∑

i=1

(n − i+ 1) =

n∑

i=1

(n + 1) −

n∑

i=1

i =

n(n + 1) −
n(n + 1)

2
=
1

2
n2 +

1

2
n = Θ(n2) (see Problem 4 on page 6.)

It follows that asymptotically Add-4 has the same running time as Add-3. Now consider
a modification of Add-4.

Add-5(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← i+ 1 to n

4 a ← a + 1

5 return a

The running time is determined by the output a and that is:

n∑

i=1

n∑

j=i+1

1 =

n∑

i=1

(n∑

j=1

1

︸ ︷︷ ︸
n

−

i∑

j=1

1

︸ ︷︷ ︸
i

)
=

n∑

i=1

(n − i) =

n∑

i=1

(n) −

n∑

i=1

i =

n2 −
n(n + 1)

2
=
1

2
n2 −

1

2
n = Θ(n2)

Consider the following algorithm:

A2(n: positive integer)
1 a ← 0

2 for i ← 1 to n− 1

3 for j ← i+ 1 to n

4 for k ← 1 to j

5 a ← a + 1

6 return a

We are asked to determine a that A2 returns as a function of n. The answer clearly is

26

Problems with solutions in the Analysis of Algorithms c© Minko Markov

n−1∑

i=1

n∑

j=i+1

j∑

k=1

1, we just need to find an equivalent closed form.

n−1∑

i=1

n∑

j=i+1

j∑

k=1

1 =

n−1∑

i=1

n∑

j=i+1

j =

n−1∑

i=1




n∑

j=1

j−

i∑

j=1

j


 =

n−1∑

i=1

(
1

2
n(n + 1) −

1

2
i(i+ 1)

)
=

n−1∑

i=1

(
1

2
n(n + 1)

)
−
1

2

n−1∑

i=1

(i2 + i) =

1

2
n(n + 1)(n − 1) −

1

2

n−1∑

i=1

i2 −
1

2

n−1∑

i=1

i

But
n∑

i=1

i2 =
1

6
n(n + 1)(2n + 1), therefore

n−1∑

i=1

i2 =
1

6
(n − 1)n(2n − 1). Further,

n−1∑

i=1

i =

1

2
n(n − 1), so we have

1

2
n(n − 1)(n + 1) −

1

12
n(n − 1)(2n − 1) −

1

4
n(n − 1) =

1

2
n(n − 1)

(
n+ 1 −

1

6
(2n − 1) −

1

2

)
=

1

12
n(n − 1)(6n + 3 − 2n + 1) =

1

12
n(n − 1)(4n + 4) =

1

3
n(n − 1)(n + 1)

That implies that the running time of A2 is Θ(n3). Clearly A2 is equivalent to the following
algorithm.

A3(n: positive integer)
1 return n(n − 1)(n + 1)/3

whose running time is Θ(1).

A4(n: positive integer)
1 a ← 0

2 for i ← 1 to n

3 for j ← i+ 1 to n

4 for k ← i+ j− 1 to n

5 a ← a + 1

6 return a

Problem 34. Find the running time of algorithm A4 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

27

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

f(n) =

n∑

i=1

n∑

j=i+1

n∑

k=i+j−1

1

Let us evaluate the innermost sum
n∑

k=i+j−1

1. It is easy to see that the lower boundary

i+ j− 1 may exceed the higher boundary n. If that is the case, the sum is zero because the
index variable takes values from the empty set. More precisely, for any integer t,

n∑

i=t

1 =

{
n− t+ 1 , if t ≤ n
0 , else

It follows that

n∑

k=i+j−1

1 =

{
n − i− j + 2 , if i+ j− 1 ≤ n ⇔ j ≤ n− i+ 1

0 , else

Then

f(n) =

n∑

i=1

n−i+1∑

j=i+1

(n + 2− (i + j))

Now the innermost sum is zero when i + 1 > n − i + 1 ⇔ 2i > n ⇔ i >
⌊
n
2

⌋
, therefore

28

Problems with solutions in the Analysis of Algorithms c© Minko Markov

the maximum i we have to consider is
⌊
n
2

⌋
:

f(n) =

⌊n
2 ⌋∑

i=1

n−i+1∑

j=i+1

(n+ 2 − (i+ j)) =

(n + 2)

⌊n
2 ⌋∑

i=1

n−i+1∑

j=i+1

1 −

⌊n
2 ⌋∑

i=1

i



n−i+1∑

j=i+1

1


 −

⌊n
2 ⌋∑

i=1

n−i+1∑

j=i+1

j =

(n + 2)

⌊n
2 ⌋∑

i=1

(n − i+ 1 − (i+ 1) + 1) −

⌊n
2 ⌋∑

i=1

i(n − i+ 1− (i+ 1) + 1)−

⌊n
2 ⌋∑

i=1



n−i+1∑

j=1

j −

i∑

j=1

j


 =

(n + 2)

⌊n
2 ⌋∑

i=1

(n − 2i + 1) −

⌊n
2 ⌋∑

i=1

i(n− 2i + 1)−

⌊n
2 ⌋∑

i=1

(
(n − i+ 1)(n − i+ 2)

2
−
i(i+ 1)

2

)
=

(n + 2)(n + 1)

⌊n
2 ⌋∑

i=1

1 − 2(n + 2)

⌊n
2 ⌋∑

i=1

i− (n + 1)

⌊n
2 ⌋∑

i=1

i+ 2

⌊n
2 ⌋∑

i=1

i2−

1

2

⌊n
2 ⌋∑

i=1

(
(n+ 1)(n + 2) − i(2n + 3)+ 6 i2− 6 i2 − i)

)
=

(n + 2)(n + 1)

⌊n
2 ⌋∑

i=1

1 − (3n + 5)

⌊n
2 ⌋∑

i=1

i+ 2

⌊n
2 ⌋∑

i=1

i2−

(n + 1)(n + 2)

2

⌊n
2 ⌋∑

i=1

1 +
(2n + 4)

2

⌊n
2 ⌋∑

i=1

i =

⌊n
2

⌋
(n + 1)(n + 2) − (3n + 5)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
+ 2

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊
n
2

⌋
+ 1
)

6
−

1

2

⌊n
2

⌋
(n + 1)(n + 2) + (n + 2)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
=

⌊
n
2

⌋
(n + 1)(n + 2)

2
−

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)
(2n + 3)

2
+

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊
n
2

⌋
+ 1
)

3

29

Problems with solutions in the Analysis of Algorithms c© Minko Markov

When n is even, i.e. n = 2k for some k ∈ N
+,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 1)(2k + 2)

2
−
k(k+ 1)(4k + 3)

2
+
k(k+ 1)(2k + 1)

3
=

k(k+ 1)(4k + 2) − k(k+ 1)(4k + 3)

2
+
k(k+ 1)(2k + 1)

3
=

k(k+ 1)

(
−
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k − 1)

6

When n is odd, i.e. n = 2k+ 1 for some k ∈ N,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 2)(2k + 3)

2
−
k(k+ 1)(4k + 5)

2
+
k(k+ 1)(2k + 1)

3
=

k(k+ 1)(4k + 6) − k(k+ 1)(4k + 5)

2
+
k(k+ 1)(2k + 1)

3
=

k(k+ 1)

(
1

2
+
2k + 1

3

)
=
k(k+ 1)(4k + 5)

6

Obviously, f(n) = Θ(n3). �

A5(n: positive integer)
1 a ← 0

2 for i ← 1 to n

3 for j ← i to n

4 for k ← n + i+ j − 3 to n

5 a ← a + 1

6 return a

Problem 35. Find the running time of algorithm A5 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

Solution:

We have three nested for cycles and it is certainly true that f(n) = O(n3). However, now
f(n) 6= Θ(n3). It is easy to see that for any large enough n, line 5 is executed for only three
values of the ordered triple 〈i, j, k〉. Namely,

〈i, j, k〉 ∈
{
〈1, 1, n − 1〉,
〈1, 1, n〉,
〈1, 2, n− 1〉

}

because the condition in the innermost loop (line 5) requires that i + j ≤ 3. So, f(n) = 3,
thus f(n) = Θ(1). �

Problem 35 raises a question: does it make sense to compute the running time of an iterative
algorithm by counting how many time the expression in the innermost loop is executed?
At lines 2 and 3 of A5 there are condition evaluations and variable increments – can we
assume they take no time at all? Certainly, if that was a segment of a real-world program,
the outermost two loops would be executed Θ(n2) times, unless some sort of optimisation

30

Problems with solutions in the Analysis of Algorithms c© Minko Markov

was applied by the compiler. Anyway, we postulate that the running time is evaluated by
counting how many times the innermost loop is executed. Whether that is a realistic model
for real-world computation or not, is a side issue.

A6(a1, a2, . . . an: array of positive distinct integers, n ≥ 3)
1 S: a stack of positive integers
2 (∗ P(S) is a predicate that is evaluated in Θ(1) time. ∗)
3 (∗ If there are less than two elements in S then P(S) is false. ∗)
4 push(a1, S)
5 push(a2, S)
6 for i ← 3 to n

7 while P(S) do

8 pop(S)
9 push(ai, S)

Problem 36. Find the asymptotic growth rate of running time of A6. Assume the predicate
P is evaluated in Θ(1) time and the push and pop operations are executed in Θ(1) time.

Solution:

Certainly, the running time is O(n2) because the outer loop runs Θ(n) times and the inner
loop runs in O(n) time: note that for each concrete i, the inner loop (line 8) cannot be
executed more than n− 2 times sinse there are at most n elements in S and each execution
of line 8 removes one element from S.

However, a more precise analysis is possible. Observe that each element of the array is
being pushed in S and may be popped out of S later but only once. It follows that line 8
cannot be exesuted more than n times altogether, i.e. for all i, and so the algorithm runs
in Θ(n) time. �

A7(a1, a2, . . . an: array of positive distinct integers, x: positive integer)
1 i ← 1

2 j ← n

3 while i ≤ j do
4 k ←

⌊
i+j
2

⌋

5 if x = ak
6 return k

7 else if x < ak
8 j ← k− 1

9 else i ← k+ 1

10 return −1

Problem 37. Find the asymptotic growth rate of running time of A7.

Solution:

The following is a loop invariant for A7:

31

Problems with solutions in the Analysis of Algorithms c© Minko Markov

For every iteration of the while loop of A7 it is the case that:

j − i+ 1 ≤ n

2t
(2.1)

where the iteration number is t, for some t ≥ 0.
We prove it by induction on t. The basis is t = 0, i.e. the first time the execution reaches
line 3. Then j is n, i is 1, and indeed n−1+1 ≤ n

20
for all sufficiently large n. Assume that

at iteration t, t ≥ 1, (2.1) holds, and there is yet another iteration to go through. Ignore
the possibility x = ak (line 5) because, if that is true then iteration t+ 1 never takes place.
There are exactly two ways to get from iteration t to iteration t+ 1 and we consider them
in separate cases.

Case I: the execution reaches line 8 Now j becomes
⌊
i+j
2

⌋
− 1 and i stays the same.

j − i

2
+
1

2
≤ n

2t+1
divide (2.1) by 2

j+ i− 2i

2
+
1

2
≤ n

2t+1

j + i

2
− i+

1

2
≤ n

2t+1

j+ i

2
− i+

1

2
− 1+ 1 ≤ n

2t+1

j+ i

2
− 1 − i+

1

2
+ 1 ≤ n

2t+1

j+ i

2
− 1− i+ 1 ≤ n

2t+1
since

1

2
> 0

⌊
j+ i

2

⌋
− 1

︸ ︷︷ ︸
the new j

− i+ 1 ≤ n

2t+1
since ⌊m⌋ ≤m, ∀m ∈ R

+

And so the induction step follows from the induction hypothesis.

Case II: the execution reaches line 9 Now j stays the same and i becomes

⌊
i+ j

2

⌋
+1.

j− i

2
+
1

2
≤ n

2t+1
divide (2.1) by 2

2j − j− i

2
+
1

2
≤ n

2t+1

j −
j+ i

2
+
1

2
≤ n

2t+1

j −
i+ j

2
+
1

2
− 1 + 1 ≤ n

2t+1

j−
i+ j

2
−
1

2
+ 1 ≤ n

2t+1

j−

(
i+ j

2
+
1

2

)
+ 1 ≤ n

2t+1

j −

(⌊
i+ j

2

⌋
+ 1

)

︸ ︷︷ ︸
the new i

+1 ≤ n

2t+1
since

⌊
i+ j

2

⌋
+ 1 ≥ i+ j

2
+
1

2
, ∀i, j ∈ N

+

32

Problems with solutions in the Analysis of Algorithms c© Minko Markov

And so the induction step follows from the induction hypothesis.

Having proven (2.1), we consider the maximum value that t reaches, call it tmax. During
that last iteration of the loop, the values of i and j become equal, because the loop stops
executing when j < i. Therefore, j − i = 0 during the execution of iteration tmax—before
i gets incremented or j gets decremented. So, substituting t with tmax and j − i with 0 in
the invariant, we get 2tmax ≤ n ⇔ tmax < ⌈lgn⌉. It follows that the running time of A7 is
O(lgn).

The following claim is a loop invariant for A7:

For every iteration of the while loop of A7, if the iteration number is t, t ≥ 0,
it is the case that:

n

2t+1
− 4 < j− i (2.2)

We prove it by induction on t. The basis is t = 0, i.e. the first time the execution reaches
line 3. Then j is n, i is 1, and indeed n

21+0 − 4 = n
2 − 4 < n − 1, for all sufficiently large

n. Assume that at iteration t, t ≥ 1, (2.2) holds, and there is yet another iteration to go
through. Ignore the possibility x = ak (line 5) because, if that is true then iteration t + 1
never takes place. There are exactly two ways to get from iteration t to iteration t+ 1 and
we consider them in separate cases.

Case I: the execution reaches line 8 Now j becomes

⌊
i+ j

2

⌋
− 1 and i stays the same.

n

2t+2
− 2 <

j− i

2
divide (2.2) by 2

n

2t+2
− 2 <

j+ i− 2i

2
n

2t+2
− 2 <

j+ i

2
− i

n

2t+2
− 4 <

j+ i

2
− 2− i

n

2t+2
− 4 <

⌊
j+ i

2

⌋
− 1

︸ ︷︷ ︸
the new j

− i since m− 2 ≤ ⌊m⌋ − 1, ∀m ∈ R
+

33

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Case II: the execution reaches line 9 Now j stays the same and i becomes

⌊
i+ j

2

⌋
+1.

n

2t+2
− 2 <

j− i

2
n

2t+2
− 2 <

2j− j − i

2
n

2t+2
− 2 < j−

j+ i

2
n

2t+2
− 4 < j−

j+ i

2
− 2

n

2t+2
− 4 < j−

(
j+ i

2
+ 2

)

n

2t+2
− 4 < j−

(⌊
j+ i

2

⌋
+ 1

)

︸ ︷︷ ︸
the new i

since m + 2 ≥ ⌊m⌋ + 1, ∀m ∈ R
+

Having proven (2.2), it is trivial to prove that in the worst case, e.g. when x is not in the
array, the loop is executed Ω(lgn) times. �

Problem 38. Determine the asymptotic running time of the following programming seg-
ment:

s = 0;

for(i = 1; i * i <= n; i ++)

for(j = 1; j <= i; j ++)

s += n + i - j;

return s;

Solution:

The segment is equivalent to:

s = 0;

for(i = 1; i <= floor(sqrt(n)); i ++)

for(j = 1; j <= i; j ++)

s += n + i - j;

return s;

As we already saw, the running time is Θ
((√

n
)2)

and that is Θ(n). �

Problem 39. Assume that An×n, Bn×n, and Cn×n are matrices of integers. Determine
the asymptotic running time of the following programming segment:

for(i = 1; i <= n; i ++)

for(j = 1; j <= n; j ++) {
s = 0;

for(k = 1; k <= n; k ++)

s += A[i][k] * B[k][j];

C[i][j] = s; }
return s;

34

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Having in mind the analysis of Add-3 on page 25, clearly this is a Θ(n3) algorithm. How-
ever, if consider the order of growth as a function of the length of the input, the order of

growth is Θ
(
m

3
2

)
, where m is the length of the input, i.e. m is the order of the number of

elements in the matrices and m = Θ(n2). �

A8(a1, a2, . . . an: array of positive integers)
1 s ← 0

2 for i ← 1 to n− 4

3 for j ← i to i+ 4

4 for k ← i to j

5 s ← s + ai

Problem 40. Determine the running time of algorithm A8.

Solution:

The outermost loop is executed n − 4 times (assume large enough n). The middle loop is
executed 5 times precisely. The innermost loop is executed 1, 2, 3, 4, or 5 times for j equal
to i, i+ 1, i+ 2, i+ 3, and i+ 4, respectively. Altogether, the running time is Θ(n). �

A9(n: positive integer)
1 s ← 0

2 for i ← 1 to n− 4

3 for j ← 1 to i+ 4

4 for k ← i to j

5 s ← s + 1

6 return s

Problem 41. Determine the running time of algorithm A9. First determine the value it
returns as a function of n.

Solution:

We have to evaluate the sum:

n−4∑

i=1

i+4∑

j=1

j∑

k=i

1

Having in mind that

j∑

k=i

1 =

{
j− i+ 1, if j ≥ i
0, else

35

Problems with solutions in the Analysis of Algorithms c© Minko Markov

we rewrite the sum as:

n−4∑

i=1




i−1∑

j=1

j∑

k=i

1

︸ ︷︷ ︸
this is 0

+

i+4∑

j=i

j∑

k=i

1




=

n−4∑

i=1

i+4∑

j=i

(j − i+ 1) =

n−4∑

i=1

(
(i − i+ 1) + (i + 1 − i+ 1) + (i+ 2 − i+ 1) + (i + 3− i+ 1) + (i+ 4 − i+ 1)

)
=

n−4∑

i=1

(1 + 2+ 3 + 4+ 5) = 15(n − 4)

So, algorithm A9 returns 15(n − 4). The time complexity, though, is Ω(n2) because the
outer two loops require Ω(n2) work. �

A10(n: positive integer)
1 a ← 0

2 for i ← 0 to n− 1

3 j← 1

4 while j < 2n do

5 for k ← i to j

6 a ← a + 1

7 j← j + 2

8 return a

Problem 42. Find the running time of algorithm A10 by determining the value of a it
returns as a function f(n) of n. Find a closed form for f(n).

Solution:

f(n) =

n−1∑

i=0

∑

j∈{1,3,5,...,2n−1}

j∑

k=i

1

Let n ′ = n− 1. Then

j ∈ {1, 3, 5, . . . , 2n − 1}⇔ j ∈ {1, 3, 5, . . . , 2n ′ + 1}

But {1, 3, 5, . . . , 2n ′ + 1} = {2× 0+ 1, 2× 1+ 1, 2× 2+ 1, . . . , 2× n ′ + 1}. So we can rewrite
the sum as:

f(n) =

n−1∑

i=0

n−1∑

l=0

2l+1∑

k=i

1

We know that

2l+1∑

k=i

1 =

{
2l + 1 − i+ 1, if 2l+ 1 ≥ i⇔ l ≤

⌈
i−1
2

⌉

0, otherwise

36

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Let
⌈
i−1
2

⌉
be called i ′. it must be case that

f(n) =

n−1∑

i=0




i ′−1∑

l=0

2l+1∑

k=i

1

︸ ︷︷ ︸
0

+

n−1∑

l=i ′

2l+1∑

k=i︸ ︷︷ ︸
2l+2−i




=

n−1∑

i=0

n−1∑

l=i ′
(2l + 2− i)

=

n−1∑

i=0

(
(2 − i)

n−1∑

l=i ′
1+ 2

n−1∑

l=i ′
l

)
=

=

n−1∑

i=0

(
(2 − i)(n − 1 − i ′ + 1) + 2

n−1∑

l=i ′
l

)
=

=

n−1∑

i=0

(
(2 − i)(n − i ′) + 2

n−1∑

l=i ′
l

)
=

//
since

q∑

k=p

k =
1

2
(q + p)(q − p + 1)

=

n−1∑

i=0

(
(2 − i)(n − i ′) + 2× 1

2
× (n − 1 + i ′)(n − 1− i ′ + 1)

)
=

=

n−1∑

i=0

(
(2 − i)(n − i ′) + (n − 1+ i ′)(n − i ′)

)
=

=

n−1∑

i=0

(
(n − i ′)

(
(2 − i) + (n − 1 + i ′)

))
=

=

n−1∑

i=0

(n − i ′)(n + (−i+ 1 + i ′)) (2.3)

But

− i+ 1 + i ′ = −i+ 1+

⌈
i− 1

2

⌉
=

⌈
−i+ 1 +

i− 1

2

⌉
=

⌈
−2i+ 2 + i− 1

2

⌉
=

⌈
−i+ 1

2

⌉
=

⌈
−
i− 1

2

⌉
= −

⌊
i− 1

2

⌋

37

Problems with solutions in the Analysis of Algorithms c© Minko Markov

since ∀x ∈ R, ⌈−x⌉ = − ⌊x⌋. Therefore, (2.3) equals

n−1∑

i=0

(
n−

⌈
i− 1

2

⌉)(
n−

⌊
i− 1

2

⌋)
=

n−1∑

i=0

(
n2 − n

⌊
i− 1

2

⌋
− n

⌈
i− 1

2

⌉
+

⌈
i− 1

2

⌉⌊
i− 1

2

⌋)
=

n2
n−1∑

i=0

1− n

n−1∑

i=0




⌊
i− 1

2

⌋
+

⌊
i− 1

2

⌋

︸ ︷︷ ︸
i−1


+

n−1∑

i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n2(n) − n

n−1∑

i=0

(i− 1) +

n−1∑

i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 − n

(
n−1∑

i=0

i−

n−1∑

i=0

1

)
+

n−1∑

i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 − n

(
(n − 1)n

2
− n

)
+

n−1∑

i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 −
n2(n − 3)

2
+

n−1∑

i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 + 3n2

2
+

n−1∑

i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
(2.4)

By (6.33) on page 176,

n−1∑

i=0

⌊
i− 1

2

⌋⌈
i− 1

2

⌉
=






(n − 2)n(2n − 5)

24
, n− 1 odd ⇔ n even

(n − 3)(n − 1)(2n − 1)

24
, n− 1 even⇔ n odd

I. Suppose n is even. Then

f(n) =
n3 + 3n2

2
+

(n − 2)n(2n − 5)

24

=
12(n3 + 3n2) + (2n3 − 9n2 + 10n)

24

=
14n3 + 27n2 + 10n

24

=
n(2n + 1)(7n + 10)

24

38

Problems with solutions in the Analysis of Algorithms c© Minko Markov

II. Suppose n is odd. Then

f(n) =
n3 + 3n2

2
+

(n − 3)(n − 1)(2n − 1)

24

=
12n3 + 36n2 + 2n3 − 9n2 + 10n − 3

24

=
(n + 1)(14n2 + 13n − 3)

24

Obviously, f(n) = Θ(n3) in either case. �

Asymptotics of bivariate functions

Our notations from Chapter 1 can be generalised for two variables as follows. A bivariate
function f(n,m) is asymptotically positive iff

∃n0∃m0 : ∀n ≥ n0∀m ≥m0, f(n,m) > 0

Definition 2. Let g(n,m) be an asymptotically positive function with real domain and
codomain. Then

Θ(g(n,m)) =
{
f(n,m) | ∃c1, c2 > 0, ∃n0,m0 > 0 :

∀n ≥ n0,∀m ≥m0, 0 ≤ c1.g(n,m) ≤ f(n,m) ≤ c2.g(n,m)
}
�

Pattern matching is a computational problem in which we are given a text and a pattern
and we compute how many times or, in a more elaborate version, at what shifts, the pattern
occurs in the text. More formally, we are given two arrays of characters T [1..n] and P[1..m],
such that n ≥ m. For any k, 1 ≤ k ≤ n−m + 1, we have a shift at position k iff:

T [k] =P[1]

T [k+ 1] =P[2]

. . .

T [k+m− 1] =P[m]

The problem then is to determine all the valid shifts. Consider the following algorithm for
that problem.

Naive-Pattern-Mathing(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m + 1

3 if T [i, i+ 1, . . . , i+m− 1] = P

4 print “shift at” i

Problem 43. Determine the running time of algorithm Naive-Pattern-Mathing.

39

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

The algorithm is ostensibly Θ(n) because it has a single loop with the loop control variable
running from 1 to n. That analysis, however, is wrong because the comparison at line 3
cannot be performed in constant time. Have in mind thatm can be as large as n. Therefore,
the algorihm is in fact:

Naive-Pattern-Mathing-1(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m + 1

3 Match ← True

4 for j ← 1 to m

5 if T [i+ j− 1] 6= P[j]
6 Match ← False

7 if Match
8 print “shift at” i

For obvious reasons this is a Θ((n − m).m) algorithm: both the best-case and the
worst-case running times are Θ((n −m).m)†. Suppose we improve it to:

Naive-Pattern-Mathing-2(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m + 1

3 Match ← True

4 j ← 1

5 while Match And j ≤ m do

6 if T [i+ j− 1] = P[j]

7 j ← j+ 1

8 else

9 Match ← False

10 if Match
11 print “shift at” i

Naive-Pattern-Mathing-2 has the advantage that once a mismatch is found (line 9)
the inner loop “breaks”. Thus the best-case running time is Θ(n). A best case, for instance,
is:

T = aa . . . a︸ ︷︷ ︸
n times

and P = bb . . . b︸ ︷︷ ︸
m times

However, the worst case running time is still Θ((n −m).m). A worst case is, for instance:

T = aa . . . a︸ ︷︷ ︸
n times

and P = aa . . . a︸ ︷︷ ︸
m times

It is easy to prove that (n −m).m is maximised when m varies and n is fixed for m ≈ n
2

and achieves maximum value Θ(n2). It follows that all the naive string matchings are, at
worst, quadratic algorithms. �

†Algorithms that have the same—in asymptotic terms—running time for all inputs of the same length
are called oblivious.

40

Problems with solutions in the Analysis of Algorithms c© Minko Markov

It is known that faster algorithms exist for the pattern matching problem. For instance,
the Knuth-Morris-Pratt [KMP77] algorithm that runs in Θ(n) in the worst case.

Problem 44. For any two strings x and y of the same length, we say that x is a circular
shift of y iff y can be broken into substrings—one of them possibly empty—y1 and y2:

y = y1 y2

such that x = y2 y1. Find a linear time algorithm, i.e. Θ(n) in the worst case, that computes
whether x is a circular shift of y or not. Assume that x 6= y.

Solution:

Run the linear time algorithm for string matching of Knuth-Morris-Pratt with input yy (y
concatenated with itself) as text and x as pattern. The algorithm will output one or more
valid shifts iff x is a circular shift of y, and zero valid shifts, otherwise. To see why, consider
the concatenation of y with itself when it is a circular shift of x for some y1 and y2, such
that y = y1 y2 and x = y2 y1:

y y = y1 y2 y1︸ ︷︷ ︸
this is x

y2

The running time is Θ(2n), i.e. Θ(n), at worst. �

41

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 3

Recursive Algorithms and

Recurrence Relations

3.1 Preliminaries

A recursive algorithm is an algorithm that calls itself, one or more times on smaller inputs.
To prevent an infinite chain of such calls there has to be a value of the input for which the
algorithm does not call itself.

A recurrence relation in one variable is an equation, i.e. there is an “=” sign “in the
middle”, in which a function of the variable is equated to an expression that includes the
same function on smaller value of the variable. In addition to that for some basic value of
the variable, typically one or zero, an explicit value for the function is defined – that is the
initial condition†. The variable is considered by default to take nonnegative integer values,
although one can think of perfectly valid recurrence relations in which the variable is real.

Typically, in the part of the relation that is not the initial condition, the function of the
variable is written on the left-hand side of the “=” sign as, say, T(n), and the expression,
on the right-hand side, e.g. T(n) = T(n − 1) + 1. If the initial condition is, say, T(0) = 0,
we typically write:

T(n) = T(n − 1) + 1, ∀n ∈ N
+ (3.1)

T(0) = 0

It is not formally incorrect to write the same thing as:

T(n − 1) = T(n − 2) + 1, ∀n ∈ N
+, n 6= 1

T(0) = 0

The equal sign is interpreted as an assignment from right to left, just as the equal sign in
the C programming language, so the following “unorthodox” way of describing the same

†Note there can be more than one initial condition as in the case with the famous Fibonacci numbers:

F(n) = F(n − 1) + F(n − 2), ∀n ∈ N
+
, n 6= 1

F(1) = 1

F(0) = 0

The number of initial conditions is such that the initial conditions prevent “infinite descent”.

42

Problems with solutions in the Analysis of Algorithms c© Minko Markov

relation is discouraged :

T(n − 1) + 1 = T(n), ∀n ∈ N
+

0 = T(0)

Each recurrence relation defines an infinite numerical sequence, provided the variable
is integer. For example, (3.1) defines the sequence 0, 1, 2, 3, Each term of the relation,
except for the terms defined by the initial conditions, is defined recursively, i.e. in terms of
smaller terms, hence the name. To solve a recurrence relation means to find a non-recursive
expression for the same function – one that defines the same sequence. For example, the
solution of (3.1) is T(n) = n.

It is natural to describe the running time of a recursive algorithm by some recurrence
relation. However, since we are interested in asymptotic running times, we do not need the
precise solution of a “normal” recurrence relation as described above. A normal recurrence
relation defines a sequence of numbers. If the time complexity of an algorithm as a worst-
case analysis was given by a normal recurrence relation then the number sequence a1, a2,
a3, . . . , defined by that relation, would describe the running time of algorithm precisely,
i.e. for input of size n, the maximum number of steps the algorithm makes over all inputs
of size n is precisely an. We do not need such a precise analysis and often it is impossible
to derive one. So, the recurrence relations we use when analysing an algorithm typically
have bases Θ(1), for example:

T(n) = T(n − 1) + 1, n ≥ 2 (3.2)

T(1) = Θ(1)

Infinitely many number sequences are solutions to (3.2). To solve such a recurrence relation
means to find the asymptotic growth of any of those sequences. The best solution we can
hope for, asymptotically, is the one given by the Θ notation. If we are unable to pin down
the asymptotic growth in that sense, our second best option is to find functions f(n) and
g(n), such that f(n) = o(g(n)) and T(n) = Ω(f(n)) and T(n) = O(g(n)). The best solution
for the recurrence relation (3.2), in the asymptotic sense, is T(n) = Θ(n). Another solution,
not as good as this one, is, for example, T(n) = Ω(

√
n) and T(n) = O(n2).

In the problems that follow, we distinguish the two types of recurrence relation by the
initial conditions. If the initial condition is given by a precise expression as in (3.1) we have
to give a precise answer such as T(n) = n, and if the initial condition is Θ(1) as in (3.2) we
want only the growth rate.

It is possible to omit the initial condition altogether in the description of the recurrence.
If we do so we assume tacitly the initial condition is T(c) = Θ(1) for some positive constant
c. The reason to do that may be that it is pointless to specify the usual T(1); however,
it may be the case that the variable never reaches value one. For instance, consider the
recurrence relation

T(n) = T
(⌊n
2

⌋
+ 17

)
+ n

which we solve below (Problem 51 on page 57). To specify “T(1) = Θ(1)” for it is wrong.

3.1.1 Iterators

The recurrence relations can be partitioned into the following two classes, assuming T is
the function of the recurrence relations as above.

43

Problems with solutions in the Analysis of Algorithms c© Minko Markov

1. The ones in which T appears only once on the right-hand side as in (3.1).

2. The ones in which T appears mutiple times on the right-hand side, for instance:

T(n) = T(n− 1) + T(n − 2) + T(n − 3) + n (3.3)

We will call them relations with single occurrence and with multiple occurrences, respec-
tively. We find it helpful to make that distinction because in general only the relations with
single occurrence are ameaneable to the method of unfolding (see below). If the relation is
with single occurrence we define the iterator of the relation as the iterative expression that
shows how the variable decreases. For example, the iterator of (3.1) is:

n→ n − 1 (3.4)

It is not practical to define iterators for relations with multiple occurrences. If we wanted
to define iterators for them as well, they would have a set of functions on the right-hand
side, for instance the iterator of (3.3) would be

n→ {n − 1, n − 2, n − 3}

and that does help the analysis of the relation. So, we define iterators only for relations
with single occurrence. The iterators that are easiest to deal with (and, fortunately, occur
often in practice) are the ones in which the function on the right-hand side is subtraction
or division (by constant > 1):

n→ n − c, c > 0 (3.5)

n→
n

b
, b > 1 (3.6)

Another possibility is that function to be some root of n:

n→ d
√
n, d > 1 (3.7)

Note that the direction of the assignment in the iterator is the opposite to the one in
the recurrence relation (compare (3.1) with (3.4)). The reason is that a recurrence has to
phases: descending and ascending. In the descending phase we start with some value n
for the variable and decrease it in successive steps till we reach the initial condition; in
the ascending phase we go back from the initial condition “upwards”. The left-to-right
direction of the iterator refers to the descending phase, while the right-to-left direction of
the assignment in the recurrence refers to the ascending phase.

It is important to be able to estimate the number of times an iterator will be executed before
its variable becomes 1 (or whatever value the initial conditions specify). If the variable n
is integer, the iterator n→ n − 1 is the most basic one we can possibly have. The number
of times it is executed before n becomes any a priori fixed constant is Θ(n). That has to
be obvious. Now consider (3.5). We ask the same question: how many times it is executed
before n becomes a constant. Substitute n by cm and (3.5) becomes:

cm→ c(m − 1) (3.8)

44

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The number of times (3.8) is executed (before m becomes a constant) is Θ(m). Since
m = Θ(n), we conclude that (3.5) is executed Θ(n) times.

Consider the iterator (3.6). To see how many times it is executed before n becomes
a constant (fixed a priori)) can be estimated as follows. Substitute n by bm and (3.6)
becomes

bm → bm−1 (3.9)

(3.9) is executed Θ(m) times because m → m − 1 is executed Θ(m) times. Since m =

logb n, we conclude that (3.6) is executed Θ(logb n) times, i.e. Θ(lgn) times. We see that
the concrete value of b is immaterial with respect to the asymptotics of the number of
executions, provided b > 1.

Now consider (3.7). To see how many times it is executed before n becomes a constant,
substitute n by dd

m
. (3.7) becomes

dd
m

→ d
dm

d = dd
m−1

(3.10)

(3.10) is executed Θ(m) times. As m = logd logd n, we conclude that (3.7) is executed
Θ(logd logd n) times, i.e. Θ(lg lgn) times. Again we see that the value of the constant in
the iterator, namely d, is immaterial as long as d > 1.

Let us consider an iterator that decreases even faster than (3.7):

n→ lgn (3.11)

The number of times it is executed before n becomes a constant is lg∗ n, which follows right
from Definion 1 on page 14.

Let us summarise the rates of decrease of the iterators we just considered assuming the
mentioned “constants of decrease” b and d are 2.

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n − 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→
√
n lg lgn lg(2) n

n→ lgn lg∗ n lg∗ n

There is a gap in the table. One would ask, what is the function f(n), such that the iterator
n → f(n) is executed, asymptotically, lg lg lgn times, i.e. lg(3) n times. To answer that
question, consider that f(n) has to be such that if we substitute n by 2m, the number
of executions is the same as in the iterator m →

√
m. But m →

√
m is the same as

lgn→
√
lgn, i.e. n→ 2

√
lgn. We conclude that f(n) = 2

√
lgn. To check this, consider the

iterator

n→ 2
√
lgn (3.12)

Substitute n by 22
2m

in (3.12) to obtain:

22
2m

→ 2

√
lg 222

m

= 2
√
22

m

= 22
2m

2
= 22

2m−1

(3.13)

45

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Clearly, (3.13) is executed m = lg lg lgn = lg(3) n times.
A further natural question is, what the function φ(n) is, such that the iterator n→ φ(n)

is executed lg(4) n times. Applying the reasoning we used to derive f(n), φ(n) has to be
such that if we substitute n by 2m, the number of executions is the same as in m→ 2

√
lgm.

As m = lgn, the latter becomes lgn→ 2
√
lg lgn, i.e. n→ 22

√
lg lgn

. So, φ(n) = 22
√

lg lgn
. We

can fill in two more rows in the table:

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n − 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→
√
n lg lgn lg(2) n

n→ 2
√
lgn lg lg lgn lg(3) n

n→ 22
√

lg lgn
lg lg lg lgn lg(4) n

n→ lgn lg∗ n lg∗ n

Let us define, analogously to Definion 1, the function base-two iterated exponent.

Definition 3 (iterated exponent). Let i be a nonnegative integer.

itexp(i)(n) =

{
n, if i = 0

2itexp
(i−1)(n), if i > 0

�

Having in mind the results in the table, we conjecture, and it should not be too difficult to
prove by induction, that the iterator:

n→ itexp(k)
(√

lg(k) n

)
(3.14)

is executed lg(k+2) n times for k ∈ N.

3.1.2 Recursion trees

Assume we are given a recurrence relation of the form:

T(n) = k1T(f1(n)) + k2T(f2(n)) + . . . + kpT(fp(n)) + φ(n) (3.15)

where ki, i ≤ i ≤ p are positive integer constants, fi(n) for 1 ≤ i ≤ p are integer-valued
functions such that n > f(n) for all n ≥ n0 where n0 is the largest (constant) value of the
argument in any initial condition, and φ(n) is some positive function. It is not necessary
φ(n) to be positive as the reader will see below; however, if T(n) describes the running
time of a recursive algorithm then φ(n) has to be positive. We build a special kind of
rooted tree that corresponds to our recurrence relation. Each node of the tree corresponds
to one particular value of the variable that appears in the process of unfolding the relation,
the value that corresponds to the root being n. That value we call the level of the node.
Further, with each node we associate φ(m) where m is the level of that node. We call that,
the cost of the node. Further, each node—as long as no initial condition has been reached

46

Problems with solutions in the Analysis of Algorithms c© Minko Markov

cost (n − 2)2cost (n − 2)2 cost (n − 2)2 cost (n − 2)2

cost (n − 1)2 cost (n− 1)2level n − 1

level n − 2

level n cost n2

Figure 3.1: The recursion tree of T(n) = 2T(n − 1) + n2.

yet—has k1 + k2 + . . . + kp children, ki of them being at level defined by fi for 1 ≤ i ≤ p.
For example, if our recurrence is

T(n) = 2T(n − 1) + n2

the recursion tree is as shown on Figure 3.1. It is a complete binary tree. It is binary
because there are two invocations on the right side, i.e. k1 + k2 + . . .+ kp = 2 in the above
terminology. And it is complete because it is a recurrence with a single occurrence. Note
that if k1 + k2 + . . . + kp equals 1 then the recursion tree degenerates into a path.

The size of the tree depends on n so we can not draw the whole tree. The figure is
rather a suggestion about it. The bottom part of the tree is missing because we have not
mentioned the initial conditions. The solution of the recursion—and that is the goal of the
tree, to help us solve the recursion—is the total sum of all the costs. Typically we sum by
levels, so in the current example the sum will be

n2 + 2(n − 1)2 + 4(n − 2)2 + . . .

The general term of this sum is 2k(n− k)2. The “. . . ” notation hides what happens at the
right end, however, we agreed the initial condition is for some, it does not matter, what
constant value of the variable. Therefore, the sum

n∑

k=0

2k(n − k)2

has the same growth rate as our desired solution. Let us find a closed form for that sum.

n∑

k=0

2k(n − k)2 = n2
n∑

k=0

2k − 2n

n∑

k=0

2kk+

n∑

k=0

2kk2

Having in mind Problem 123 on page 160 and Problem 124 on page 160, that expression

47

Problems with solutions in the Analysis of Algorithms c© Minko Markov

level n − 1

level n − 2

level n 1

1

1 1

111

1 1 1 1 1 1 1 1
level n − 3

Figure 3.2: The recursion tree of T(n) = 2T(n − 1) + 1.

becomes

n2(2n+1 − 1) − 2n((n − 1)2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

n2.2n+1 − n2 − 2n(n.2n+1 − 2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

2.n2.2n+1 − n2 − 2.n2.2n+1 + 2n.2n+1 − 4n − 2n2n+1 + 4.2n+1 − 6 =

4.2n+1 − n2 − 4n − 6

It follows that T(n) = Θ(2n).

The correspondence between a recurrence relation and its recursion tree is not necessarily
one-to-one. Consider the recurrence relation

T(n) = 2T(n − 1) + 1, n ≥ 2 (3.16)

T(1) = Θ(1)

and its recursion tree (Figure 3.2). The cost at level n is 1, at level n− 1 is 2, at level n− 2

is 4, at level n − 3 is 8, etc. The tree is obviously complete. Let us now rewrite (3.2) as
follows.

T(n) = 2T(n − 1) + 1 ⇔ T(n) = T(n− 1) + T(n − 1) + 1

T(n − 1) = 2T(n − 2) + 1

T(n) = T(n − 1) + 2T(n − 2) + 2

48

Problems with solutions in the Analysis of Algorithms c© Minko Markov

level n − 1

level n − 2

level n 2

2

2

22

2 2 2 2 2
level n − 3

Figure 3.3: The recursion tree of T(n) = T(n − 1) + 2T(n − 2) + 2.

We have to alter the initial conditions for this rewrite, adding T(2) = 3. Overall the
recurrence becomes

T(n) = T(n − 1) + 2T(n − 2) + 2 (3.17)

T(2) = 3

T(1) = 1

Recurrences (3.2) and (3.17) are equivalent. One can say these are different ways of writing
down the same recurrence because both of them define one and the same sequence, namely
1, 3, 7, 15, . . . However, their recursion trees are neither the same nor isomorphic. Figure 3.3
shows the tree of (3.17). To give a more specific example, Figure 3.4 shows the recursion
tree of (3.17) for n = 5. It shows the whole tree, not just the top, because the variable has
a concrete value. Therefore the initial conditions are taken into account. The reader can
easily see the total sum of the costs over the tree from Figure 3.4 is 31, the same as the tree
from Figure 3.2 for n = 5. However, the sum 31 on Figure 3.2 is obtained as 1+2+4+8+16,
if we sum by levels. In the case with Figure 3.4 we do not have obvious definition of levels.

• If we define the levels as the vertices that have the same value of the variable, we have
5 levels and the sum is derived, level-wise, as 2 + 2+ 6 + 15 + 6 = 31.

• If we define the levels as the vertices that are at the same distance to the root, we
have only 4 levels and the sum is derived, level-wise, as 2 + 6+ 18 + 5 = 31.

Regardless of how we define the levels, the derivation is not 1+ 2 + 4+ 8 + 16.

49

Problems with solutions in the Analysis of Algorithms c© Minko Markov

2

2

2

22

3 3 3 3 3

11 1 1 1 1

Figure 3.4: The recursion tree of T(n) = T(n − 1) + 2T(n − 2) + 2, T(2) = 3,
T(1) = 1, for n = 5.

3.2 Problems

Our repertoire of methods for solving recurrences is:

• by induction,

• by unfolding,

• by considering the recursion tree,

• by the Master Theorem, and

• by the method of the characteristic equation.

3.2.1 Induction, unfolding, recursion trees

Problem 45. Solve

T(n) = 2T(n − 1) + 1 (3.18)

T(0) = 0

Solution:

We guess that T(n) = 2n − 1 for all n ≥ 1 and prove it by induction on n.

50

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Basis: n = 1. We have T(1) = 2T(0) + 1 by substituting n with 1. But T(0) = 0, thus
T(1) = 2× 0+ 1 = 1. On the other hand, substituting n with 1 in our guessed solution, we
have 21 − 1 = 1.

Inductive hypothesis: assume T(n) = 2n − 1 for some n > 1.

Inductive step: T(n+1) = 2T(n)+1 by definition. Apply the inductive hypothesis to obtain
T(n + 1) = 2 (2n − 1) + 1 = 2n+1 − 1. �

The proofs by induction have one major drawback – making a good guess can be a form of
art. There is no recipe, no algorithm for making a good guess in general. It makes sense
to compute several initial values of the sequence defined by the recurrence and try to see
a pattern in them. In the last problem, T(1) = 1, T(2) = 3, T(3) = 7 and it is reasonable
to assume that T(n) is 2n − 1. Actually, if we think about (3.18) in terms of the binary
representation of T(n), it is pretty easy to spot that (3.18) performs a shift-left by one
position and then turns the least significant bit from 0 into 1. As we start with T(1) = 1,
clearly

T(n) = 1 1 1 . . . 1︸ ︷︷ ︸
n times

b

For more complicated recurrence relations, however, seeing a pattern in the initial values
of the sequence, and thus making a good guess, can be quite challenging. If one fails to
see such a pattern it is a good idea to check if these numbers are found in The On-Line
Encyclopedia of Integer Sequences [Slo]. Of course, this advice is applicable when we solve
precise recurrence relations, not asymptotic ones.

Problem 46. Solve by unfolding

T(n) = T(n − 1) + n (3.19)

T(0) = 1

Solution:

By unfolding (also called unwinding) of the recurrence down to the initial condition.

T(n) = T(n − 1) + n directly from (3.19)

= T(n − 2) + n − 1+ n substitute n with n− 1 in (3.19)

= T(n − 3) + n − 2+ n − 1+ n substitute n − 1 with n − 2 in (3.19)

. . .

= T(0) + 1+ 2 + 3+ . . . + n − 2 + n− 1 + n =

= 1 + 1 + 2+ 3 + . . . + n− 2 + n − 1+ n =

= 1 +
n(n + 1)

2

This method is considered to be not as formally precise as the induction. The reason is
that we inevitably skip part of the derivation—the dot-dot-dot “. . . ” part—leaving it to
the imagination of the reader to verify the derived closed formula. Problem 46 is trivially
simple and it is certain beyond any doubt that if we start with T(n− 3) +n− 2+n− 1+n

and systematically unfold T(i), decrementing by one values of i, eventually we will “hit”

51

Problems with solutions in the Analysis of Algorithms c© Minko Markov

the initial condition T(0) and the “tail” will be 1 + 2 + 3 + . . . + n − 2 + n − 1 + n. The
more complicated the expression is, however, the more we leave to the imagination of the
reader when unfolding.

One way out of that is to use the unfolding to derive a closed formula and then prove it
by induction. �

Problem 47. Solve

T(n) = 2T
(⌊n
2

⌋)
+ n (3.20)

T(1) = Θ(1) (3.21)

Solution:

We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.22)

There is a potential problem with the initial condition because for n = 1 the right-hand
side of (3.22) becomes c.1. lg 1 = 0, and 0 6= Θ(1). However, it is easy to deal with that
issue, just do not take n = 1 as basis. Taking n = 2 as basis works as c.2. lg 2 is not zero.
However, note that n = 2 is not sufficient basis! There are certain values for n, for example
3, such that the iterator of this recurrence, namely

n→
⌊n
2

⌋

“jumps over” 2, having started from one of them. Indeed,
⌊
3
2

⌋
= 1, therefore the iterator,

starting from 3, does

3→ 1

and then goes infinite descent. The solution is to take two bases, for both n = 2 and n = 3.
It is certain that no matter what n is the starting one, the iterator will at one moment
“hit” either 2 or 3. So, the bases of our proof are:

T(2) = Θ(1) (3.23)

T(3) = Θ(1) (3.24)

Of course, that does not say that T(2) = T(3), it says there exist constants c2 and c3, such
that:

c2 ≤ c.2 lg 2
c3 ≤ c.3 lg 3

52

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Our induction hypothesis is that relative to some sufficiently large n, (3.22) holds for some
positive constant c all values of the variable between 3 and n, excluding n. The induction
step is to prove (3.22), using the hypothesis. So,

T(n) = 2T
(⌊n
2

⌋)
+ n this is the defintion of T(n)

≤ 2.c.
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≤ 2.c.n
2
lg
n

2
+ n

= cn(lgn − 1) + n

= cn lgn + (1 − c)n (3.25)

≤ cn lgn provided that (1 − c) ≤ 0 ⇔ c ≥ 1 (3.26)

If c ≥ 1, the proof is valid. If we want to be perfectly precise we have to consider the two
bases as well to find a value for c that works. Namely,

c = max

{
1,

c2

2 lg 2
,
c3

3 lg 3

}

In our proofs from now on we will not consider the initial conditions when choosing an
appropriate constant.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.27)

We will ignore the basis of the induction and focus on the hypothesis and the inductive step
only. Applying the inductive hypothesis to (3.27), we get:

T(n) ≥ 2d
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≥ 2d
(n
2
− 1
)
lg
⌊n
2

⌋
+ n

= d(n − 2) lg
⌊n
2

⌋
+ n

≥ d(n − 2) lg
(n
4

)
+ n

= d(n − 2) (lgn− 2) + n

= dn lgn + n(1 − 2d) − 2d lgn + 4d

≥ dn lgn provided that n(1 − 2d) − 2d lgn + 4d ≥ 0
So (3.27) holds when

n(1 − 2d) − 2d lgn+ 4d ≥ 0 (3.28)

Observe that for d = 1
4 inequality (3.28) becomes

n

2
+ 1 ≥ 1

2
lgn

It certainly holds ∀n ≥ 2, therefore the choice d = 1
4
and n1 = 2 suffices for our proof. �

53

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 48. Solve

T(n) = 2T
(⌈n
2

⌉)
+ n (3.29)

T(1) = Θ(1) (3.30)

Solution:

We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn). We ignore the basis of the induction – the
solution of Problem 47 gives us enough confidence that we can handle the basis if we wanted
to.

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.31)

From the inductive hypothesis

T(n) ≤ 2.c.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≤ 2.c.
(n
2
+ 1
)
lg
⌈n
2

⌉
+ n (3.32)

≤ 2.c.
(n
2
+ 1
)
lg

(
3n

4

)
+ n because

3n

4
≥
⌈n
2

⌉
∀n ≥ 2 (3.33)

= c(n + 2)(lgn+ lg 3 − 2) + n

= cn lgn + cn(lg 3 − 2) + 2c lgn + 2c(lg 3 − 2) + n

≤ cn lgn if cn(lg 3 − 2) + 2c lgn+ 2c(lg 3− 2) + n ≤ 0

Consider

cn(lg 3 − 2) + 2c lgn+ 2c(lg 3 − 2) + n = (c(lg 3− 2) + 1)n + 2c lgn + 2c(lg 3 − 2)

Its asymptotic growth rate is determined by the linear term. If the constant c(lg 3− 2) + 1
is negative then the whole expression is certainly negative for all sufficiently large values of
n. In other words, for the sake of brevity we do not specify precisely what n0 is. In order
to have c(lg 3 − 2) + 1 < 0 it must be the case that c > 1

2−lg 3 . So, any c >
1

2−lg 3 works for
our proof.

In (3.32) we substitute
⌈
n
2

⌉
with 3n

4 . We could have used any other fraction pn
q , provided❢❢ NB ❢❢

that 12 <
p
q < 1. It is easy to see why it has to be the case that 12 <

p
q : unless that is fulfilled

we cannot claim there is a “≤” inequality between (3.32) and (3.33). Now we argue it has
to be the case that p

q < 1. Assume that p
q = 1, i.e., we substitute

⌈
n
2

⌉
with n. Then (3.33)

becomes:

c(n + 2)(lg n) + n = cn lgn + 2c lgn+ n

Clearly, that is bigger than cn lgn for all sufficiently large n and we have no proof.

54

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.34)

From the inductive hypothesis

T(n) ≥ 2.d.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≥ 2.d.
(n
2

)
lg
(n
2

)
+ n

= dn(lgn − 1) + n

= dn lgn + (1 − d)n

≥ dn lgn provided that (1 − d)n ≥ 0 (3.35)

It follows that any d such that 0 < d ≤ 1 works for our proof. �

As explained in [CLR00, pp. 56–57], it is easy to make a wrong “proof” of the growth rate by❢❢ NB ❢❢

induction if one is not careful. Suppose one “proves” the solution of (3.20) is T(n) = O(n)
by first guessing (incorrectly) that T(n) ≤ cn for some positive constant c and then arguing

T(n) ≤ 2c
⌊n
2

⌋
+ n

≤ cn + n

= (c + 1)n

= O(n)

While it is certainly true that cn + n = O(n), that is irrelevant to the proof. The proof
started relative to the constant c and has to finish relative to it. In other words, the proof has
to show that T(n) ≤ cn for the choice of c in the inductive hypothesis, not that T(n) ≤ dn
for some positive constant d which is not c. Proving that T(n) ≤ (c+1)n does not constitute
a proof of the statement we are after.

Problem 49. Solve

T(n) = T
(⌊n
2

⌋)
+ 1 (3.36)

T(1) = Θ(1) (3.37)

Solution:

We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part I: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.38)

55

Problems with solutions in the Analysis of Algorithms c© Minko Markov

By the inductive hypothesis,

T(n) ≤ c lg
(⌊n
2

⌋)
+ 1

≤ c lg
(n
2

)
+ 1

= c(lgn − 1) + 1

= c lgn + 1 − c

≤ c lgn provided that 1 − c ≤ 0⇔ c ≥ 1

Part II: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.39)

By the inductive hypothesis,

T(n) ≥ d lg
(⌊n
2

⌋)
+ 1

≥ d lg
(n
4

)
+ 1 since

n

4
≤
⌊n
2

⌋
for all sufficiently large n

= d lgn− 2d + 1

≥ d lgn provided that − 2d + 1 ≥ 0 ⇔ d ≤ 1

2

�

Problem 50. Solve

T(n) = T
(⌈n
2

⌉)
+ 1 (3.40)

T(1) = Θ(1) (3.41)

Solution:

We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part I: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.42)

By the inductive hypothesis,

T(n) ≤ c lg
(⌈n
2

⌉)
+ 1

≤ c lg
(
3n

4

)
+ 1

= c(lgn + lg 3− 2) + 1

= c lgn + c(lg 3 − 2) + 1

≤ c lgn provided that c(lg 3 − 2) + 1 ≤ 0⇔ c ≥ 1

2 − lg 3

56

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Part II: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.43)

By the inductive hypothesis,

T(n) ≥ d lg
(⌈n
2

⌉)
+ 1

≥ d lg
(n
2

)
+ 1

= d lgn− d+ 1

≥ d lgn provided that − d+ 1 ≥ 0 ⇔ d ≤ 1

�

Problem 51. Solve

T(n) = 2T
(⌊n
2
+ 17

⌋)
+ n (3.44)

Solution:

We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn). Note that the initial condition in this problem is
not T(1) = Θ(1) because the iterator

n→
⌊n
2

⌋
+ 17

never reaches 1 when starting from any sufficiently large n. Its fixed point is 34 but we
avoid mentioning the awkward initial condition T(34) = Θ(1).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.45)

By the inductive hypothesis,

T(n) ≤ 2c
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

= 2c
(n
2
+ 17

)
lg
(n
2
+ 17

)
+ n

= c(n + 34) lg

(
n+ 34

2

)
+ n

= c(n + 34)
(
lg (n + 34) − 1

)
+ n

≤ c(n + 34)
(
lg (

√
2n) − 1

)
+ n (3.46)

57

Problems with solutions in the Analysis of Algorithms c© Minko Markov

because for all sufficiently large values of n, say n ≥ 100, it is the case that
√
2n ≥ n+ 34.

T(n) ≤ c(n + 34)
(
lg (

√
2n) − 1

)
+ n from (3.46)

= c(n + 34)

(
lgn+

1

2
lg 2 − 1

)
+ n

= c(n + 34)

(
lgn−

1

2

)
+ n

= cn lgn + 34c lgn −
cn

2
− 17c + n

≤ cn lgn provided that 34c lgn −
cn

2
− 17c + n ≤ 0

In order 34c lgn − cn
2 − 17c + n = n

(
1 − c

2

)
+ 34c lgn − 17c to be non-positive for all

sufficiently large n it suffices
(
1 − c

2

)
to be negative because the linear function dominated

the logarithmic function. A more detailed analysis is the following. Fix c = 4. The
expression becomes (−1)n + 136 lg n− 136.

(−1)n + 136 lgn − 136 ≤ 0 ⇔ n ≥ 136(lg n− 1) ⇔
n

lgn − 1
≥ 136

For n = 65536 = 216 the inequality holds:

216

15
≥ 136

so we can finish the proof with choosing n0 = 65536 and c = 4.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn

By the inductive hypothesis,

T(n) ≥ 2d
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

≥ 2d
(n
2

)
lg
(n
2

)
+ n

= dn(lgn − 1) + n

= dn lgn + (1 − d)n

≥ dn lgn provided that 1 − d ≥ 0 ⇔ d ≤ 1 �

Problem 52. Solve

T(n) = 2T
(n
2

)
+ 1 (3.47)

T(1) = Θ(1)

by the method of the recursion tree.

58

Problems with solutions in the Analysis of Algorithms c© Minko Markov

level
n

2

level
n

4

level n

level
n

8

1 1 1 1

1 1

1 1 1 1 1 1 1 1

1 1

2

4

8

Figure 3.5: The recursion tree of T(n) = 2T
(
n
2

)
+ 1.

Solution:

The recursion tree is shown on Figure 3.5. The solution is the sum over all levels:

T(n) = 1+ 2 + 4+ 8 + . . .︸ ︷︷ ︸
the number of terms is the height of the tree

(3.48)

The height of the tree is the number of times the iterator

n→
n

2

is executed before the variable becomes 1. As we already saw, that number is lgn†. So,
(3.48) in fact is

T(n) = 1 + 2 + 4+ 8 + . . .︸ ︷︷ ︸
(lgn+1) terms

= 1 + 2+ 4 + 8+ . . . +
n

2
+ n

=

lgn∑

i=0

n

2i
= n

(
lgn∑

i=0

1

2i

)
≤ n

(
∞∑

i=0

1

2i

)

︸ ︷︷ ︸
2

= 2n

We conclude that T(n) = Θ(n). �

However, that proof by the method of the recursion tree can be considered insufficiently
precise because it involves several approximations and the use of imagination—the dot-dot-
dot notations. Next we demonstrate a proof by induction of the same result. We may think

†Actually it is ⌊lgn⌋ but that is immaterial with respect to the asymptotic growth of T(n).

59

Problems with solutions in the Analysis of Algorithms c© Minko Markov

of the proof with recursion tree as a mere way to derive a good guess to be verified formally
by induction.

Problem 53. Prove by induction on n that the solution to

T(n) = 2T
(n
2

)
+ 1 (3.49)

T(1) = Θ(1)

is T(n) = Θ(n).

Solution:

We prove separately that T(n) = O(n) and T(n) = Ω(n).

Part I: Proof that T(n) = O(n). For didactic purposes we will first make an unsuccessful
attempt.

Part I, try 1: Assume there exists a positive constant c and some n0, such that for all
n ≥ n0,

T(n) ≤ cn (3.50)

By the inductive hypothesis,

T(n) ≤ 2cn
2
+ 1

= cn + 1

Our proof ran into a problem: no matter what positive c we choose, it is not true that
cn + 1 ≤ cn, and thus (3.50) cannot be shown to hold. Of course, that failure does not
mean our claim T(n) = Θ(n) is false. It simply means that (3.50) is inappropriate. We
amend the situation by a technique known as strenthening the claim. It consists of stating an
appropriate claim that is stronger than (3.50) and then proving it by induction. Intuitively,
that stronger claim has to contain some minus sign in such a way that after applying the
inductive hypothesis, there is a term like −c that can “cope with” the +1.

Part I, try 2: Assume there exists positive constants b and c and some n0, such that for
all n ≥ n0,

T(n) ≤ cn − b (3.51)

By the inductive hypothesis,

T(n) ≤ 2
(
c
n

2
− b
)
+ 1

= cn − 2b+ 1

≤ cn − b for any b such that − b+ 1 ≤ 0 ⇔ b ≥ 1

Part II: Proof that T(n) = Ω(n), that is, there exists a positive constant d and some n1,
such that for all n ≥ n1,

T(n) ≥ dn

60

Problems with solutions in the Analysis of Algorithms c© Minko Markov

By the inductive hypothesis,

T(n) ≥ 2
(
d
n

2

)
+ 1

= dn + 1

≥ dn

�

Problem 54. Prove by induction on n that the solution to

T(n) = 2T(n − 1) + n (3.52)

T(1) = Θ(1)

is T(n) = Θ(2n).

Solution:

We prove separately that T(n) = O(2n) and T(n) = Ω(2n).

Part I: Proof that T(n) = O(2n). For didactic purposes we will first make several unsuc-
cessful attempts.

Part I, try 1: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n

By the inductive hypothesis,

T(n) ≤ 2c2n−1 + n
= c2n + n

6≤ c2n for any choice of positive c

Our proof failed so let us strenghten the claim.

Part I, try 2: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − b

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b) + n
= c2n − 2b + n

6≤ c2n − b for any choice of positive c

The proof failed once again so let us try another strenghtening of the claim.

Part I, try 3: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n−b

61

Problems with solutions in the Analysis of Algorithms c© Minko Markov

By the inductive hypothesis,

T(n) ≤ 2(c2n−b−1) + n
= c2n−b + n

6≤ c2n−b for any choice of positive c

Yet another failure and we try yet another strenghtening of the claim.

Part I, try 4: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n − n

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − (n − 1)) + n

= c2n − n + 2

6≤ c2n − n for any choice of positive c

Part I, try 5: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − bn

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b(n− 1)) + n

= c2n − 2bn + 2b+ n

= c2n − bn + (1 − b)n + 2b

≤ c2n − bn for any choice of c > 0 and b > 1

Success! At last we have managed to formulate a provable hypothesis.

Part II: Proof that T(n) = Ω(n), that is, there exists a positive constant d such that for
all sufficiently large n,

T(n) ≥ d2n

By the inductive hypothesis,

T(n) ≥ 2(d2n−1) + n
= d2n + n

≥ d2n

Success! Again we see that the strengthening of the claim is required only in one direction
of the proof. �

The next three problems have the iterator

n→
√
n

62

Problems with solutions in the Analysis of Algorithms c© Minko Markov

According to the table on page 46, that number of times this iterator is executed before
n becomes some fixed constant is Θ(lg lgn). Note, however, that unless n is integer, this
constant cannot be 1 because for real n, it is the case that n > 1 after any iteration.
Therefore “T(1) = Θ(1)” cannot be the initial condition if n is real. One way out of that is
to change the initial conditions to

T(n) = Θ(1) for 2 ≤ n ≤ 4

Problem 55. Solve

T(n) = 2T(
√
n) + 1 (3.53)

Solution:

Substitute n by 22
m
, i.e. m = lg lgn and 2m = lgn. Then (3.53) becomes

T
(
22

m
)
= 2T

(
2

2m

2

)
+ 1

which is

T
(
22

m
)
= 2T

(
22

m−1
)
+ 1 (3.54)

Further substitute T
(
22

m)
by S(m) and (3.54) becomes

S(m) = 2S(m − 1) + 1 (3.55)

But we know the solution to that recurrence. According to Problem 45, S(m) = Θ(2m).
Let us go back now to the original n and T(n).

S(m) = Θ(2m) ⇔ T
(
22

m
)
= Θ(lgn) ⇔ T(n) = Θ(lgn)

�

Problem 56. Solve

T(n) = 2T(
√
n) + lgn (3.56)

Solution:

Substitute n by 2m, i.e. m = lgn. Then (3.56) becomes

T (2m) = 2T
(
2

m
2

)
+m (3.57)

Further substitute T (2m) by S(m) and (3.57) becomes

S(m) = 2S
(m
2

)
+m (3.58)

Consider Problem 47 and Problem 48. They have solve the same recurrence, differing from
(3.58) only in the way the division is rounded to integer. In Problem 47 the iterator is

n→
⌊n
2

⌋

63

Problems with solutions in the Analysis of Algorithms c© Minko Markov

and in Problem 48 the iterator is

n→
⌈n
2

⌉

Both Problem 47 and Problem 48 have Θ(n lgn) solutions. We conclude the solution of
(3.58) is S(m) = Θ(m lgm), which is equivalent to T(n) = Θ(lgn lg lgn). �

Problem 57. Solve

T(n) =
√
nT(

√
n) + n (3.59)

Solution:

Let us unfold the recurrence:

T(n) = n + n
1
2 T
(
n

1
2

)
(3.60)

= n + n
1
2

(
n

1
2 + n

1
4 T
(
n

1
4

))
(3.61)

= 2n + n
3
4 T
(
n

1
4

)
(3.62)

= 2n + n
3
4

(
n

1
8 + T

(
n

1
8

))
(3.63)

= 3n + n
7
8 T
(
n

1
8

)
(3.64)

. . . (3.65)

= in + n

(

1− 1

2i

)

T
(
n

1

2i

)
(3.66)

As we already said, the maximum value of i, call it imax, is imax = lg lgn. But then
2imax = lgn, therefore

n

(

1− 1

2imax

)

=
n

n
1

2imax

=
n

n
1

lgn

=
n

2

The derivation of the fact that n
1

lgn = 2 is on page 17. So, for i = imax,

T(n) = (lg lgn)n +
n

2
T(c) c is some number such that 2 ≤ c ≤ 4

But T(c) is a constant, therefore T(n) = Θ(n lg lgn).

Let us prove the same result by induction.
Part 1: Prove that T(n) = O(n lg lgn), that is, there exists a positive constant c such
that for all sufficiently large n,

T(n) ≤ cn lg lgn (3.67)

Our inductive hypothesis then is

T(
√
n) ≤ c

√
n lg lg

√
n (3.68)

64

Problems with solutions in the Analysis of Algorithms c© Minko Markov

We know by the definition of the problem that

T(n) =
√
nT(

√
n) + n (3.69)

Apply (3.68) to (3.69) to get

T(n) ≤
√
n(c

√
n lg lg

√
n) + n

= cn lg lg
√
n + n

= cn lg

(
1

2
lgn

)
+ n

= cn lg

(
lgn

2

)
+ n

= cn(lg lgn− 1) + n

= cn lg lgn − cn + n

≤ cn lg lgn provided that − cn + n ≤ 0 ⇔ c ≥ 1

Part 2: Prove that T(n) = Ω(n lg lgn), that is, there exists a positive constant d such
that for all sufficiently large n,

T(n) ≥ dn lg lgn (3.70)

Our inductive hypothesis then is

T(
√
n) ≥ d

√
n lg lg

√
n (3.71)

We know by the definition of the problem that

T(n) =
√
nT(

√
n) + n (3.72)

Apply (3.71) to (3.72) to get

T(n) ≥
√
n(d

√
n lg lg

√
n) + n

= dn lg lg
√
n+ n

= dn lg

(
1

2
lgn

)
+ n

= dn lg

(
lgn

2

)
+ n

= dn(lg lgn − 1) + n

= dn lg lgn − dn+ n

≥ dn lg lgn provided that − dn+ n ≥ 0 ⇔ d ≤ 1

�

Problem 58. Solve

T(n) = n2T
(n
2

)
+ 1 (3.73)

65

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Unfold the recurrence:

T(n) = n2 T
(n
2

)
+ 1

= n2
(
n2

4
T
(n
4

)
+ 1

)
+ 1

=
n4

22
T
(n
22

)
+ n2 + 1

=
n4

22

(
n2

24
T
(n
23

)
+ 1

)
+ n2 + 1

=
n6

26
T
(n
23

)
+
n4

22
+ n2 + 1

=
n6

26

(
n2

26
T
(n
24

)
+ 1

)
+
n4

22
+ n2 + 1

=
n8

212
T
(n
24

)
+
n6

26
+
n4

22
+ n2 + 1

=
n8

212

(
n2

28
T
(n
25

)
+ 1

)
+
n6

26
+
n4

22
+ n2 + 1

=
n10

220
T
(n
25

)
+
n8

212
+
n6

26
+
n4

22
+ n2 + 1

=
n10

220
T
(n
25

)
+
n8

212
+
n6

26
+
n4

22
+
n2

20
+
n0

20

=
n10

25.4
T
(n
25

)
+
n8

24.3
+
n6

23.2
+
n4

22.1
+
n2

21.0
+

n0

20.(−1)

= . . .

=
n2i

2i(i−1)
T
(n
2i

)

︸ ︷︷ ︸
A

+
n2(i−1)

2(i−1)(i−2)
+

n2(i−2)

2(i−2)(i−3)
. . . +

n8

24.3
+
n6

23.2
+
n4

22.1
+
n2

21.0
+

n0

20.(−1)︸ ︷︷ ︸
B

The maximum value of i is imax = lgn. First we compute A with i = lgn, having in mind
T(1) is some positive constant c.

A =
n2 lgn

2lg
2 n−lgn

T(1) =
c2lg nn2 lgn

2lg
2 n

=
c.n.n2 lgn

2lg
2 n

But

2lg
2 n = 2lgn. lgn = 2lg (n

lgn) = nlgn (3.74)

Therefore

A =
c.n.n2 lgn

nlgn
= Θ(n1+lg n) (3.75)

66

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Consider B. Obviously, we can represent it as a sum in the following way:

B =

lgn∑

j=1

n2((lgn)−j)

2((lgn)−j)((lgn)−j−1)

=

lgn∑

j=1

1

n2j
n2 lgn

2(lg
2 n−j lgn−j lgn+j2−lgn+j)

=

lgn∑

j=1

1

n2j

(
n2 lgn

) (
22j lgn

) (
2lgn

)
(
2lg

2 n
) (
2j

2+j
) (3.76)

But

22j lgn = 2lg (n
2j) = n2j (3.77)

and

2lgn = n (3.78)

Apply (3.74), (3.77), and (3.78) on (3.76) to obtain

B =

lgn∑

j=1

1

n2j

(
n2 lgn

) (
n2j
)
(n)

(nlgn)
(
2j

2+j
)

=

lgn∑

j=1

n1+lg n

2j
2+j

=
(
n1+lg n

) lgn∑

j=1

1

2j
2+j

≤
(
n1+lg n

) ∞∑

j=1

1

2j
2+j

≤ n1+lgn since we know that

∞∑

j=1

1

2j
= 1

= Θ
(
n1+lg n

)
(3.79)

From (3.75) and (3.79) it follows that

T(n) = Θ
(
n1+lgn

)

�

Problem 59. Solve by unfolding

T(n) = T(n − 2) + 2 lgn (3.80)

67

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Let us unfold the recurrence:

T(n) = T(n − 2) + 2 lgn

= T(n − 4) + 2 lg (n − 2) + 2 lgn

= T(n − 6) + 2 lg (n − 4) + 2 lg (n − 2) + 2 lgn

= . . .

= T(c) + . . . + 2 lg (n − 4) + 2 lg (n − 2) + 2 lgn (3.81)

where c is either 1 or 2†.

Case I: n is odd. Then c = 1 and (3.81) is:

2 lgn+ 2 lg (n − 2) + 2 lg (n − 4) + . . . + 2 lg 3 + T(1) (3.82)

We approximate T(1) with 0 = lg 1, which does not alter the asymptotic growth rate of
(3.82), and thus (3.82) becomes:

lgn2 + lg (n − 2)2 + lg (n − 4)2 + . . . + lg 32 + lg 1 =

lg
(
n2(n − 2)2(n − 4)2 . . . 32.1

)
=

lg
(
n.n(n − 2)(n − 2)(n − 4)(n − 4) . . . 5.5.3.3.1
︸ ︷︷ ︸

n factors

)
= T(n) (3.83)

Define

X(n) = lg
(
n(n − 1)(n − 2)(n − 3) . . . 3.2.1
︸ ︷︷ ︸

n factors

)
= lgn!

Y(n) = lg
(
(n + 1)n(n − 1)(n − 2) . . . 4.3.2
︸ ︷︷ ︸

n factors

)
= lg (n + 1)!

and note that

X(n) ≤ T(n) ≤ Y(n) (3.84)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n

6

n − 1

6

n− 2

6

n− 3

6

. . . 3

6

2

6

1

6

)

T(n) = lg
(

n

6

n

6

n− 2

6

n− 2

6

. . . 3

6

3

6

1

6

)

Y(n) = lg
(

n + 1 n n− 1 n− 2 . . . 4 3 2
)

However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n + 1)) = Θ(n lgn) by (1.48). Having
in mind that and (3.84), T(n) = Θ(n lgn) follows immediately.

†The initial conditions that define T(1) and T(2) are omitted.

68

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Case II: n is even. Then c = 2 and (3.81) is:

2 lgn+ 2 lg (n − 2) + 2 lg (n − 4) + . . . + 2 lg 4 + T(2) (3.85)

We approximate T(2) with 1 = lg 2, which does not alter the asymptotic growth rate of
(3.82), and thus (3.82) becomes:

lgn2 + lg (n − 2)2 + lg (n − 4)2 + . . . + lg 42 + lg 2 =

lg
(
n2(n − 2)2(n − 4)2 . . . 42.2

)
=

lg
(
n.n(n − 2)(n − 2)(n − 4)(n − 4) . . . 6.6.4.4.2
︸ ︷︷ ︸

n−1 factors

)
= T(n) (3.86)

Define

X(n) = lg
(
n(n − 1)(n − 2)(n − 3) . . . 4.3.2
︸ ︷︷ ︸

n−1 factors

)
= lgn!

Y(n) = lg
(
(n + 1)n(n − 1)(n − 2) . . . 5.4.3
︸ ︷︷ ︸

n−1factors

)
= lg

(n + 1)!

2
= lg (n+ 1)! − 1

and note that

X(n) ≤ T(n) ≤ Y(n) (3.87)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n
6

n − 1

6

n− 2

6

n− 3

6

. . . 4

6

3

6

2

6

)

T(n) = lg
(

n

6

n

6

n− 2

6

n− 2

6

. . . 4

6

4

6

2

6

)

Y(n) = lg
(

n + 1 n n− 1 n− 2 . . . 5 4 3
)

However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n + 1)) = Θ(n lgn) by (1.48). Having
in mind that and (3.84), T(n) = Θ(n lgn) follows immediately. �

Problem 60. Solve by induction

T(n) = T(n − 2) + 2 lgn (3.88)

Solution:

We use Problem 59 to guess the solution T(n) = Θ(n lgn).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c such that
for all sufficiently large n,

T(n) ≤ cn lgn (3.89)

69

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The following inequalities hold

T(n) ≤ c(n − 2) lg (n− 2) + 2 lgn from the induction hypothesis

≤ c(n − 2) lg n+ 2 lgn

= cn lgn − 2c lgn+ 2 lgn

≤ cn lgn provided that − 2c lgn+ 2 lgn ≤ 0 ⇔ c ≥ 1

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d such that
for all sufficiently large n,

T(n) ≥ dn lgn (3.90)

It is the case that

T(n) ≥ d(n − 2) lg (n − 2) + 2 lgn from the induction hypothesis

= (dn − 2d) lg (n − 2) + 2 lgn

= dn lg (n − 2) + 2(lgn− d lg (n − 2)) (3.91)

Having in mind (3.90) and (3.91), our goal is to show that

dn lg (n − 2) + 2(lgn− d lg (n − 2)) ≥ dn lgn ⇔

dn lg (n − 2) − dn lgn + 2(lgn− d lg (n − 2)) ≥ 0 ⇔

d lg

(
n− 2

n

)n

︸ ︷︷ ︸
A

+ 2 lg
n

(n − 2)d
︸ ︷︷ ︸

B

≥ 0 (3.92)

Let us first evaluate A when n grows infinitely:

lim
n→∞

d lg

(
n − 2

n

)n
= d lim

n→∞

lg

(
1 +

−2

n

)n
= d lg lim

n→∞

(
1+

−2

n

)n
= d lg e−2 = −2d lg e

Now consider B when n grows infinitely:

lim
n→∞

2 lg
n

(n − 2)d
= 2 lg lim

n→∞

n

(n − 2)d
(3.93)

Note that for any d such that 0 < d < 1, (3.93) is +∞. For instance, for d = 1
2 , (3.93)

becomes

2 lg lim
n→∞

(
n

1
2

n
1
2

(n − 2)
1
2

)
=

2 lg lim
n→∞

(
n

1
2

(
n

n − 2

) 1
2

)
=

2 lg




(
lim
n→∞

n
1
2

)

 lim
n→∞

(
1

1 − 2
n

) 1
2




︸ ︷︷ ︸
1




= +∞

70

Problems with solutions in the Analysis of Algorithms c© Minko Markov

It follows inequality (3.92) is true for any choice of d such that 0 < d < 1, say, d = 1
2 ,

because A by absolute value is limited by a constant, and B grows infinitely. And that
concludes the proof of (3.89). �

The proof by induction in Part II of the solution to Problem 59 is tricky. Consider (3.91):❢❢ NB ❢❢

dn lg (n − 2) + 2(lgn − d lg (n − 2))

Typically, we deal with logarithms of additions or differences by approximating the additions
or differences with multiplications or fractions in such a way that the inequality holds in the
desired direction. But notice that if we approximate n − 2 inside the above logarithms with
any fraction n

α , for any positive constant α, it must be the case that α > 1, otherwise the
inequality would not be in the direction we want. Here is what happens when we substitute
n− 2 with n

α
in the logarithm on the left:

dn lg
n

α
+ 2(lgn − d lg (n − 2)) = dn lgn− dn lgα+ 2(lgn− d lg (n − 2))

To accomplish the proof, we have to show the latter is greater than or equal to dn lgn; and
to show that, we have to show that the term −dn lgα+2(lg n−d lg (n − 2)) is positive. But
that is not true! d > 0 and α > 1, therefore −dn lgα < 0 for all n > 0. And the asymptotic
behaviour of −dn lgα + 2(lgn − d lg (n − 2)) is determined by −dn lgα because the linear
function dominates the logarithmic function for all sufficiently large n. Therefore, we need
a more sophisticated technique, based on analysis.

Problem 61. Solve by unfolding

T(n) = T(n − 1) + lgn

Solution:

T(n) = T(n − 1) + lgn

= T(n − 2) + lg (n − 1) + lgn

= T(n − 3) + lg (n − 2) + lg (n − 1) + lgn

. . .

= T(1)
︸︷︷︸
Θ(1)

+ lg 2+ lg 3 + . . . + lg (n − 2) + lg (n − 1) + lgn

= Θ(1) + lg (2.3 . . . (n − 2)(n − 1)n)

= Θ(1) + lgn!

= Θ(1) +Θ(n lgn) by (1.48)

= Θ(n lgn)

�

Problem 62. Solve by unfolding

T(n) = 3T
(⌊n
4

⌋)
+ n (3.94)

71

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

T(n) = n + 3T
(⌊n
4

⌋)

= n + 3

(⌊n
4

⌋
+ 3T

(⌊⌊
n
4

⌋

4

⌋))

= n + 3
(⌊n
4

⌋
+ 3T

(⌊ n
16

⌋))
because

⌊⌊
n
4

⌋

4

⌋
=
⌊ n
16

⌋

= n + 3
⌊n
4

⌋
+ 9T

(⌊ n
16

⌋)

= n + 3
⌊n
4

⌋
+ 9

⌊ n
16

⌋
+ 27T

(⌊ n
64

⌋)

. . .

= 30
⌊ n
40

⌋
+ 31

⌊ n
41

⌋
+ 32

⌊ n
42

⌋
+ . . . + 3i−1

⌊ n

4i−1

⌋

︸ ︷︷ ︸
P(n)

+ 3iT
(⌊n
4i

⌋)

︸ ︷︷ ︸
remainder

(3.95)

The maximum value for i, let us call it imax, is achieved when
⌊
n
4i

⌋
becomes 1. It follows

imax = ⌊log4 n⌋. Let us estimate the main part P(n) and the remainder of (3.95) for i = imax.

• To estimate P(n), define

X(n) = 30
(n
40

)
+ 31

(n
41

)
+ 32

(n
42

)
+ . . . + 3imax−1

(n

4imax−1

)

Y(n) = 30
(n
40

− 1
)
+ 31

(n
41

− 1
)
+ 32

(n
42

− 1
)
+ . . . + 3imax−1

(n

4imax−1
− 1
)

Clearly, X(n) ≥ P(n) ≥ Y(n). But

X(n) = n



imax−1∑

j=0

(
3

4

)j



≤ n
∞∑

j=0

(
3

4

)j

= n
1

1 − 3
4

= Θ(n)

and

Y(n) = n



imax−1∑

j=0

(
3

4

)j

−

imax−1∑

j=0

3j

= nΘ(1) −Θ
(
3imax−1

)
by Corollary 1 on page 21

= Θ(n) −Θ
(
3log4 n

)
since imax = ⌊log4 n⌋

= Θ(n) −Θ(nlog4 3) = Θ(n)

Then it has to be the case that P(n) = Θ(n).

72

Problems with solutions in the Analysis of Algorithms c© Minko Markov

n2

64
n2

64
n2

64
n2

64
n2

64
n2

64
n2

64
n2

64

level
n

2

level
n

4

level n

level
n

8

n2

16
n2

16
n2

16
n2

16

n2

4
n2

4

n2 n2

n2

2

n2

4

n2

8

Figure 3.6: The recursion tree of T(n) = 2T
(
n
2

)
+ n2.

• To estimate the remainder, consider the two factors in it:

3imax = 3⌊log4 n⌋ = Θ(3log4 n) = Θ(nlog3 4)

T
(⌊ n

4imax

⌋)
= T(1) = Θ(1)

It follows the remainder is Θ(3log4 n) = o(n).

Therefore, T(n) = Θ(n) + o(n) = Θ(n). �

Problem 63. Solve

T(n) = 2T
(n
2

)
+ n2

by the method of the recursion tree.

Solution:

The recursion tree is shown on Figure 3.6. The solution is the sum

n2 +
n2

2
+
n2

4
+
n2

8
+ . . . ≤ n2

∞∑

i=0

1

2i
= 2n2

It follows T(n) = Θ(n2). �

Problem 64. Solve

T(n) = T
(n
3

)
+ T

(
2n

3

)
+ n

by the method of the recursion tree.

73

Problems with solutions in the Analysis of Algorithms c© Minko Markov

2n
27

2n
27

4n
27

2n
27

4n
27

4n
27

8
27

n
27

×1
3

×2
3

×1
3

×2
3

×1
3

×2
3

×2
3

×2
3

×2
3

×2
3

×1
3

×1
3

×1
3

×1
3

n
9

2n
9

2n
9

4n
9

2n
3

n n

n

n

n
3

n

Figure 3.7: The recursion tree of T
(
n
3

)
+ T

(
2n
3

)
+ n.

Solution:

The recursion tree is shown on Figure 3.7. This time the tree is not complete so we do not
write the levels on the left side in terms of n (as we did on Figure 3.6). Rather, the level of
each node is the distance between it and the root. Thus the equidistant with respect to the
root nodes are at the same level. Think of the tree as an ordered tree. That is, if a node
has any children we distinguish between the left and the right child. The value of the left
child is the value of the parent multiplied by 1

3 and the value of the right child is the value

of the parent multiplied by 2
3
. It is trivial to prove by induction that for each level such

that all the nodes at this level exist, the sum of the values at that level is n. However, we
cannot obtain the answer immediately through mulitplying n by the height because the tree
is not balanced. The maximum distance between the root and any leaf is achieved along
the rightmost path (starting at the root, always take the right choice; see Figure 3.7) and
the minimum distance, by the leftmost path. The length of the leftmost path is determined
by the iterator

n→
n

3

which is executed Θ(log3 n) times before reaching any fixed in advance constant. The length
of the rightmost path is determined by the iterator

n→
2n

3
=
n
3
2

which is executed Θ
(
log 3

2
n
)
times before reaching any fixed in advance constant.

74

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Let T be the recursion tree. Construct two balanced trees T1 and T2 such that the height

of T1 is Θ(log3 n) and the height of T2 is Θ
(
log 3

2
n
)
. Suppose that each level in T1 and T2

is associated with some value n – it does not matter for what reason, just assume each level
“costs” n. Let Si(n) be the sum of those costs in Ti over all levels for i = 1, 2. Clearly,

S1(n) = n×Θ(log3 n) = Θ(n log3 n) = Θ(n lgn)

S2(n) = n×Θ
(
log 3

2
n
)
= Θ

(
n log 3

2
n
)
= Θ(n lgn)

To conlude the solution, note that S1(n) ≤ T(n) ≤ S2(n) because T1 can be considered a
subtree of T and T can be considered a subtree of T2. Then T(n) = Θ(n lgn). �

Problem 65. Solve by unfolding

T(n) = T(n − a) + T(a) + n a = const, a ≥ 1

Solution:

We assume a is integer† and the initial conditions are

T(1) = Θ(1)

T(2) = Θ(1)

. . .

T(a) = Θ(1)

Let us unfold the recurrence.

T(n) = T(n − a) + T(a) + n

= (T(n − 2a) + T(a) + n− a) + T(a) + n

= T(n − 2a) + 2T(a) + 2n − a

= (T(n − 3a) + T(a) + n− 2a) + 2T(a) + 2n − a

= T(n − 3a) + 3T(a) + 3n − 3a

= (T(n − 4a) + T(a) + n− 4a) + 3T(a) + 3n − 3a

= T(n − 4a) + 4T(a) + 4n − 6a

= (T(n − 5a) + T(a) + n− 4a) + 4T(a) + 4n − 6a

= T(n − 5a) + 5T(a) + 5n − 10a

. . .

= T(n − ia) + iT(a) + in−
1

2
i(i− 1)a (3.96)

Let the maximum value i takes be imax. Consider the iterator

n→ n − a

†It is not essential to postulate a is integer. The problems makes sense even if a is just a positive
real. If that is the case the initial conditions have to be changed to cover some interval with length a, e.g.
T(i) = const. if i ∈ (0, a].

75

Problems with solutions in the Analysis of Algorithms c© Minko Markov

It maps every n > a, n ∈ N, to a unique number from {1, 2, . . . , a}. Let that number be
called k. So imax is the number of times the iterator is executed until the variable becomes
k. If nmoda 6= 0 then k is nmoda, otherwise k is a†. It follows that

imax =

{⌊
n
a

⌋
, if nmoda 6= 0

n
a
− 1, else

That is equivalent to

imax =
⌈n
a

⌉
− 1

Subsituting i with
⌈
n
a

⌉
− 1 in (3.96), we get

T(k) +
(⌈n
a

⌉
− 1
)
T(a) +

(⌈n
a

⌉
− 1
)
n−

1

2

(⌈n
a

⌉
− 1
)(⌈n

a

⌉
− 1 − 1

)
a (3.97)

The growth rate of (3.97) is determined by

n
⌈n
a

⌉
−
1

2

⌈n
a

⌉ ⌈n
a

⌉
= Θ(n2)

It follows T(n) = Θ(n2). �

Problem 66. Solve

T(n) = T(αn) + T((1 − α)n) + n, α = const., 0 < α < 1 (3.98)

by the method of the recursion tree.

Solution:

Define that 1 − α = β. Obviously, 0 < β < 1 and (3.98) becomes

T(n) = T(αn) + T(βn) + n (3.99)

The recursion tree of (3.99) is shown on Figure 3.8. The solution is completely analogous
to the solution of Problem 64. The level of each node is the distance between it and the
root. The sum of the costs at every level such that all nodes at that levels exist, is n. More
precisely, at level i the sum is (α + β)in = n. The tree is not complete. Assume without
loss of generality that α ≤ β and think of the tree as an ordered tree. The shortest path
from the root to any leaf is the leftmost one, i.e. “follow the alphas”, and the longest path
is the rightmost one. The length of the shortest path is log(1

α)
n and of the longest path,

log(1
β

) n. We prove that T(n) = Θ(n lgn) just as in Problem 64 by considering two other

trees, one that is a subgraph of the current one and one that isa supergraph of the current

one. Since the first of then has sum of the costs n × Θ
(
log(1

α)
n
)

= Θ(n lgn) and the

second one, n×Θ
(
log(1

β

) n

)
= Θ(n lgn), it follows T(n) = Θ(n lgn). �

†Not nmoda, which is 0.

76

Problems with solutions in the Analysis of Algorithms c© Minko Markov

×α ×β

×α ×β ×α ×β

α3n α2βn

α2βn αβ2n

α2βn αβ2n

αβ2n β3n

×α ×α ×α×α ×β×β×β×β

α2n αβn αβn

n n

αn βn

β2n

(α+ β)n

(α + β)2n

(α + β)3n

Figure 3.8: The recursion tree of T(n) = T(αn) + T(βn) + n where 0 < α, β < 1
and α + β = 1.

Problem 67. Solve by unfolding

T(n) = T(n − 1) +
1

n
(3.100)

Solution:

Before we commence the unfolding check the definition of the harmonic series, the partial
sum Hn of the harmonic series, and its order of growth Θ(lgn) on page 170.

T(n) = T(n − 1) +
1

n

= T(n − 2) +
1

n − 1
+
1

n

= T(n − 3) +
1

n − 2
+

1

n − 1
+
1

n

. . .

= T(1) +
1

2
+
1

3
+ . . . +

1

n− 2
+

1

n− 1
+
1

n

= T(1) − 1+ 1 +
1

2
+
1

3
+ . . . +

1

n− 2
+

1

n− 1
+
1

n︸ ︷︷ ︸
Hn

= O(1) +Hn

= O(1) +Θ(lgn)

= Θ(lgn)

77

Problems with solutions in the Analysis of Algorithms c© Minko Markov

�

Problem 68. Solve by unfolding

T(n) =
n

n + 1
T(n − 1) + 1

Solution:

T(n) =
n

n + 1
T(n − 1) + 1

=
n

n + 1

(
n − 1

n
T(n − 2) + 1

)
+ 1

=
n − 1

n + 1
T(n − 2) +

n

n + 1
+ 1

=
n − 1

n + 1

(
n − 2

n − 1
T(n − 3) + 1

)
+

n

n + 1
+ 1

=
n − 2

n + 1
T(n − 3) +

n − 1

n + 1
+

n

n + 1
+ 1

=
n − 2

n + 1

(
n − 3

n − 2
T(n − 4) + 1

)
+
n − 1

n + 1
+

n

n + 1
+ 1

=
n − 3

n + 1
T(n − 4) +

n − 2

n + 1
+
n − 1

n + 1
+

n

n + 1
+ 1 (3.101)

If we go on like that down to T(1), (3.101) unfolds into

T(n) =
2

n + 1
T(1) +

3

n + 1
+

4

n + 1
+ . . . +

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
2

n + 1
T(1) +

3

n + 1
+

4

n + 1
+ . . . +

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+
n+ 1

n+ 1

=
2T(1)

n + 1
+

1

n+ 1

n+1∑

i=3

i

=
2T(1)

n + 1
+

1

n+ 1

((
n+1∑

i=1

i

)
− 3

)

=
2T(1)

n + 1
+

1

n+ 1

(
(n + 1)(n + 2)

2
− 3

)

=
1

n + 1

(
4T(1) + (n2 + 3n + 2) − 6

)

=
n2 + 3n + 4T(1) − 4

n + 1

=
n2

n + 1︸ ︷︷ ︸
Θ(n)

+
3n

n + 1︸ ︷︷ ︸
Θ(1)

+
4T(1) − 4

n + 1︸ ︷︷ ︸
O(1)

= Θ(n)

So, T(n) = Θ(n). �

78

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 69. Solve by unfolding

T(n) =
n

n + 1
T(n − 1) + n2

Solution:

T(n) =
n

n + 1
T(n − 1) + n2

=
n

n + 1

(
n − 1

n
T(n − 2) + (n − 1)2

)
+ n2

=
n − 1

n + 1
T(n − 2) +

n(n − 1)2

n + 1
+ n2

=
n − 1

n + 1

(
n − 2

n − 1
T(n − 3) + (n − 2)2

)
+
n(n − 1)2

n + 1
+ n2

=
n − 2

n + 1
T(n − 3) +

(n − 1)(n − 2)2

n+ 1
+
n(n − 1)2

n+ 1
+ n2

=
n − 2

n + 1

(
n − 3

n − 2
T(n − 4) + (n − 3)2

)
+

(n − 1)(n − 2)2

n+ 1
+
n(n − 1)2

n+ 1
+ n2

=
n − 3

n + 1
T(n − 4) +

(n − 2)(n − 3)2

n+ 1
+

(n − 1)(n − 2)2

n + 1
+
n(n − 1)2

n + 1
+ n2

(3.102)

If we go on like that down to T(1), (3.102) unfolds into

T(n) =
2

n + 1
T(1) +

3.22

n + 1
+
4.32

n + 1
+ . . .

+
(n − 2)(n − 3)2

n + 1
+

(n − 1)(n − 2)2

n + 1
+
n(n − 1)2

n + 1
+ n2

=
2

n + 1
T(1) +

3.22

n + 1
+
4.32

n + 1
+ . . .

+
(n − 2)(n − 3)2

n + 1
+

(n − 1)(n − 2)2

n + 1
+
n(n − 1)2

n + 1
+

(n + 1)n2

n+ 1

=
2T(1)

n + 1
+

1

n+ 1

n+1∑

i=3

i(i− 1)2

=
2T(1)

n + 1
+

1

n+ 1

((
n+1∑

i=1

i(i− 1)2

)
− 2

)

=
2T(1) − 2

n + 1
+

1

n + 1

n+1∑

i=1

i(i− 1)2

=
2T(1) − 2

n + 1
+

1

n + 1

n+1∑

i=1

(i3 − 2i2 + i)

=
2T(1) − 2

n + 1
+

1

n + 1

(
n+1∑

i=1

i3 − 2

n+1∑

i=1

i2 +

n+1∑

i=1

i

)
(3.103)

79

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Having in mind (6.21), (6.22), and (6.23) on page 171, (3.103) becomes

2T(1) − 2

n + 1
+

1

n + 1

(
(n + 1)2(n + 2)2

4
− 2

(n + 1)(n + 2)(2n + 3)

6
+

(n + 1)(n + 2)

2

)

=
2T(1) − 2

n + 1︸ ︷︷ ︸
O(1)

+
(n + 1)(n + 2)2

4︸ ︷︷ ︸
Θ(n3)

−
(n + 2)(2n + 3)

3︸ ︷︷ ︸
Θ(n2)

+
n+ 2

2︸ ︷︷ ︸
Θ(n)

= Θ(n3)

So, T(n) = Θ(n3). �

Problem 70. Solve by unfolding

T(n) =
n

n + 1
T(n − 1) +

√
n (3.104)

where
√
n stands for either ⌊√n⌋ or ⌈√n⌉.

Solution:

T(n) =
n

n + 1
T(n − 1) +

√
n

=
n

n + 1

(
n − 1

n
T(n − 2) +

√
n− 1

)
+
√
n

=
n − 1

n + 1
T(n − 2) +

n
√
n − 1

n + 1
+
√
n

=
n − 1

n + 1

(
n − 2

n − 1
T(n − 3) +

√
n− 2

)
+
n
√
n− 1

n+ 1
+
√
n

=
n − 2

n + 1
T(n − 3) +

(n − 1)
√
n − 2

n+ 1
+
n
√
n− 1

n + 1
+
√
n

=
n − 2

n + 1

(
n − 3

n − 2
T(n − 4) +

√
n− 3

)
+

(n − 1)
√
n − 2

n + 1
+
n
√
n − 1

n + 1
+
√
n

=
n − 3

n + 1
T(n − 4) +

(n − 2)
√
n − 3

n+ 1
+

(n − 1)
√
n− 2

n + 1
+
n
√
n − 1

n+ 1
+
√
n (3.105)

80

Problems with solutions in the Analysis of Algorithms c© Minko Markov

If we go on like that down to T(1), (3.105) unfolds into

T(n) =
2

n + 1
T(1) +

3
√
2

n + 1
+
4
√
3

n + 1
+ . . .

+
(n − 2)

√
n − 3

n + 1
+

(n − 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
2

n + 1
T(1) +

3
√
2

n + 1
+
4
√
3

n + 1
+ . . .

+
(n − 2)

√
n − 3

n + 1
+

(n − 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+

(n + 1)
√
n

n + 1

=
2T(1)

n + 1
+

1

n+ 1

n∑

i=2

(i+ 1)
√
i

=
2T(1)

n + 1
+

1

n+ 1

((
n∑

i=1

(i+ 1)
√
i

)
− 2

)

=
2T(1) − 2

n + 1
+

1

n + 1

n∑

i=1

(i+ 1)
√
i

=
2T(1) − 2

n + 1
+

1

n + 1

n∑

i=1

(i
√
i+

√
i)

=
2T(1) − 2

n + 1
+

1

n + 1

(
n∑

i=1

i
√
i+

n∑

i=1

√
i

)
(3.106)

But we know that

n∑

i=1

⌊√
i
⌋
= Θ

(
n

3
2

)
by (6.5) on page 162.

n∑

i=1

⌈√
i
⌉
= Θ

(
n

3
2

)
by (6.7) on page 164.

n∑

i=1

i
⌊√
i
⌋
= Θ

(
n

5
2

)
by (6.10) on page 166.

n∑

i=1

i
⌈√
i
⌉
= Θ

(
n

5
2

)
by (6.14) on page 169.

Therefore, regardless of whether “
√
n” in (3.104) stands for ⌊√n⌋ or ⌈√n⌉,

T(n) =
2T(1) − 2

n + 1
+

1

n + 1

(
Θ
(
n

5
2

)
+Θ

(
n

5
2

))
by substituting into (3.106)

=
2T(1) − 2

n + 1
+

1

n + 1

(
Θ
(
n

5
2

))

= O(1) +Θ
(
n

3
2

)

So, T(n) = Θ
(
n

3
2

)
. �

81

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 71. Solve by unfolding

T(n) =
n

n + 1
T(n − 1) + lgn (3.107)

Solution:

T(n) =
n

n+ 1
T(n − 1) + lgn

=
n

n+ 1

(
n − 1

n
T(n − 2) + lg (n− 1)

)
+ lgn

=
n− 1

n+ 1
T(n − 2) +

n

n+ 1
lg (n − 1) + lgn

=
n− 1

n+ 1

(
n − 2

n − 1
T(n − 3) + lg (n− 2)

)
+

n

n + 1
lg (n − 1) + lgn

=
n− 2

n+ 1
T(n − 3) +

n− 1

n+ 1
lg (n − 2) +

n

n + 1
lg (n − 1) + lgn

= . . .

=
2

n+ 1
T(1)

︸ ︷︷ ︸
A

+
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . . +

n− 1

n+ 1
lg (n− 2) +

n

n + 1
lg (n − 1) + lgn

︸ ︷︷ ︸
B

Clearly, A = O(1). Consider B.

B =
3

n + 1
lg 2+

4

n + 1
lg 3+ . . .+

n− 1

n+ 1
lg (n − 2) +

n

n+ 1
lg (n − 1) +

n + 1

n + 1
lgn

=
1

n + 1
(3 lg 2+ 4 lg 3+ . . .+ (n − 1) lg (n − 2) + n lg (n − 1) + (n + 1) lgn)
︸ ︷︷ ︸

C

Now consider C.

C = 3 lg 2+ 4 lg 3+ . . . + (n − 1) lg (n − 2) + n lg (n − 1) + (n + 1) lgn

= lg 2+ lg 3+ . . .+ lg (n − 1) + lgn
︸ ︷︷ ︸

D

+ 2 lg 2+ 3 lg 3+ . . .+ (n − 1) lg (n − 1) + n lgn
︸ ︷︷ ︸

E

But D = Θ(n lgn) (see Problem 121 on page 158) and E = Θ(n2 lgn) (see Problem 122 on
page 158). It follows that C = Θ(n2 lgn), and so B = Θ(n lgn). We conclude that

T(n) = Θ(n lgn) �

Problem 72. Solve

T(1) = Θ(1) (3.108)

T(2) = Θ(1) (3.109)

T(n) = T(n − 1).T(n − 2) (3.110)

82

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Unlike the problems we encountered so far, the aymptotic growth rate of T(n) in this
problem depends on the concrete values of the constants in (3.108) and (3.109). It is easy
to see that if T(1) = T(2) = 1 then T(n) = 1 for all positive n. So let us postulate that

T(1) = c (3.111)

T(2) = d (3.112)

where c and d are some positive constants. Then

T(3) = T(2).T(1) = cd

T(4) = T(3).T(2) = cd2

T(5) = T(4).T(3) = c2d3

T(6) = T(5).T(4) = c3d5

T(7) = T(6).T(5) = c5d8

. . .

The degrees that appear in this sequence look like the Fibonacci number (see the definition
on page 169). Indeed, it is trivial to prove by induction that

T(1) = c

T(n) = dFn−1cFn−2 , for all n > 1 (3.113)

Define

a = c
1√
5

b = d
1√
5

and derive

T(n) = Θ
(
bφ

n−1
)
Θ
(
aφ

n−2
)

applying (6.15) on page 170 on (3.113)

= Θ
(
bφ

n−1

aφ
n−2
)

= Θ
(
bφ.φ

n−2

aφ
n−2
)

= Θ
(
kφ

n−2

aφ
n−2
)

defining that bφ = k

= Θ
(
(ak)φ

n−2
)

(3.114)

Depending on how detalied analysis we need, we may stop right here. However, we can go
on a little further because depending on what a and k are, (3.113) can have dramatically
different asymptotic growth.

• If ak > 1, T(n) −−−−−→
n→ +∞

∞.

• If ak = 1, T(n) = 1 for all positive n, thus T(n) = Θ(1).

• If ak < 1, T(n) −−−−−→
n→ +∞

0, thus T(n) = O(1). �

83

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 73. Solve

T(1) = Θ(1)

T(n) =

n−1∑

i=1

T(i) + 1

Solution:

By definition,

T(n) = T(n − 1)+ T(n − 2) + . . . + T(2) + T(1) + 1 (3.115)

T(n − 1) = T(n − 2) + . . . + T(2) + T(1) + 1 (3.116)

Subtract 3.116 from 3.115 to obtain

T(n) − T(n − 1) = T(n − 1)

So, the original recurrence is equivalent to the following one:

T(1) = Θ(1)

T(n) = 2T(n − 1)

It is trivial to show that T(n) = Θ(2n), either by induction or by the method with the
characteristic equation. �

Problem 74. Solve

T(1) = Θ(1)

T(n) =

n−1∑

i=1

(T(i) + T(n − i)) + 1

Solution:

T(n) =

n−1∑

i=1

(T(i) + T(n − i)) + 1

=

n−1∑

i=1

T(i)

︸ ︷︷ ︸
T(1)+T(2)+...+T(n−1)

+

n−1∑

i=1

T(n− i)

︸ ︷︷ ︸
T(n−1)+T(n−2)+...+T(1)

+ 1

= 2

n−1∑

i=1

T(i) + 1

Having in mind the latter result, we proceed as in the previous problem.

T(n) = 2T(n − 1)+ 2T(n − 2) + . . . + 2T(2) + 2T(1) + 1 (3.117)

T(n − 1) = 2T(n − 2) + . . . + 2T(2) + 2T(1) + 1 (3.118)

84

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Subtract 3.118 from 3.117 to obtain

T(n) − T(n − 1) = 2T(n − 1)

So, the original recurrence is equivalent to the following one:

T(1) = Θ(1)

T(n) = 3T(n − 1)

It is trivial to show that T(n) = Θ(3n), either by induction or by the method with the
characteristic equation. �

Problem 75. Solve

T(1) = Θ(1)

T(n) = nT(n − 1) + 1

Solution:

T(n) = nT(n − 1) + 1

= n((n − 1)T(n − 2) + 1) + 1

= n(n − 1)T(n − 2) + n + 1

= n(n − 1)((n − 2)T(n − 3) + 1) + n + 1

= n(n − 1)(n − 2)T(n − 3) + n(n − 1) + n + 1

= n(n − 1)(n − 2)((n − 3)T(n − 4) + 1) + n(n − 1) + n+ 1

= n(n − 1)(n − 2)(n − 3)T(n − 4) + n(n − 1)(n − 2) + n(n − 1) + n + 1

= . . .

=
n!

(n − i)!
T(n − i) +

n!

(n − i+ 1)!
+

n!

(n− i+ 2)!
+ . . . +

n!

(n − 1)!
+
n!

n!
(3.119)

Clearly, the maximum value i achieves is imax = n− 1. For i = imax, (3.119) becomes:

T(n) =
n!

1!
T(1) +

n!

2!
+
n!

3!
+ . . . +

n!

(n − 1)!
+
n!

n!

= n!×
(
T(1)

1!
+
1

2!
+
1

3!
+ . . . +

1

(n − 1)!
+
1

n!

)

︸ ︷︷ ︸
A

We claim A is bounded by a constant. To see why, note that the series
∑

∞

i=1
1
i! is convergent

because the geometric series
∑

∞

i=1
1
2i

is convergent and i! > 2i for all i > 3. Therefore,

T(n) = Θ(n!)

�

85

Problems with solutions in the Analysis of Algorithms c© Minko Markov

3.2.2 The Master Theorem

There are several theoretical results solving a broad range of recurrences corresponding to
divide-and-conquer algorithms that are called master theorems. The one stated below is
due to [CLR00]. There is a considerately more powerful master theorem due to Akra and
Bazzi [AB98]. See [Lei96] for a detailed explanation.

Theorem 1 (Master Theorem, [CLR00], pp. 62). Let a ≥ 1 and b > 1 be constants, let
k = lgb a, and let f(n) be a positive function. Let

T(n) = aT
(n
b

)
+ f(n)

T(1) = Θ(1)

where
n

b
is interpreted either as

⌊n
b

⌋
or
⌈n
b

⌉
. Then T(n) can be bounded asymptotically as

follows.

Case 1 If f(n) = O
(
nk−ǫ

)
for some positive constant ǫ then T(n) = Θ(nk).

Case 2 If f(n) = Θ(nk) then T(n) = Θ
(
nk. lgn

)
.

Case 3 If both

1. f(n) = Ω
(
nk+ǫ

)
for some positive constant ǫ, and

2. a.f
(
n
b

)
≤ c.f(n) for some constant c such that 0 < c < 1 and for all sufficiently

large n,

then T(n) = Θ(f(n)). �

Condition 3-2 is known as the regularity condition.

Note that the condition f(n) = O
(
nk−ǫ

)
is stronger than f(n) = o(nk) and f(n) = Ω

(
nk+ǫ

)

is stronger than f(n) = ω
(
nk
)
:

f(n) = O(nk−ǫ) ⇒ f(n) = o(nk)

f(n) = o(nk) 6⇒ f(n) = O(nk−ǫ)

f(n) = Ω(nk+ǫ) ⇒ f(n) = ω(nk)

f(n) = ω(nk) 6⇒ f(n) = Ω(nk+ǫ)

For example, consider that

n lgn = ω(n) (3.120)

n lgn 6= Ω(n1+ǫ) for any ǫ > 0 because lgn 6= Ω(nǫ) by (1.50) (3.121)
n

lgn
= o(n) (3.122)

n

lgn
6= O(n1−ǫ) for any ǫ > 0 because

1

lgn
6= O(n−ǫ) (3.123)

86

Problems with solutions in the Analysis of Algorithms c© Minko Markov

To see why 1
lgn 6= O(n−ǫ) in (3.123) consider that

lim
n→∞

lgn

nǫ
= 0 ⇒ lim

n→∞

(
1
nǫ

1
lgn

)
= 0 ⇒

1

nǫ
= o

(
1

lgn

)
by (1.6) ⇒

1

lgn
= ω

(
1

nǫ

)
by the transpose symmetry

Problem 76. Solve by the Master Theorem

T(n) = 4T
(n
2

)
+ n

Solution:

Using the terminology of the Master Theorem, a is 4, b is 2, thus logb a is log2 4 = 2 and
nlogb a is n2. The function f(n) is n. The theorem asks us to compare f(n) and nlogb a,
which, in the current case, is to compare n with n2. Clearly, n = O(n2−ǫ) for some ǫ > 0,
so Case 1 of the Master Theorem is applicable and T(n) = n2. �

Problem 77. Solve by the Master Theorem

T(n) = T

(
2n

3

)
+ 1

Solution:

Rewrite the recurrence as

T(n) = 1.T

(
n
3
2

)
+ 1

Using the terminology of the Master Theorem, a is 1, b is 3
2 , thus logb a is log 3

2
1 = 0 and

nlogb a is n0 = 1. The function f(n) is 1. Clearly, 1 = Θ(n0), so Case 2 of the Master
Theorem is applicable. Assording to it, T(n) = Θ(1. lgn) = Θ(lgn). �

Problem 78. Solve

T(n) = 3T
(n
4

)
+ n lgn

Solution:

Using the terminology of the Master Theorem, a is 3, b is 4, thus logb a is log4 3, which
is approximately 0.79, and the function f(n) is n lgn. It certainly is true that n lgn =

Ω(nlog4 3+ǫ) for some ǫ > 0, for instance ǫ = 0.1. However, we have to check the regularity
condition to see if Case 3 of the Master Theorem is aplicable. The regularity condition in
this case is:

∃c such that 0 < c < 1 and 3
n

4
lg
n

4
≤ cn lgn for all sufficiently large n

The latter clearly holds for, say, c = 3
4
, therefore Case 3 is applicable and according to it,

T(n) = Θ(n lgn). �

87

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 79. Solve

T(n) = 2T
(n
2

)
+ n lgn

Solution:

Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n lgn. Let us see if we can classify that problem in one of the three cases
of the Master Theorem.

try Case 1 Is it true that n lgn = O(n1−ǫ) for some ǫ > 0? No, because n lgn = ω(n1).

try Case 2 Is it true that n lgn = Θ(n1)? No, because n lgn = ω(n1).

try Case 3 Is it true that n lgn = Ω(n1+ǫ) for some ǫ > 0? No, see (3.121).

Therefore this problem cannot be solved using the Master Theorem as stated above. We
solve it by Theorem 2 on page 91 and the answer is T(n) = Θ(n lg2 n). �

Problem 80. Solve

T(n) = 4T
(n
2

)
+ n (3.124)

T(n) = 4T
(n
2

)
+ n2 (3.125)

T(n) = 4T
(n
2

)
+ n3 (3.126)

(3.127)

Solution:

Using the terminology of the Master Theorem, a is 4 and b is 2, thus logb a is log4 2 = 2,
therefore nlogb a is n2. With respect to (3.124), it is the case that n = O(n2−ǫ) for some
ǫ > 0, therefore the solution of (3.124) is T(n) = Θ(n2) by Case 1 of the Master Theorem.
With respect to (3.125), it is the case that n2 = Θ(n2), therefore the solution of (3.125)
is T(n) = Θ(n2 lgn) by Case 2 of the Master Theorem. With respect to (3.126), it is the
case that n3 = Ω(n2+ǫ) for some ǫ > 0, therefore the solution of (3.126) is T(n) = Θ(n3)

by Case 3 of the Master Theorem, provided the regularity condition holds. The regularity
condition here is

∃c such that 0 < c < 1 and 4
(n
2

)3
≤ cn3 for all sufficiently large n

Clearly that holds for any c such that 1
2
≤ c < 1. Therefore, by Case 3 of the Master

Theorem, the solution of (3.126) is T(n) = Θ(n3). �

Problem 81. Solve

T(n) = T
(n
2

)
+ lgn (3.128)

88

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Let us try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 1 and b is 2, thus logb a is log2 1 = 0, therefore nlogb a is n0 = 1. The
function f(n) is lgn. Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that lgn = O(n0−ǫ) for some ǫ > 0? No, because lgn is an increasing
function and n−ǫ = 1

nǫ is a decreasing one.

try Case 2 Is it true that lgn = Θ(n0)? No, because lgn = ω(n0).

try Case 3 Is it true that lgn = Ω(n0+ǫ) for some ǫ > 0? No, see (1.50) on page 13.

So the Master Theorem is not applicable and we seek other methods for solving. Substitute
n by 2m, i.e. m = lgn and m = lgn. Then (3.128) becomes

T (2m) = T
(
2m−1

)
+m (3.129)

Further substitute T (2m) by S(m) and (3.129) becomes

S(m) = S(m− 1) +m (3.130)

But that recurrence is the same as (3.19), therefore its solution is S(m) = Θ(m2). Let us
go back now to the original n and T(n).

S(m) = Θ(m2) ⇔ T(2m) = Θ(lg2 n) ⇔ T(n) = Θ(lg2 n)

�

Problem 82. Solve by the Master Theorem

T(n) = 2T
(n
2

)
+ n3 (3.131)

T(n) = T

(
9n

10

)
+ n (3.132)

T(n) = 16T
(n
4

)
+ n2 (3.133)

T(n) = 7T
(n
3

)
+ n2 (3.134)

T(n) = 7T
(n
2

)
+ n2 (3.135)

T(n) = 2T
(n
4

)
+
√
n (3.136)

T(n) = 4T
(n
2

)
+ n2

√
n (3.137)

T(n) = 8T
(n
2

)
+ n3 (3.138)

T(n) = 3T
(n
2

)
+ 2n2 (3.139)

T(n) = 3T
(n
2

)
+ n lgn (3.140)

89

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

(3.131): as n3 = Ω
(
nlog2 2+ǫ

)
for some ǫ > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,

there is a constant c such that 0 < c < 1 and 2
(
n
2

)3 ≤ cn3 ⇔ 1
4
≤ c. So, any c such that

1
4
≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,

therefore T(n) = Θ(n3).

(3.132): rewrite the recurrence as T(n) = 1.T

(
n
10
9

)
+ n. As n = Ω

(
n

(

log 10
9
1

)

+ǫ

)
for

some ǫ > 0, we classify the problem into Case 3 of the Master Theorem. To apply Case 3,
we have to check the regularity condition holds. Namely, there is a constant c such that

0 < c < 1 and 1

(
n
10
9

)
≤ cn ⇔ 9

10 ≤ c. So, any c such that 9
10 ≤ c < 1 will do, therefore

the regularity condition holds, therefore Case 3 is applicable, therefore T(n) = Θ(n).

(3.133): As n2 = Θ
(
nlog4 16

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n2 lgn.

(3.134): as n2 = Ω
(
nlog3 7+ǫ

)
for some ǫ > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,

there is a constant c such that 0 < c < 1 and 7
(
n
3

)2 ≤ cn2 ⇔ 7
9
≤ c. So, any c such that

7
9 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,
therefore T(n) = Θ(n2).

(3.135): as n2 = O
(
nlog2 7−ǫ

)
for some ǫ > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 7

)
.

(3.136): as
√
n = Θ

(
nlog4 2

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = Θ(
√
n lgn).

(3.137): as n
5
2 = Ω

(
nlog2 4+ǫ

)
for some ǫ > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,

there is a constant c such that 0 < c < 1 and 4
(
n
2

) 5
2 ≤ cn 5

2 ⇔ 1√
2
≤ c. So, any c such that

1√
2
≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,

therefore T(n) = Θ(n2
√
n).

(3.138): As n3 = Θ
(
nlog2 8

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n3 lgn.

(3.139): as 2n2 = Ω
(
nlog2 3+ǫ

)
for some ǫ > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.

Namely, there is a constant c such that 0 < c < 1 and 3
(
2
(
n
2

)2) ≤ c2n2 ⇔ 3 ≤ 4c. So,

any c such that 34 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3
is applicable, therefore T(n) = Θ(2n2) = Θ(n2).

(3.140): as n lgn = O
(
nlog2 3−ǫ

)
for some ǫ > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 3

)
. �

90

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The following result extends Case 2 of the Master Theorem.

Theorem 2. Under the premises of Theorem 1, assume

f(n) = Θ(nk lgt n) (3.141)

for some constant t ≥ 0. Then

T(n) = Θ(nk lgt+1 n)

Proof:

Theorem 1 itself is not applicable because the recurrence for the said f(n) cannot be classified
into any of the three cases there. To solve the problem we use unfolding. For simplicity
we assume that n is an exact power of b, i.e. n = bm for some integer m > 0. The same
technique is used in [CLR00] for proving the Master Theorem: first prove it for exact powers
of b and then prove the result holds for any positive n. Here we limit our proof to the case
that n is an exact power of b and leave it to the reader to generalise for any positive n.

Assume that the logarithm in (3.141) is base-b and note we can rewrite what is inside
the Θ-notation on the right-hand side of (3.141) in the following way:

nk logtb n = nlogb a (logb b
m)t = b(m logb a)mt = b(logb a

m)mt = ammt (3.142)

Then (3.141) is equivalent to saying that

c1a
mmt ≤ f(bm) ≤ c2ammt

for some positive constants c1 and c2 and all sufficiently large values of m. However, for
the sake of simplicity, we will assume in the remainder of the proof that

f(bm) = ammt (3.143)

The reader is invited to construct a proof for the general case.

By the definition of the Master Theorem, T(n) = aT
(
n
b

)
+ f(n). Using (3.143) we rewrite

that as follows.

T(bm) = aT

(
bm

b

)
+ ammt

= aT(bm−1) + ammt ⇔

S(m) = aS(m − 1) + ammt substituting T(bm) with S(m)

= a
(
aS(m − 2) + am−1(m − 1)t) + ammt

= a2S(m − 2) + am(m − 1)t + ammt

= a2
(
aS(m − 3) + am−2(m − 2)t

)
+ am(m − 1)t + ammt

= a3S(m − 3) + am(m − 2)t + am(m− 1)t + ammt

. . .

= am−1S(1) + am2t + am3t + . . . + am(m − 2)t + am(m − 1)t + ammt

= am−1S(1) − am + am (1t + 2t + 3t + . . . + (m − 2)t + (m − 1)t +mt)
︸ ︷︷ ︸

Θ(mt+1) by (6.20) on page 170

= am−1S(1) − am + amΘ(mt+1)

= am−1S(1) − am +Θ(ammt+1) (3.144)

91

Problems with solutions in the Analysis of Algorithms c© Minko Markov

But (3.144) is Θ(ammt+1) because ammt+1 = ω(|am−1S(1) − am|). So,

S(m) = Θ(ammt+1) ⇔ T(n) = Θ
(
alogb n(logb n)

t+1
)

Having in mind that alogb n = nlogb a and logb n = Θ(lgn), we conclude that

T(n) = Θ
(
nlogb a lgt+1 n

)

�

Problem 83. Solve

T(n) = 2T
(n
2

)
+ lgn

Solution:

Since lgn = O
(
nlog2 2−ǫ

)
for some ǫ > 0, T(n) = Θ(nlog2 2) = Θ(n) by Case 1 of the Master

Theorem. �

Problem 84. Solve

T(n) = 2T
(n
2

)
+

n

lgn

Solution:

Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n

lgn . Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that n
lgn = O(n1−ǫ) for some ǫ > 0? No, see (3.123) on page 86.

try Case 2 Is it true that n
lgn = Θ(n1)? No, because n lgn = o(n1).

try Case 3 Is it true that n
lgn = Ω(n1+ǫ) for some ǫ > 0? No, because n lgn = o(n1).

Therefore this problem cannot be solved using the Master Theorem as stated above. Fur-
thermore, Theorem 2 on the preceding page cannot be applied either because it is not true
that n

lgn = Θ(nlog2 2 lgt(n)) for any t ≥ 0.

92

Problems with solutions in the Analysis of Algorithms c© Minko Markov

We solve the problem by unfolding.

T(n) = 2T
(n
2

)
+

n

lgn

= 2

(
2T
(n
4

)
+

n
2

lg n
2

)
+

n

lgn

= 4T
(n
4

)
+

n

(lgn) − 1
+

n

lgn

= 4

(
2T
(n
8

)
+

n
4

lg n4

)
+

n

(lgn) − 1
+

n

lgn

= 8T
(n
8

)
+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn

. . .

= nT(1) +
n

1
+
n

2
+
n

3
+ . . . +

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn

= nT(1) + n

(
1

1
+
1

2
+
1

3
+ . . . +

1

(lgn) − 2
+

1

(lgn) − 1
+

1

lgn

)

︸ ︷︷ ︸
B

Clearly, |A| = O(n). Now observe that B = n.Hlgn because inside the parentheses is the
(lgn)th partial sum of the harmonic series (see 6.16 on page 170). By (6.17), Hlgn =

Θ(lg lgn), therefore B = Θ(n lg lgn), therefore T(n) = Θ(n lg lgn). �

Problem 85 ([CLR00], Problem 4.4-3). Show that case 3 of the master theorem is over-
stated, in the sense that the regularity condition af

(
n
b

)
≤ cf(n) for some constant c < 1

implies that there exists a constant ǫ > 0 such that f(n) = Ω(nlogb a+ǫ).

Solution:

Assume for some constant c such that 0 < c < 1,

f(n) ≥ a

c
f
(n
b

)

Then

f(n) ≥ a2

c2
f
(n
b2

)

f(n) ≥ a3

c3
f
(n
b3

)

. . .

f(n) ≥ at

ct
f
(n
bt

)
(3.145)

For some constant value n0 for n, that process stops. So,
n
bt

= n0, therefore t = logb

(
n

n0

)
=

logb n − logb n0. Let s = 1
c
. Since c < 1, it is the case that s > 1. Substitute t, n

bt
, and c

in (3.145) to obtain

f(n) ≥ alogb n

alogb n0
× slogb n

slogb n0
× f(n0)

93

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Note that 1
alogb n0

× 1
slogb n0

× f(n0) is a constant. Call that constant, β. So,

f(n) ≥ alogb n × slogb n × β

Having in mind that alogb n = nlogb a and slogb n = nlogb s, we see that

f(n) ≥ β× nlogb a × nlogb s

Since s > 1, logb s > 0. Let ǫ = logb s. We derive the desired result: for all sufficiently
large n and some constant β

f(n) ≥ βnlogb a+ǫ ⇒ f(n) = Ω(nlogb a+ǫ)

�

3.2.3 The Method with the Characteristic Equation

Theorem 3 ([Man05], pp. 57). Let the infinite sequence ã = a0, a1, a2, . . . be generated by
the linear recurrence relation

an = c1an−1 + c2an−2 + . . . + cr−1an−(r−1) + cran−r (3.146)

Let α1, α2, . . . , αs be the distinct complex roots of the characteristic equation

xr − c1x
r−1 − c2x

r−2 − . . . − cr−1x− cr = 0 (3.147)

where αi has multiplicity ki for 1 ≤ i ≤ s†. Then

an = P1(n)α
n
1 + P2(n)α

n
2 + . . . + Ps(n)α

n
s (3.148)

where Pi(n) is a polynomial of n of degree < ki. The polynomials P1(n), P2(n), . . . ,
Ps(n) have r coefficients altogether which coefficients are determined uniquely by the first r
elements of ã. �

Using our terminology, (3.146) would be rewritten as

T(n) = c1T(n − 1) + c2T(n − 2) + . . . + cr−1T(n− (r − 1)) + crT(n− r) (3.149)

This is a generic instance of homogeneous linear recurrence. It is hardly possible such
a recurrence relation to describe the running time of a recursive algorithm since after the
recursive calls finish, at least some constant-time work must be perfomed. Therefore, we
will consider more general recurrence relations that are nonhomogeneous and whose generic
form is:

T(n) = c1T(n − 1) + c2T(n − 2) + . . . + cr−1T(n− (r − 1)) + crT(n − r) (3.150)

+ bn1Q1(n) + b
n
2Q2(n) + . . . + b

n
mQm(n)

b1, b2, . . . , bm are distinct positive constants andQ1(n), Q2(n), . . . , Qm(n) are polynomials
of n of degrees d1, d2, . . . , dm, respectively.

†Clearly, ki ≥ 1 for 1 ≤ i ≤ s and k1 + k2 + . . . + ks = r.

94

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Let us denote multisets by { }M brackets, e.g. {1, 1, 2, 3, 3, 3}M . For each element a from
some mulitset A, let #(a,A) denote the number of occurrences of a in A. For example,
#(1, {1, 1, 2, 3, 3, 3}) = 2. The union of two multisets A and B adds the multiplicities of the
elements, that is,

A ∪ B = {x | (x ∈ A or x ∈ B) and (#(x,A ∪ B) = #(x,A) +#(x, B))}M

The cardinality of a multiset A is the sum of the multiplicities of its elements and is denoted
by |A|. For example, | {1, 1, 2, 3, 3, 3}M | = 6.

The solution of (3.150) is the following. Let the multiset of the roots of the characteristic
equation be A. Clearly, |A| = r. Let B = {bi |#(b,B) = di + 1}M. Let Y = A ∪ B. Clearly,
|Y| = r+

∑m
i=1(di+1). Let us rename the distinct elements of Y as y1, y2, . . . , yt and define

that #(yi, Y) = zi, for 1 ≤ i ≤ t. Then

T(n) =β1,1 y
n
1 + β1,2 ny

n
1 + . . . + β1,z1 n

z1 yn1 + (3.151)

β2,1 y
n
2 + β2,2 ny

n
2 + . . . + β2,z2 n

z2 yn2 +

. . .

βt,1 y
n
1 + βt,2 ny

n
t + . . . + βt,zt n

zt yn1

The indexed β’s are constants, |Y| in number. Since we are interested in the asymptotic
growth rate of T(n) we do not care what are the precise values of those constants. As we do
not specify concrete initial conditions we are not able to compute them precisely anyways.
The asymptotic growth rate is determined by precisely one of all those terms—namely, the
biggest yi, multiplied by the biggest degree of n.

Problem 86. Solve

T(n) = T(n − 1) + 1

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = T(n − 1) + 1nn0 to make sure its form is as required
by (3.150). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.150), m = 1, b1 = 1, and d1 = 0. So we add b1 = 1 with multiplicity d1 + 1 = 1 to
{1}M, obtaining {1, 1}M. Then T(n) = A1n + Bn1n for some constants A and B, therefore
T(n) = Θ(n). �

Problem 87. Solve

T(n) = T(n − 1) + n

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = T(n − 1) + 1nn1 to make sure its form is as required
by (3.150). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the

95

Problems with solutions in the Analysis of Algorithms c© Minko Markov

multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.150), m = 1, b1 = 1, and d1 = 1. So we add b1 = 1 with multiplicity d1 + 1 = 2 to {1}M,
obtaining {1, 1, 1}M. Then T(n) = A1n + Bn1n + Cn2 1n for some constants A, B, and C,
therefore T(n) = Θ(n2). �

Problem 88. Solve

T(n) = T(n − 1) + n4

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = T(n − 1) + 1nn4 to make sure its form is as required
by (3.150). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.150), m = 1, b1 = 1, and d1 = 4. So we add b1 = 1 with multiplicity d1 + 1 = 5 to {1}M,
obtaining {1, 1, 1, 1, 1, 1}M . Then T(n) = A1n+Bn1n+Cn2 1n+Dn3 1n+En4 1n+Fn5 1n

for some constants A, B, C, D, and F, therefore T(n) = Θ(n5). �

Problem 89. Solve

T(n) = T(n − 1) + 2n

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = T(n − 1) + 1n(2n1) to make sure its form is as required
by (3.150). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.150), m = 1, b1 = 1, and d1 = 1. So we add b1 = 1 with multiplicity d1 + 1 = 2 to {1}M,
obtaining {1, 1, 1}M. Then T(n) = A1n + Bn1n + Cn2 1n for some constants A, B, and C,
therefore T(n) = Θ(n2). �

Problem 90. Solve

T(n) = T(n − 1) + 2n

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = T(n − 1) + 2nn0 to make sure its form is as required
by (3.150). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.150), m = 1, b1 = 2, and d1 = 0. So we add b1 = 2 with multiplicity d1 + 1 = 1 to
{1}M, obtaining {1, 2}M. Then T(n) = A1n + B2n for some constants A and B, therefore
T(n) = Θ(2n). �

96

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 91. Solve

T(n) = 2T(n − 1) + 1

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = 2T(n − 1) + 1nn0 to make sure its form is as required
by (3.150). The characteristic equation is x − 2 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {2}M. In the naming convention of
(3.150), m = 1, b1 = 1, and d1 = 0. So we add b1 = 1 with multiplicity d1 + 1 = 1 to
{1}M, obtaining {1, 2}M. Then T(n) = A1n + B2n for some constants A and B, therefore
T(n) = Θ(2n). �

Problem 92. Solve

T(n) = 2T(n − 1) + n

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = 2T(n − 1) + 1nn1 to make sure its form is as required
by (3.150). The characteristic equation is x − 2 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {2}M. In the naming convention of
(3.150), m = 1, b1 = 1, and d1 = 1. So we add b1 = 1 with multiplicity d1 + 1 = 2 to {1}M,
obtaining {1, 1, 2}M. Then T(n) = A1n + Bn1n + C2n for some constants A, B, and C,
therefore T(n) = Θ(2n). �

Problem 93. Solve

T(n) = 2T(n − 1) + 2n

using the method of the characteristic equation.

Solution:

Rewrite the recurrence as T(n) = 2T(n − 1) + 2nn0 to make sure its form is as required
by (3.150). The characteristic equation is x − 2 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {2}M. In the naming convention of
(3.150), m = 1, b1 = 2, and d1 = 0. So we add b1 = 2 with multiplicity d1 + 1 = 0 to
{2}M, obtaining {2, 2}M. Then T(n) = A2n + Bn2n for some constants A and B, therefore
T(n) = Θ(n2n). �

Problem 94. Solve

T(n) = 3T(n − 1) + 2n

using the method of the characteristic equation.

97

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

Rewrite the recurrence as T(n) = 3T(n − 1) + 2nn0 to make sure its form is as required
by (3.150). The characteristic equation is x − 3 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {3}M. In the naming convention of
(3.150), m = 1, b1 = 2, and d1 = 0. So we add b1 = 2 with multiplicity d1 + 1 = 0 to
{3}M, obtaining {2, 3}M. Then T(n) = A2n + B3n for some constants A and B, therefore
T(n) = Θ(3n). �

Problem 95. Solve

T(n) = T(n − 1) + T(n − 2)

using the method of the characteristic equation.

Solution:

This recurrence is homogeneous but is nevertheless interesting. The characteristic equa-

tion is x2 − x − 1 = 0. The two roots are x1 = 1+
√
5

2
and x2 = 1−

√
5

2
. Then T(n) =

A
(
1+

√
5

2

)n
+ B

(
1−

√
5

2

)n
for some constants A and B. Note that

∣∣∣1−
√
5

2

∣∣∣ < 1 therefore

T(n) = Θ
((

1+
√
5

2

)n)
. �

Problem 96. Solve

T(n) = T(n − 1) + 2T(n − 2)

using the method of the characteristic equation.

Solution:

The characteristic equation is x2 − x − 2 = 0. The two roots are x1 = 1+3
2 = 2 and

x2 = 1−3
2

= −1. Then T(n) = A2n + B (−1)n for some constants A and B. Therefore,
T(n) = Θ(2n). �

Problem 97. Solve

T(n) = 3T(n − 1) + 4T(n − 2) + 1 (3.152)

using the method of the characteristic equation.

Solution:

The characteristic equation is x2 − 3x − 4 = 0. The two roots are x1 = 3+5
2 = 4 and

x2 = 3−5
2

= −1. Then T(n) = A4n + B (−1)n + C1n for some constants A, B, and C.
Therefore, T(n) = Θ(4n). �

Problem 98. Solve

T(n) = 4T(n − 1) + 3T(n − 2) + 1 (3.153)

using the method of the characteristic equation.

98

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

The characteristic equation is x2−4x−3 = 0. The two roots are x1 = 2+
√
7 and x2 = 2−

√
7.

Then T(n) = A (2+
√
7)n +B (2−

√
7)n +C1n for some constants A, B, and C. Therefore,

T(n) = Θ((2 +
√
7)n). �

Problem 99. Solve

T(n) = 5T(n − 1) + 6T(n − 2) + 1 (3.154)

using the method of the characteristic equation.

Solution:

The characteristic equation is x2 − 5x− 6 = 0. The two roots are x1 =
5+

√
52+24
2 = 5+

√
49

2 =
5+7
2

= 6 and x2 =
5−7
2

= −1. Then T(n) = A.6n + B.(−1)n + C.1n. for some constants A,
B, and C. Therefore, A, B C. Therefore, T(n) = Θ(6n). �

Problem 100. Solve

T(n) = 4T(n − 3) + 1 (3.155)

using the method of the characteristic equation.

Solution:

The characteristic equation is

x3 − 4 = 0

Its roots are

x1 =
3
√
4

x2 =
3
√
4 ei

π
3

x3 =
3
√
4 ei

−π
3

If A, B, C, and D are some constants that can be complex numbers, the solution is

T(n) = A
(

3
√
4
)n

+ B
(

3
√
4
)n
e

nπi
3 + C

(
3
√
4
)n
e

nπi
3 +D1n =

= A
(

3
√
4
)n

+ B
(

3
√
4
)n (

cos
(nπ
3

)
+ i sin

(nπ
3

))
+

C
(

3
√
4
)n(

cos

(
−nπ

3

)
+ i sin

(
−nπ

3

))
+D

= A
(

3
√
4
)n

+
(

3
√
4
)n

cos
(nπ
3

)
(B+ C) +

(
3
√
4
)n

sin
(nπ
3

)
(B− C)i+D

If we take B = C = 1
2 , we get one solution

T1(n) = A
(

3
√
4
)n

+
(

3
√
4
)n

cos
(nπ
3

)
+D

99

Problems with solutions in the Analysis of Algorithms c© Minko Markov

If we take B = − 1
2 i and C = 1

2 i , we get another solution

T2(n) = A
(

3
√
4
)n

+
(

3
√
4
)n

sin
(nπ
3

)
+D

By the superposition principle†, we have a general solution

T(n) = A1

(
3
√
4
)n

+A2

(
3
√
4
)n

cos
(nπ
3

)
+A3

(
3
√
4
)n

sin
(nπ
3

)
+A4

for some constants A1, A2, A3, A4. The asymptotics of the solution is T(n) = Θ
((

3
√
4
)n)

�

†The superposition principle says that if we have a linear recurrence and we know that some functions
gi(), 1 ≤ i ≤ k, are solutions to it, then any linear combination of them is also a solution. See [Bal91],
pp. 97.

100

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 4

Proving the correctness of

algorithms

4.1 Preliminaries

Every algorithm implements a total function that maps the set of the inputs to the set of
the outputs. To prove the algorithm is correct is to prove that

1. the algorithm halts on every input, and

2. for every input, the corresponding output is precisely the one that is specified by the
said function.

Proving facts about the “behaviour” of algorithms is not easy even for trivial algorithms. It
is well known that in general such proofs cannot be automated. For instance, provably there
does not exist an algorithm that, given as input a program and its input, always determines
(using, of course, a finite number of steps) whether that program with that input halts. For
details, see the Halting Problem and Theorem 5 on page 176.

That famous undecidability result, due to Alan Turing, sets certain limitations on the
power of computation in general. Now we show that even for a specific simple program
deciding whether it halts or not can be extremely difficult. Consider the following program.

k = 3;

for (;;) {
for(a = 1; a <= k; a ++)

for(b = 1; b <= k; b ++)

for(c = 1; c <= k; c ++)

for(n = 3; n <= k; n ++)

if (pow(a,n) + pow(b,n) == pow(c,n))

exit(); }

Clearly, the program does not halt if and only if Fermat’s Last Theorem† is true. However,
for several hundred years some of the best mathematicians in the world were unable to
prove that theorem. The theorem was indeed proved after a huge effort by Sir Andrew
Wiles, an effort that spanned many years and led to some initial frustrations as the first

†It says: “an + bn = cn has no positive integer solutions for n ≥ 3”.

101

Problems with solutions in the Analysis of Algorithms c© Minko Markov

proof turned out to be incorrect. For a detailed account of these events, see [CSS97] or the
review of that book by Buzzard [Buz99].

We emphasise that to prove Fermat’s Last Theorem and to prove that the abovemen-
tioned program halts are essentially the same thing. Furthermore, determining whether an
algorithm halts or not is but only one aspect of the analysis of algorithms. If telling whether
a well-defined sequence of instructions halts or not is hard, determining whether it indeed
returns the desired output cannot be any easier in general. So, determining the behaviour
of even simple algorithms can necessitate profound mathematical knowledge and skills.

4.2 Loop Invariants – An Introduction

It is possible to prove assertions about algorithms—correctness or time complexity—using
loop invariants. That technique is applicable when the algorithm is iterative. It may be a
simple (not nested) loop or something more complicated. The gist of the algorithm has to
be a for or while loop.

Proving assertions with loop invariants is essentially proving assertions by induction,
with the notable exception that normally proofs by induction are done for infinite sequence,
while the loop invariants concern algorithm that take only finite number of steps. We first
give and example of a proof of correctness with a loop invariant of a very simple algorithm.
That first example is very detailed and the invariant itself is outlined as a nested statement
(sub-lemma).

Maximal Sequential(A[1, 2, . . . , n]: array of integers)
1 max ← A[1]

2 i← 2

3 while i ≤ n do

4 if A[i] > max

5 max ← A[i]

6 i← i+ 1

7 return max

Lemma 3. Algorithm Maximal Sequential returns the value of a maximum element of
A[1, 2, . . . , n].

Proof:

In order to prove the desired desired result we first prove a sub-lemma:

Sub-lemma: Every time the execution of Maximal Sequential is at line 3,
max contains the value of a maximum element in the subarray A[1, . . . , i− 1].

The proof of the sub-lemma is done by induction on the number of times the
execution reaches line 3.

Basis. The first time the execution is at line 3, i equals 2 (because of the previ-
ous assignment at line 2). So, the subarray A[1, . . . , i − 1] is in fact A[1, . . . , 1].
But max is A[1] (because of the previous assignment at line 1), and indeed this
is a maximum element in A[1, . . . , 1].

102

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Inductive Hypothesis. Assume the claim is true at a certain moment when
the execution is at line 3, such that the loop is to be executed at least once
more†. Let us define that the current value of i is called i ′.

Induction Step. The following two possibilities are exhaustive.

• A[i ′] is the maximum element in A[1, . . . , i ′]. By the inductive hypothesis,
max equals a maximum element in A[1, . . . , i ′ − 1]. It must be the case
that max < A[i ′]. So, the condition at line 4 is True and the assignment
at line 5 takes place. Thus max becomes equal to the maximum element in
A[1, . . . , i ′] immediately after that assignment. Then i gets incremenented
to i ′ + 1 (line 6). So, the next time the execution reaches line 3 again, max
is indeed equal to a maximum element in A[1, . . . , (i ′ + 1) − 1]. We see the
invariant is preserved in the current case.

• It is not the case that A[i ′] is the maximum element in A[1, . . . , i ′]. Then
A[i ′] is smaller than or equal to a maximum element in A[1, . . . , i ′ − 1],
which in its turn is equal to max by the inductive hypothesis. It follows
max is equal to a maximum element in A[1, . . . , i ′]. The condition at line 4
is False and the assignment at line 5 does not take place. Then i gets
incremenented to i ′ + 1 (line 6). So, the next time the execution reaches
line 3 again, max is indeed equal to a maximum element in A[1, . . . , (i ′ +
1) − 1]. We see the invariant is preserved in the current case, too.

That concludes the proof of the sublemma. Now consider the last time line 3 is executed.
Then i equals n+1. Substitute i with n+1 in the sub-lemma and conclude that max contains
the value of a maximum element in A[1, . . . , (n+1)−1], i.e. max equals a maximum element
in A[1, . . . , n]. We observe that at line 7 the algorithm returns max , and that concludes the
proof of the lemma. �

In the subsequent proofs we will not maintain as separate claims the invariant and the
conclusion “what does the invariant imply when the loop condition is evaluated for the last
time”. The latter will be the last step of the proof, called termination. The proofs will
have the following structure (after [CLR00]). The claim that is to be proved is a one-place
predicate. Let us call that predicate, P(). Typically, that predicate’s variable is the loop
control variable. If the loop control variable is i, the predicate is P(i).

1. Initialisation. It correspond to the basis in the proofs by induction. In this step
we verify that the claim holds at the moment immediately prior to the first iteration
of the loop. That is, consider the moment when the execution reaches the line with
the for or while for the first time. If the valus of the loop control variable is i0 at
that moment, show P(i0).

2. Maintenance. On the assumption that the claim holds before some iteration of
the loop, prove the claim holds at the end of that iteration. More precisely, if k is

†It would be an error to omit the proviso “the loop is to be executed at least once more”. We have to
prove the invariant is preserved during any execution of the loop. Therefore, if we consider the very last
execution of line 3, we cannot establish the preservation of the invariant in the body of the loop.

103

Problems with solutions in the Analysis of Algorithms c© Minko Markov

the value of the loop control variable at certain moment when the for or while line
is reached, prove the implication P(k)⇒ P(k + 1)†.

If there are multiple ways to go through the body of the loop (for instance, in case
the body of the loop has if–else structure), the proof has to follow all of them.

3. Termination. The invariant is already proved. Consider the very last time the
execution reaches the top of the loop, i.e. the line with for or while condition. Let
the value of the loop control variable at that moment be, say, t. The statement P(t)
must prove directly the property of the algorithm that we are interested in.

4.3 Proving the Correctness of Insertion Sort, Selection Sort,

Bubble Sort, Merge Sort, and Quick Sort

Consider the following proof of correctness by loop invariant of Insertion Sort, based on
[CLR00]. The goal is to prove that Insertion Sort indeed sorts its input.

Insertion Sort(A[1, 2, . . . n]: array of integers)
1 for i← 2 to n

2 key ← A[i]

3 j← i− 1

4 while j > 0 and A[j] > key do

5 A[j + 1]← A[j]

6 j← j − 1

7 A[j+ 1]← key

There are two loops in that algorithm. A very precise formal proof should consist of two
separate invariants:

• an invariant concerning the inner while loop—it should be stated and proved relative
to j, the control variable of the inner loop;

• an invariant concerning the outer for loop—it should be stated and proved relative
to i.

The algorithm moves the elements of A[] around. Because of that, making a precise ar-
gument can be tricky: for instance, when we mention A[i] in Lemma 4, do we mean the
element of A at position i before, or after, the inner while loop has shifted a certain subar-
ray “upwards” by one position? Position i can be affected by the shift, so in general those
are different elements. We overcome that potential ambiguity by giving different names to
the whole array, or parts of it, in different moments of the execution.

Lemma 4. Consider algorithm Insertion Sort. Relative to any execution of the for

loop (lines 1–7), let us call the subarray A[1, . . . , i] before the while loop (lines 4–6) starts
being executed, A ′[1, . . . , i], and let us call it A ′′[1, . . . , i], after it is executed. Assume the
subarray A ′[1, . . . , i− 1] is sorted. The while loop has the following effects:

†Assuming that the loop control variable is always incremented by one.

104

Problems with solutions in the Analysis of Algorithms c© Minko Markov

• j is assigned the biggest number from {1, 2, . . . , i − 1} such that A ′[j] ≤ key, if such a
number exists, or is assigned 0, otherwise.

• with respect to that value of j, it shifts the subarray A ′[j+ 1, . . . , i− 1] by one position
upwards.

Proof: The following is a loop invariant for the while loop:

Every time the execution reaches line 4:

• for every element x of the current subarray A[j + 2, . . . , i], x > key , and

• the current subarray A[j+ 2, . . . , i] is the same as A ′[j + 1, . . . , i− 1].

Basis. The first time the execution reaches line 4, it is the case that j = i − 1. So, the
current subarray A[j + 2, . . . , i] is in fact A[i + 1, . . . , i]. Since that is an empty subarray,
the first part of the invariant is vacuously true. The second part of the invariant is true as
well because both subarrays it concerns are empty.

Maintenance. Assume the claim holds at a certain moment t when the execution is
at line 4 and the while loop is to be executed at least once more. The latter means that
j > 0 and A[j] > key . After line 5, it is the case that A[j + 1] > key , and that is relative
to the value of j that the current iteration began with. By the first part of the invariant,
for every element x of the current subarray A[j + 2, . . . , i], x > key . We conclude that for
every element x of the current subarray A[j+1, . . . , i], x > key . At line 6, j is decremented.
Relative to the new value of j, the previously stated conclusion becomes, for every element
x of the current subarray A[j+ 2, . . . , i], x > key . We proved the first part of the invariant.

Consider the execution at moment t again. Consider the second part of the invariant.
According to it, the current subarray A[j + 2, . . . , i] is the same as A ′[j + 1, . . . , i − 1].
Then the execution of the loop body commences. At line 5, the value of the current A[j] is
assigned to A[j + 1]. But element A[j] has not been modified by the while loop so far†—a
fact which is fairly obvious and does not necessitate inclusion in the invariant—so A[j] is in
fact A ′[j]. It follows the current subarray A[j+ 1, . . . , i] is the same as A ′[j, . . . , i− 1] after
the assignment at line 5 takes place. Then j gets decremented (line 6). When the execution
is at line 4 again, relative to the new value of j, it is the case that A[j+ 2, . . . , i] is the same
as A ′[j+ 1, . . . , i − 1]. We proved the second part of the invariant.

Termination. Consider the moment when the execution is at line 4 and the condition
there is False. That is, j ≤ 0 or A[j] ≤ key .

Case i. First assume that j ≤ 0. Since j is decremented by one, it cannot be negative, so
it is the case that j = 0. Plug the value 0 for j in the invariant to obtain that:

• for every element x of the current subarray A[2, . . . , i], x > key , and

• the current subarray A[2, . . . , i] is the same as A ′[1, . . . , i − 1].

The first part of the invariant means there is no number j from {1, 2, . . . , i − 1} such that
A ′[j] ≤ key . But j is assigned 0 and so the first claim of this Lemma is true. The

†Remember that here we consider only the executions of the while loop relative to the current execution
of the outer for loop, not all executions of the while loop since the start of the algorithm.

105

Problems with solutions in the Analysis of Algorithms c© Minko Markov

second part of the invariant means that, relative to the value 0 for j, the original subarray
A[j+ 1, . . . , i− 1] has been shifted one position upwards. So, the Lemma holds when j = 0.

Case ii. Now assume that j > 0 and A[j] ≤ key . But A[j] has never been modified by
the while loop. Therefore, it is the case that A ′[j] ≤ key .

The invariant says that, on the one hand, A[j+2] > key , A[j+3] > key , etc., A[i] > key ,
and on the other hand, that A[j + 2] = A ′[j + 1], A[j + 3] = A ′[j + 2], A[i] = A ′[i − 1]. It
follows that A ′[j+ 1] > key , A ′[j+ 2] > key , etc., A ′[i− 1] > key .

The two facts above imply that indeed j is assigned the biggest number from {1, 2, . . . ,

i − 1} such that A ′[j] ≤ key . So, the first claim of the Lemma holds. The second claim of
the Lemma is literally the same as the the second part of the invariant. That concludes the
proof of the Lemma. �

Lemma 5. Algorithm Insertion Sort is a sorting algorithm.

Proof:

Let us call the original array, A ′[1, . . . , n], and let us call A ′′[1, . . . , n] the array after the
algorithm halts. The following is a loop invariant for the for loop:

Every time the execution of Insertion Sort is at line 1, the current subarray
A[1, . . . , i − 1] consists of the same elements as A ′[1, . . . , i − 1], but in sorted
order.

Basis. The first time the execution reaches line 1, it is the case that i = 2. The subarray
A[1, . . . , 1] consists of a single element that is clearly the same as A ′[1] and it is, in a trivial
sense, sorted.

Maintenance. Assume the claim holds at a certain execution of line 1 and the for loop
is to be executed at least once more. Let Ã[1, . . . , i] be the name of A[] when the execution
of the for loop commences. The current value of A[i], i.e. Ã[i], is stored in key , j is set to
i− 1, and the inner while loop is executed. By Lemma 4, the effects of the while loop are
the following:

• j is assigned the biggest number from {1, 2, . . . , i − 1} such that Ã[j] ≤ key , if such a
number exists, or is assigned 0, otherwise.

• with respect to that value of j, the subarray Ã[j+1, . . . , i−1] is shifted by one position
upwards.

If there are elements in Ã[1, . . . , i − 1] that are bigger than key = Ã[i], they are stored
in a contiguous sorted subsequence – that follows from the assumption at the beginning of
the Maintenance phase. Lemma 4 implies that the index of the smallest of those is j+ 1.
Lemma 4 further implies that Ã[j + 1, . . . , i − 1] is shifted into the current A[j + 2, . . . , i].
Thus in the current A[], A[j+1] = A[j+2] and therefore the assignment at line 7 overwrites
a value that has already been copied into another position. Clearly, at the end of the for

loop, A[1, . . . , i] consists of the same elements as Ã[1, . . . , i] but in sorted order.
It remains to consider the case when no elements in Ã[1, . . . , i − 1] are bigger than

key = Ã[i]. By Lemma 4, j equals i− 1 at the end of the while loop and nothing has been
shifted upwards, thus the assignment at line 7 overwrites the i-th element of A with the
value it had at the start of the for loop, namely Ã[i]. Clearly, at the end of the for loop,
A[1, . . . , i] consists of the same elements as Ã[1, . . . , i] but in sorted order.

106

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Termination. Consider the moment when the execution is at line 1 for the last time.
Clearly, i equals n + 1. Plug the value n + 1 in place of i in the invariant to obtain “the
current subarray A[1, . . . , (n+1)−1] consists of the same elements as A ′[1, . . . , (n+1)−1],
but in sorted order”. �

Selection Sort(A[1, 2, . . . n]: array of integers)
1 for i← 1 to n − 1

2 for j← i+ 1 to n

3 if A[j] < A[i]

4 swap(A[i], A[j])

The following two lemmas concern the correctness of Selection Sort. It is obvious that
Selection Sort permutes the elements of the input because the only changes is does to
A[] happen at line 4, using swaps. That is unlike Insertion Sort where it is not (so)
obviuos that at the end, the elements in the array are the same as the original ones. So
in the analysis of Insertion Sort we did concern ourselves with proving that no original
element gets overwritten before its value is stored safely somewhere else. In the analysis of
Selection Sort we have no such concerns.

Lemma 6. With respect to a particular execution of the outer for loop (lines 1–4) of
Selection Sort, the execution of the inner for loop (lines 2–4) has the effect that A[i] is
a smallest element in A[i, . . . , n].

Proof:

With respect to a certain execution of the outer for loop, the following is a loop invariant
for the inner for loop:

Every time the execution reaches line 2, the current A[i] holds the value of a
minimum element from A[i, . . . , j − 1].

Basis. The first time the execution of the inner for loop is at line 2, it is the case that
j = i+ 1. Then A[i] is trivially a minimum element in A[i, . . . , (i + 1) − 1].

Maintenance. Assume the claim is true at some moment when the execution is at line 2
and the inner for loop is to be executed once more. The following two cases are exhaustive.

Case i. A[j] < A[i]. The condition at line 3 is True and the swap at line 4 takes place.
By the maintenance hypothesis, A[i] is a minimum in A[i, . . . , j − 1]. Since A[j] < A[i],
by the transitivity of the < relation, A[j] is the minimum element in A[i, . . . , j] before the
swap. We conclude A[i] is the minimum element in A[i, . . . , j] after that swap. Then j gets
incremented by one and the execution goes to line 2. With respect to the new value of j, it
is the case that A[i] is the minimum element in A[i, . . . , j − 1].

Case ii. A[j] 6< A[i]. Then the condition at line 3 is False and the swap at line 4 does
not take place. By the maintenance hypothesis, A[i] is a minimum element in A[i, . . . , j−1].
Since A[i] ≤ A[j], clearly A[i] is a minimum element in A[i, . . . , j]. Then j gets incremented
by one and the execution goes to line 2. With respect to the new value of j, it is the case
that A[i] is a minimum element in A[i, . . . , j− 1].

Termination. Consider the moment when the execution is at line 2 for the last time.
Clearly, j equals n + 1. Plug the value n + 1 in place of j in the invariant to obtain “the
current A[i] holds the value of a minimum element from A[i, . . . , (n + 1) − 1]”. �

107

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Lemma 7. Algorithm Selection Sort is a sorting algorithm.

Proof:

Let us call the original array, A ′[1, . . . , n]. The following is a loop invariant for the outer
for loop (lines 1–4):

Every time the execution of Selection Sort is at line 1, the current subarray
A[1, . . . , i − 1] consists of i − 1 in number smallest elements from A ′[1, . . . , n],
in sorted order.

Basis. The first time the execution reaches line 1, it is the case that i = 1. The current
subarray A[1, . . . , i − 1] is empty and thus, vacuously, it consists of the zero in number
smallest elements from A ′[1, . . . , n], in sorted order.

Maintenance. Assume the claim holds at a certain execution of line 1 and the outer for
loop is to be executed at least once more. Let us call the array A[] at that moment, A ′′[].
By Lemma 6, the effect of the inner for loop is that it stores into the ith position a smallest
value from A ′′[i, . . . , n]. On the other hand, by the maintenance hypothesis, A ′′[1, . . . , i−1]
consists of i−1 in number, smallest elements from A ′[1, . . . , n], in sorted order. We conclude
that at the end of that execution of the outer for loop, the current A[1, . . . , i] consists of i
in number, smallest elements from A ′[1, . . . , n], in sorted order. Then i gets incremented by
one and the execution goes to line 1. With respect to the new value of i, it is the case that
the current A[1, . . . , i − 1] consists of i− 1 in number, smallest elements from A ′[1, . . . , n],
in sorted order.

Termination. Consider the moment when the execution is at line 1 for the last time.
Clearly, i equals n. Plug the value n in place of i in the invariant to obtain “the current
subarray A[1, . . . , n−1] consists of the smallest, n−1 in number, elements from A ′[1, . . . , n],
in sorted order”. But then A[n] has to be a maximum element from A ′[1, . . . , n]. And that
concludes the proof of the correctness of Selection Sort. �

Bubble Sort(A[1, 2, . . . n]: array of integers)
1 for i← 1 to n

2 for j← n downto i+ 1

3 if A[j− 1] > A[j]

4 swap(A[j − 1], A[j])

Lemma 8. With respect to a particular execution of the outer for loop (lines 1–4) of
Bubble Sort, the execution of the inner for loop (lines 2–4) has the effect that A[i] is a
smallest element in A[i, . . . , n].

Proof:

With respect to a certain execution of the outer for loop, the following is a loop invariant
for the inner for loop:

Every time the execution reaches line 2, the current A[j] holds the value of a
minimum element from A[j, . . . , n].

Basis. The first time the execution of the inner for loop is at line 2, it is the case that
j = n. Then A[n] is trivially a minimum element in A[n, . . . , n].

108

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Maintenance. Assume the claim is true at some moment when the execution is at line 2
and the inner for loop is to be executed once more. The following two cases are exhaustive.

Case i. A[j−1] > A[j]. The condition at line 3 is True and the swap at line 4 takes place.
By the maintenance hypothesis, A[j] is a minimum in A[j, . . . , n] at the before the swap.
Since A[j − 1] > A[j], A[j] is a minimum element in A[j − 1, . . . , n] before the swap. After
the swap, clearly A[j − 1] is a minimum element in A[j − 1, . . . , n]. Since j is decremented
by one the next time the execution is at line 2, with respect to the new j, it is the case that
A[j] is a minimum element from A[j, . . . , n].

Case ii. A[j − 1] 6> A[j], i.e. A[j − 1] ≤ A[j]. The condition at line 3 is False and
the swap at line 4 does not take place. By the maintenance hypothesis, A[j] is a minimum
in A[j, . . . , n] at the before the evaluation at line 3. By the transitivity of the ≤ relation,
A[j−1] is a minimum element in A[j−1, . . . , n]. Since j is decremented by one the next time
the execution is at line 2, with respect to the new j, it is the case that A[j] is a minimum
element from A[j, . . . , n].

Termination. Consider the moment when the execution is at line 2 for the last time.
Then j equals i. Plug the value i in place of j in the invariant to obtain “A[i] holds the
value of a minimum element from A[i, . . . , n]”. �

Lemma 9. Algorithm Bubble Sort is a sorting algorithm.

Proof:

Let us call the original array, A ′[1, . . . , n]. The following is a loop invariant for the outer
for loop (lines 1–4):

Every time the execution of Bubble Sort is at line 1, the current subarray
A[1, . . . , i − 1] consists of i − 1 in number smallest elements from A ′[1, . . . , n],
in sorted order.

Basis. The first time the execution reaches line 1, it is the case that i = 1. Obviously,
the current A[1, . . . , i− 1] is empty and the claim is vacuously true.

Maintenance. Assume the claim holds at a certain execution of line 1 and the outer for
loop is to be executed at least once more. Let us call the array A[] at that moment, A ′′[].
By Lemma 8, the effect of the inner for loop is that it stores into the ith position a smallest
value from A ′′[i, . . . , n]. On the other hand, by the maintenance hypothesis, A ′′[1, . . . , i−1]
consists of i−1 in number, smallest elements from A ′[1, . . . , n], in sorted order. We conclude
that at the end of that execution of the outer for loop, the current A[1, . . . , i] consists of i
in number, smallest elements from A ′[1, . . . , n], in sorted order. Then i gets incremented
by one and the execution goes to line 1. With respect to the new value of i, it is the case
that the current A[1, . . . , i − 1] consists of i − 1 in number, smallest i − 1 elements from
A ′[1, . . . , n], in sorted order.

Termination. Consider the moment when the execution is at line 1 for the last time.
Clearly, j equals n+1. Plug the value n in place of i in the invariant to obtain “the current
subarray A[1, . . . , (n+ 1)− 1] consists of the smallest, (n+ 1)− 1 in number, elements from
A ′[1, . . . , n], in sorted order.”. �

Merge(A[1, 2, . . . n]: array of integers; l , mid , h : indices in A[])
1 (∗ the subarrays A[l , . . . , mid] and A[mid + 1, . . . , h] are sorted ∗)

109

Problems with solutions in the Analysis of Algorithms c© Minko Markov

2 n1 ← mid − l + 1

3 n2 ← h − mid

4 create L[1, . . . , n1 + 1] and R[1, . . . , n2 + 1]
5 L← A[l , . . . , mid]

6 R← A[mid + 1, . . . , h]

7 L[n1 + 1]←∞
8 R[n2 + 1]←∞
9 i← 1

10 j← 1

11 for k ← l to h

12 if L[i] ≤ R[j]
13 A[k]← L[i]

14 i← i+ 1

15 else

16 A[k]← R[j]

17 j← j+ 1

Lemma 10. On the assumption that the subarrays A[l, . . . , mid] and A[mid+ 1, . . . , h] are
sorted, the whole array A[l, . . . , h] is sorted after Merge terminates.

Proof:

The following is a loop invariant for the for loop (lines 11–17):

part i Every time the execution of Merge is at line 11, A[l , . . . , k−1] contains
k − l smallest elements of L[] and R[], in sorted order.

part ii Furthermore, L[i] and R[j] are smallest elements in L[] and R[], respec-
tively, that have not been copied into A[] yet.

Basis. When the execution is at line 11 for the first time, it is the case that k = l . Then
the subarray A[l , . . . , k − 1] is in fact A[l , . . . , l − 1], i.e. an empty subarray. Vacuously,
it is sorted and contains the k − l = 0 smallest elements of L[] and R[], in sorted order.
Furthermore, L[1] and R[1] are smallest elements of L[] and R[], respectively, that have not
been copied into A[].

Maintenance. Assume the claim holds at a certain execution of line 11 and the for loop
is to be executed at least once more. There are two alternative ways the execution can
take through the body of the loop. We consider them both. Before we do that we prove
an useful auxilliary result; both L[] and R[] contain a ∞ value so we want to be sure that
those are never compared.

In the comparison at line 12, it cannot be the case that two ∞ values are com-
pared.

Proof: Assume the opposite. By the maintenance hypothesis, k − l elements
are copied into A from L[] and R[]. By the maintenance hypothesis, the body
of the loop is to be executed once more, so the number of the copied elements
is ≤ h − l . By the assumption we made, we have copied all n1 + n2 elements
that are not ∞, so the number of copied elements is ≥ n1+n2 = mid − l + 1+

h − mid = h − l + 1 > h − l .

110

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Consider the comparison at line 12. Since both L[i] and R[j] cannot be ∞, the result of
the comparison is always defined. First assume L[i] ≤ R[j]. Clearly, L[i] < ∞. By part ii

of the maintenance hypothesis and the assumption that L[i] ≤ R[j] we conclude L[i] is a
smallest element in L[] and R[] that has not been copied yet. By part i of the maintenance
hypothesis, L[i] is not smaller than any element in A[l , . . . , k-1]. The execution goes to
line 13. So, now A[k] is not smaller that any element in A[l , . . . , k-1]. It follows A[l , . . . , k]
is sorted and contains the k − l + 1 = (k + 1) − l smallest elements of L[] and R[]. But k
gets incremented the next time the execution is at line 11. Relative to the new value of k ,
it is the case that A[l , . . . , k-1] contains k − l smallest elements of L[] and R[], in sorted
order. So, part i of the invariant holds.

Now we prove that part ii of the invariant holds as well. By assumption, L[] and R[]
are sorted. Before the assignment at line 13, L[i] was a smallest element from L[] not copied
into A[] yet. After that assignment, L[i+ 1] is a smallest element from L[] not copied into
A[] yet. But i get incremented at line 14. With respect to the new value of i, L[i] is a
smallest element from L[] not copied into A[] yet.

Now assume the execution is still at line 12 and L[i] 6≤ R[j], i.e. L[i] > R[j]. The proof is
completely analogous to the proof above.

Termination. The loop control variable k equals h+ 1 the last time the execution is at
line 11. Plug that value into the invariant to obtain “the subarray A[l , . . . , h − 1] contains
k − l smallest elements of L[] and R[], in sorted order”. �

Merge Sort(A[1, 2, . . . , n]: array of integers; l , h : indices in A[])
1 if l < h

2 mid ←
⌊
l+h
2

⌋

3 Merge Sort(A, l , mid)
4 Merge Sort(A, mid + 1, h)
5 Merge(A, l , mid , h)

Lemma 11. Algorithm Merge Sort is a correct sorting algorithm if the initial call is
Merge Sort(A, 1, n).

Proof:

By induction on the difference h − l †. We consider it obvious that h − l can get as small
as zero but not any smaller. So, the basis is h − l = 0.

Basis. h = l . On the one hand, the array A[l] is trivially sorted. On the other hand,
Merge Sort does nothing when h = l . So, the one element array remains sorted at the
end.

Maintenance. Assume that Merge Sort sorts correctly the subarrays A[l , . . . , mid]
and A[mid + 1, . . . , h] (lines 3 and 4) during any recursive call such that h > l . Use
Lemma 10 to conclude that at the end of the current call, the whole A[l , . . . , h] is sorted.

Termination. When proving facts about recursive algorithms, using induction rather
than loop invariant, the termination step of the proof concerns the termination of the very
first recursive call. In this proof that is Merge Sort(A[1, . . . , n]). With Merge Sort,

†Note that this is not a proof with loop invariant because Merge Sort is not an iterative algorithm.

111

Problems with solutions in the Analysis of Algorithms c© Minko Markov

this step is trivial: simply observe that after the algorithm finishes altogether, A[1, . . . , n]
is sorted. �

Partition(A[1, 2, . . . , n]: array of integers; l , h : indices in A[])
1 pivot ← A[h]

2 pp ← l

3 for i← l to h − 1

4 if A[i] < pivot

5 swap(A[i], A[pp])
6 pp ← pp + 1

7 swap(A[pp], A[h])
8 return pp

Lemma 12. The value pp returned by Partition is such that l ≤ pp ≤ h and

∀x ∈ A[l, . . . , pp− 1],∀y ∈ A[pp+ 1, . . . , h] : x < A[pp] ≤ y

Proof:

At any moment, let S denote the current set {x ∈ A[l , . . . , i−1] | x < pivot }. The following
is a loop invariant for the for loop (lines 3–6):

Every time the execution of Partition is at line 3, pp ≤ i and the elements of
S are precisely the elements in A[l , . . . , pp − 1].

Basis: i = l . Because of the assignement at line 2, pp ≤ i holds. The subarray A[l , . . . , i−
1] is A[l , . . . , l − 1], an empty subarray, therefore S = ∅, so it is vacuously true that the
elements of S are precisely the elements in A[l , . . . , pp − 1] .

Maintenance: Assume the claim holds at a certain moment when the execution is at
line 3 and i ≤ h − 1. Let A ′[] and pp ′ denote the array A[] and the index variable pp ,
respectively, at the beginning of that the for loop execution.

Case 1: A ′[i] < pivot . By the maintenance hypothesis, A ′[pp] is the leftmost element
that is left of the current ith position and is not smaller than pivot . All the elements
that are smaller than pivot and left of the current ith position—namely, the elements of
S—consitute the subarray left of the current pp th position. Let the values of A ′[pp] and
A ′[i] be called x and y, respectively. See the following figure. The elements of S are outlined
in yellow. For brevity we write Al rather than A[l], etc.

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

A ′

hh − 1i

pivot

the elements of S are here

the pp index

points here

the loop

control var.

points here

A ′

h−1yA ′

l A ′

l+1 A
′

l+2 A ′
pp ′−1 x A ′

pp ′+1

112

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The condition at line 4 is True and so the execution proceeds to line 5 where x and y get
swapped. Note that S “grows” by one element, namely y:

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

A

hh − 1i

pivot

the elements of S are here

the pp index

points here

control var.

the loop

points here

Ah−1Al Al+1 Al+2 App ′−1 y App ′+1 x

At line 6, pp is incremented by one:

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

A

hh − 1i

pivot

the elements of S are here

the pp index

points here

the loop

control var.

points here

Ah−1Al Al+1 Al+2 App ′−1 y xApp ′+1

Next the execution is at line 3 again, with i incremented by one. Relative to the current i,
we have the following picture:

the pp index

points here

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

the loop

control var.

points here

A

hh − 1

pivot

the elements of S are here

ii− 1

Ah−1Al Al+1 Al+2 App ′−1 y xApp ′+1

Relative to the current values of i and pp , the elements in A[l , . . . , i−1] smaller than pivot

are precisely the elements in A[l , . . . , pp − 1]. Furthermore, pp ≤ i. And so the invariant
holds.

113

Problems with solutions in the Analysis of Algorithms c© Minko Markov

There is no loss of generality in considering the case pp ′ < i as we did here. However, if
the reader is not convinced, here is what happens when pp ′ = i at the start of the iteration
whose execution we follows. Let x be the value of the element at position pp ′ = i:

pivotA ′

h−1xA ′
pp ′−1A ′

l+2A ′

l+1A ′

l

the pp index

points here

A ′

hh − 1

the elements of S are here

the loop

control var.

points here

pp ′ = il l + 1 l + 2 pp ′ − 1

The condition at line 4 is true under the premise of Case 1, so the swap at line 5 takes
place. However, nothing changes because x is swapped with itself. Then both pp and i get
incremented by one. Relative to their new values, S is one element bigger than it was at the
beginning of the current iteration – it has “grown”, x being added to it. However, it is still
the case that pp ≤ i and the elements of S are precisely the elements in A[l , . . . , pp − 1]:

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

the loop

control var.

points here

the pp index

points here

A

h

pivot

the elements of S are here

h − 1

A ′

l A ′

l+1 A
′

l+2 A ′
pp ′−1 x A ′

pp ′+1 A ′

h−1

Case 2: A ′[i] ≥ pivot . In this case, the condition at line 4 is False and so the execution
proceeds directly to line 3 with the loop control variable being incremented by one. The
invariant holds because of the maintenance hypothesis and the facts that no element in the
array is moved, pp equals pp ′, and pp ≤ i relative to the new value of i, and S is the same
relative to the new value of i.

Termination: When the for loop terminates, it is the case that i = h . Now S is the set
of the elements in A[l , . . . , h − 1] smaller than pivot . But it is also true that S consists

114

Problems with solutions in the Analysis of Algorithms c© Minko Markov

of the elements in A[l , . . . , h] smaller than pivot . By the loop invariant, the elements of
S form the contiguous subarray A[l , . . . , pp − 1]. After the assignment at line 7, it is the
case that

∀x ∈ A[l , . . . , pp − 1],∀y ∈ A[pp + 1, . . . , h] : x < A[pp] ≤ y

And finally at line 8, Partition returns pp , so the claim of this Lemma is true. �

Quick Sort([A1, 2, . . . , n]: array of integers; l , h : indices in A[])
1 if l < h

2 mid ← Partition(A, l , h)
3 Quick Sort(A, l , mid − 1)
4 Quick Sort(A, mid + 1, h)

Lemma 13. Algorithm Quick Sort is a correct sorting algorithm if the initial call is
Quick Sort(A, 1, n).

Proof:

By induction on the difference h − l . We consider it obvious that h − l can get as small
as zero but not any smaller. So, the basis is h − l = 0.

Basis. h = l . On the one hand, the array A[l] is trivially sorted. On the other hand,
Quick Sort does nothing when h = l . So, the one element array remains sorted at the
end.

Maintenance. Assume that h > l . Use Lemma 12 to conclude that after the call to
Partition (line 2) returns mid , it is the case that A[] is modified in such a way that left
of A[mid] are precisely the elements of the original A[] smaller than A[mid], and right of
A[mid] are the elements not smaller than it. Assuming that the two recursive calls at lines 3
and 4 sort correctly the respective subarrays, clearly A[l , . . . , h] is sorted at the end of the
current recursive call.

Termination. Consider the termination of the first recursive callQuick Sort(A[1, . . . , n])

and conclude that A[1, . . . , n] is sorted. �

4.4 The Correctness of Algorithms on Binary Heaps

First let us clarify that by heaps we mean binary max heaps. The algorithms concerning
heaps use the following primitive operations:

Parent(i)

return
⌊
i
2

⌋

Left(i)

return 2i

Right(i)

return 2i+ 1

115

Problems with solutions in the Analysis of Algorithms c© Minko Markov

In the following definitions and discussion we assume the array A[] is used to represent a
complete binary tree. A complete binary tree is a binary tree such that every level, except
possibly for the last level, is completely filled. If the last level is incomplete then its nodes
must be as left as possible. A perfect binary tree is a complete binary tree in which the last
level is complete. For the classification of trees as data structures, see [NIS]. When we say
tree, we always mean binary tree.

Definition 4. Let A[1, 2, . . . , n] be an array of integers† and i be an index such that 1 ≤ i ≤
n. We call “the complete subtree in A[] rooted at i”—denoted by AJiK—the not necessarily
contiguous subarray of A[] induced by the indices generated by the following function:

Generate Indices(A[1, . . . , n]: array of integers, i: index in A[])
1 print i

2 left ← Left(i)
3 right ← Right(i)
4 if left ≤ n
5 Generate Indices(A[], left)
6 if right ≤ n
7 Generate Indices(A[], right) �

Clearly, AJ1K is the array A[1, . . . , n] itself. Since A[] represents a tree, A[1] is the root
and AJiK is the subtree rooted at vertex A[i]. When we use Graph Theory terminology
and more specifically, terminology that concerns rooted trees, on arrays, we of course have
in mind that the array represents a rooted tree. So the leaves of A[] are the elements
that correspond to the leaves of the tree that A[] represents. The leaves of A[1, . . . , n] are
precisely A

[⌊
n
2

⌋
+ 1
]
, A
[⌊
n
2

⌋
+ 2
]
, . . . , A[n] (see Problem 132 on page 172).

Definition 5. Let T be any rooted tree and u be any vertex in it. The height of u is the
distance between it and the root. The height of T is the maximum height of any vertex in
T . The depth‡ of u is the length of any longest path between u and a leaf which path does
not contain vertices of height smaller than the height of u. �

When we speak of the depth of an element of A[] we have in mind the depth of the
corresponding vertex of the tree A[] represents. Of course, the elements of depth 0 are the
leaves. As an example consider the following 26-element array A[]:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

The leaves of A[] are elements A[13]–A[26], shown in yellow:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

Suppose i = 3. AJ3K is the (non-contiguous) subarray of A[] outlined in green:

†The heaps we consider have elements–integers. Of course, any other data type whose elements take O(1)
memory and allows comparing and moving elements around in O(1) time could be used.

‡In [CLR00], the authors call “height of a node” what we call “depth”.

116

Problems with solutions in the Analysis of Algorithms c© Minko Markov

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

The leaves of AJ3K are the five elements A[14], A[15], A[24]–A[26], outlined in blue:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

Definition 6 (heap). AJiK is a heap iff:

• AJLeft(i)K, if it exists, is a heap,

• AJRight(i)K, if it exists, is a heap,

• A[i] ≥ A[Left(i)], if the latter exists, and

• A[i] ≥ A[Right(i)], if the latter exists. �

We consider the following fact obvious.

Fact: If AJiK is a heap then for any index j such that A[j] is in AJiK, AJjK is a heap. �

In the context of heaps, relative to some A[] and index i in it, let us call a heap obstruction
every pair of indices 〈j, k〉 such that:

• A[j] and A[k] are in AJiK,

• A[j] < A[k], and

• k = Left(j) or k = Right(j).

Clearly, AJiK is a heap iff it has no heap obstructions.

Recursive Heapify(A[1, 2, . . . , n]: array of integers, i: index in A[])
1 left ← Left(i)
2 right ← Right(i)
3 if left ≤ n and A[left] > A[i]

4 largest ← left

5 else

6 largest ← i

7 if right ≤ n and A[right] > A[largest]

8 largest ← right

9 if largest 6= i
10 swap(A[i], A[largest])
11 Recursive Heapify(A[], largest)

Lemma 14. Under the assumption that A[1, . . . , n] and i are such that each of AJLeft(i)K
and AJRight(i)K, if it exists, is a heap, the effect of algorithm Recursive Heapify is
that AJiK is heap.

117

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Proof:

By induction on the height of AJiK. The height can be as small as zero and that will be our
basis. Before we go on with our proof, a word of caution: the assumption about AJLeft(i)K
and AJRight(i)K is entirely different from the inductive hypothesis. The hypothesis is the
claim we are proving, though formulated in terms of a particular value of the parameter –
it is not a premise of this Lemma. On the other hand, the said assumption is part of the
premises of the Lemma.
Let h be the height of AJiK.
Basis. h = 0. That means that AJiK consists of a single element from A[]. So,
both Left(i) and Right(i) point outside A[]. Let us follow the execution of Recur-

sive Heapify: the condition at line 3 is false and so the assignment at line 6 takes place.
The condition at line 7 is false, too, so line 8 is not executed and the execution goes to
line 9. The evaluation there yields False and so the current recursive call terminates.
Clearly, AJiK is a heap when that recursive call terminates.

Inductive Hypothesis. Assume that for every AJjK of height ≤ h− 1 rooted at some j
such that A[j] belongs to AJiK, it is the case that Recursive Heapify(A[], j) constructs a
heap out of AJjK.
Inductive Step. Consider the execution of Recursive Heapify(A[], i). Without loss
of generality, assume that Left(i) ≤ n and Right(i) ≤ n, so lines 3 and 7 are

if A[left] > A[i]

and

if A[right] > A[largest]

respectively.
Case i: Both A[left] and A[right] are bigger than A[i] at the beginning and A[right] >
A[left]. The evaluation at line 3 yields True and the assignment at line 4 takes place.
The evaluation at line 7 yields True, too, so the assignment at line 8 takes place and when
the execution is at line 9, largest equals right . The evaluation at line 9 yields True and
at line 10, A[i] and A[largest] get exchanged. The recursive call at line 11 takes place
with the former A[i] now at position right . By the inductive hypothesis, that recursive
call constructs a heap out of AJright K. On the other hand, AJleft K is a heap because
it has not been modified in any way. On the third hand, the current A[i], i.e. the initial
A[right], is

• bigger than the current A[left] because of the premises

• not smaller than the current A[right] for the following reasons. At the beginning,
AJright K was a heap so the former A[right] was not smaller than any other element
of AJright K then (at the beginning). Now, at the end, the elements of AJright K
consist of the initial elements minus the initial A[right] plus the initial A[i]. Since
the initial A[right] is bigger than the initial A[i] and not smaller that any other
element of AJright K, the current A[i] is not smaller than the current A[right].

Therefore, by definition the current AJiK is a heap.
Case ii: BothA[left] andA[right] are bigger thanA[i] at the beginning andA[right] 6>
A[left]. The evaluation at line 3 yields True and the assignment at line 4 takes place.

118

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The evaluation at line 7 yields False, so the assignment at line 8 does not take place and
when the execution is at line 9, largest equals left . The evaluation at line 9 yields True

and at line 10, A[i] and A[largest] get exchanged. The recursive call at line 11 takes place
with the former A[i] now at position left . By the inductive hypothesis, that recursive call
constructs a heap out of AJleft K. On the other hand, AJright K is a heap because it has
not been modified in any way. On the third hand, the current A[i], i.e. the initial A[left],
is

• not smaller than the current A[right] because of the premises

• not smaller than the current A[left] for the following reasons. At the beginning,
AJleft K was a heap so the former A[left] was not smaller than any other element of
AJleft K then (at the beginning). Now, at the end, the elements of AJleft K consist
of the initial elements minus the initial A[left] plus the initial A[i]. Since the initial
A[left] is bigger than the initial A[i] and not smaller that any other element of
AJleft K, the current A[i] is not smaller than the current A[left].

Therefore, by definition the current AJiK is a heap.
Case iii: A[left] 6> A[i] and A[right] > A[i]. The evaluation at line 3 yields False

and the assignment at line 6 takes place. The evaluation at line 7 yields True, so the
assignment at line 8 takes place and when the execution is at line 9, largest equals right .
The evaluation at line 9 yields True and at line 10, A[i] and A[largest] get exchanged.
The recursive call at line 11 takes place with the former A[i] now at position right . By
the inductive hypothesis, that recursive call constructs a heap out of AJright K. On the
other hand, AJleft K is a heap because it has not been modified in any way. On the third
hand, the current A[i], i.e. the initial A[right], is

• bigger than the current A[left] because of the premises and the transitivity of the
inequalities

• not smaller than the current A[right] for the following reasons. At the beginning,
AJright K was a heap so the former A[right] was not smaller than any other element
of AJright K then (at the beginning). Now, at the end, the elements of AJright K
consist of the initial elements minus the initial A[right] plus the initial A[i]. Since
the initial A[right] is bigger than the initial A[i] and not smaller that any other
element of AJright K, the current A[i] is not smaller than the current A[right].

Therefore, by definition the current AJiK is a heap.
Case iv: A[left] > A[i] and A[right] 6> A[i]. The evaluation at line 3 yields True

and the assignment at line 4 takes place. The evaluation at line 7 yields False, so the
assignment at line 8 does not take place and when the execution is at line 9, largest
equals left . The evaluation at line 9 yields True and at line 10, A[i] and A[largest] get
exchanged. The recursive call at line 11 takes place with the former A[i] now at position
left . By the inductive hypothesis, that recursive call constructs a heap out of AJleft K.
On the other hand, AJright K is a heap because it has not been modified in any way. On
the third hand, the current A[i], i.e. the initial A[left], is

• bigger than the current A[right] because of the premises and the transitivity of the
inequalities

119

Problems with solutions in the Analysis of Algorithms c© Minko Markov

• not smaller than the current A[left] for the following reasons. At the beginning,
AJleft K was a heap so the former A[left] was not smaller than any other element of
AJleft K then (at the beginning). Now, at the end, the elements of AJleft K consist
of the initial elements minus the initial A[left] plus the initial A[i]. Since the initial
A[left] is bigger than the initial A[i] and not smaller that any other element of
AJleft K, the current A[i] is not smaller than the current A[left].

Therefore, by definition the current AJiK is a heap.
Case v: A[left] 6> A[i] and A[right] 6> A[i]. The evaluation at line 3 yields False

and the assignment at line 6 takes place. The evaluation at line 7 yields False, so the
assignment at line 8 does not take place and when the execution is at line 9, largest
equals i. The evaluation at line 9 yields False and the execution terminates, leaving AJiK
untouched. By the premises, AJleft K and AJright K are heaps and A[left] > A[i] and
A[right] 6> A[i], so the current AJiK is a heap by definition. �

Iterative Heapify(A[1, 2, . . . , n]: array of integers, i: index in A[])
1 j← i

2 while j ≤
⌊
n
2

⌋
do

3 left ← Left(j)
4 right ← Right(j)
5 if left ≤ n and A[left] > A[j]

6 largest ← left

7 else

8 largest ← j

9 if right ≤ n and A[right] > A[largest]

10 largest ← right

11 if largest 6= j
12 swap(A[j], A[largest])
13 j← largest

14 else

15 break

Lemma 15. Under the assumption that A[1, . . . , n] and i are such that each of AJLeft(i)K
and AJRight(i)K, if it exists, is a heap, the effect of algorithm Iterative Heapify is that
AJiK is heap at its termination.

Proof:

The following is a loop invariant for the while loop (lines 1–15):

Every time the execution is at line 2, the only possible heap obstructions in AJiK
are 〈j,Left(j)〉 and 〈j,Right(j)〉, if A[Left(j)] and A[Right(j)] exist.

Basis. j = i. By the premises, each of AJLeft(i)K and AJRight(i)K, if it exists, is a
heap, so the claim holds trivially.

Maintenance. Assume that the claim holds at some moment when the execution is at
line 2 and execution will reach line 2 at least once more.

The latter proviso implies line 15 is not reached during the current execution.❢❢ NB ❢❢

120

Problems with solutions in the Analysis of Algorithms c© Minko Markov

So, it is the case that j ≤
⌊
n
2

⌋
, and thus at least one of Left(j) ≤ n and Right(j) ≤ n is

true, namely Left(j) ≤ n. So, at least A[Left(j)] is defined. Without loss of generality,
assume both Left(j) ≤ n and Right(j) ≤ n to avoid considering unnecessary subcases.
Case i: Both A[left] and A[right] are bigger than A[j] at the beginning and A[right] >
A[left]. The evaluation at line 5 yields True and the assignment at line 6 takes place.
The evaluation at line 9 yields True, too, so the assignment at line 10 takes place and when
the execution is at line 11, largest equals right . The evaluation at line 11 yields True

and at line 12, A[j] and A[largest] get exchanged. We claim the only possible obstructions
in AJiK after the exchange are 〈right ,Left(right)〉 and 〈right ,Right(right)〉:

• no element in AJiK outside AJjK has been changed;

• currently A[j] > A[left] so 〈j,Left(j)〉 cannot be an obstruction;

• currently A[j] > A[right] so 〈j,Right(j)〉 cannot be an obstruction;

• AJleft K has not been modified.

• none of AJLeft(right)K and AJRight(right)K has been modified.

But right is assigned to j at line 13. So the invariant holds the next time the execution is
at line 2.
Case ii: BothA[left] andA[right] are bigger thanA[j] at the beginning andA[right] 6>
A[left]. The evaluation at line 5 yields True and the assignment at line 6 takes place. The
evaluation at line 9 yields False, so the assignment at line 10 does not take place and when
the execution is at line 11, largest equals left . The evaluation at line 11 yields True

and at line 12, A[j] and A[largest] get exchanged. We claim the only possible obstructions
in AJiK after the exchange are 〈left ,Left(left)〉 and 〈left ,Right(left)〉:

• no element in AJiK outside AJjK has been changed;

• currently A[j] > A[left] so 〈j,Left(j)〉 cannot be an obstruction;

• currently A[j] ≥ A[right] so 〈j,Right(j)〉 cannot be an obstruction;

• AJright K has not been modified.

• none of AJLeft(left)K and AJRight(left)K has been modified.

But left is assigned to j at line 13. So the invariant holds the next time the execution is
at line 2.
Case iii: A[left] 6> A[j] and A[right] > A[j] at the beginning. The evaluation at
line 5 yields False and the assignment at line 8 takes place. The evaluation at line 9 yields
True, so the assignment at line 10 takes place and when the execution is at line 11, largest
equals right . The evaluation at line 11 yields True and at line 12, A[j] and A[largest]
get exchanged. We claim the only possible obstructions in AJiK after the exchange are
〈right ,Left(right)〉 and 〈right ,Right(right)〉. The proof is precisely the same as the
proof of the analogous claim is Case i. But largest is assigned to j at line 13. So the
invariant holds the next time the execution is at line 2.
Case iv: A[left] > A[j] and A[right] 6> A[j] at the beginning. The evaluation at
line 5 yields True and the assignment at line 6 takes place. The evaluation at line 9

121

Problems with solutions in the Analysis of Algorithms c© Minko Markov

yields False, so the assignment at line 10 does not take place and when the execution is at
line 11, largest equals left . The evaluation at line 11 yields True and at line 12, A[j]
and A[largest] get exchanged. We claim the only possible obstructions in AJiK after the
exchange are 〈left ,Left(left)〉 and 〈left ,Right(left)〉. The proof is precisely the
same as the proof of the analogous claim is Case ii. But left is assigned to j at line 13.
So the invariant holds the next time the execution is at line 2.
Case v: A[left] 6> A[j] and A[right] 6> A[j] at the beginning. But that is impossible
under the current assumptions, because clearly line 15 would be reached and the execution
would never get to line 2 again.

Termination. Unlike the examples we have see so far, this loop can be exited in two
ways: via line 2 when j >

⌊
n
2

⌋
and via line 15. Let us consider the first possibility. Then

both Left(j) and Right(j) point outside A[1, . . . , n]. The invariant, therefore, says there
are no heap obstructions in AJiK at all since A[Left(j)] and A[Right(j)] do not those exist.
And so AJiK is heap.

Consider the second possibility, viz. the while loop starts executing but the execution
reaches line 15. It is obvious that, in order line 15 to be reached, it has to be the case that
largest = j at line 11. In order that to happen, both A[left] ≤ A[j] and A[right] ≤ A[j]
must be true at the beginning of that execution since that is the only way that line 8 is
reached and line 10 is not reached. But if A[left] ≤ A[j] and A[right] ≤ A[j], there are
no heap obstructions in AJiK at all, so AJiK is a heap. �

The function Heapify in the following algorithm is either one of Recursive Heapify or
Iterative Heapify.

Build Heap(A[1, 2, . . . , n]: array of integers)
1 for i← n downto 1

2 Heapify(A[], i)

Lemma 16. When Build Heap terminates, A[] is a heap.

Proof:

The following is a loop invariant for the while loop (lines 1–2):

Every time the execution is at line 1 and d is the depth of A[i], then for every
element A[j] of depth d− 1, AJjK is a heap.

The make use the of the fact—without proving is—that for every depth d, the elements of
A[] of depth d form a continuous subarray in A[]. If we call that subarray, the d-block,
clearly those blocks appear in reverse sorted order:

• A[1] is the ⌊lgn⌋-block†.

• . . .

• A
[⌊n
2

⌋
+ 1,

⌊n
2

⌋
+ 2, . . . , n

]
is the 0-block (the leaves).

†Recall that the height of any n element heap is ⌊lgn⌋ (see eq. (6.26) on page 172) and note that the
height of the heap equals the depth of the root.

122

Problems with solutions in the Analysis of Algorithms c© Minko Markov

So, as the index i starts from n and goes down to 1, the depths of the A[i] elements take
all values from {0, 1, . . . , ⌊lgn⌋} in ascending order. Furthermore, Lemma 28 on page 174

implies that the d-block is precisely A
[⌊ n

2d+1

⌋
+ 1, . . . ,

⌊ n
2d

⌋]
.

In order to make the proof work, assume that A[] has an dummy element at position 0.
The value of that A[0] does not concern us. What is important is to consider the remainder
of the array, namely A[1, . . . , n], as a subtree of A[0]. In other words, the depth of A[0]
is ⌊lgn⌋ + 1. Without that technicality, the termination phase of the proof could not be
formulated because i equals 0 when the execution is at line 2 for the last time.

Basis. Unlike the previous proofs, here the basis is not for a single value of the loop
control variable but for a multitude of values. To see why, note that the induction is on the
depth of the elements, not on the number of times line 2 is reached. It is natural to take
for basis depth 0. But that means that the basis is over all leaves of A[1, . . . , n]. The leaves
are precisely the elements A[i] such that

⌊
n
2

⌋
+ 1 ≤ i ≤ n (see Problem 132 on page 172).

Consider any i be such that
⌊
n
2

⌋
+1 ≤ i ≤ n. Then A[i] has depth 0. But elements of depth

−1 do not exist. So the claim is vacuously true.

Maintenance. Relative to some number d such that 0 ≤ d ≤ ⌊lgn⌋†, consider the first
time the execution is at line 2 and the depth of the current A[i] is d. Since the depths of
the A[i] elements take all values from {0, 1, . . . , ⌊lgn⌋} in ascending order, such a moment
will occur. As implied by Lemma 28 on page 174, at that moment i =

⌊
n
2d

⌋
. Assume that

the claim holds at that moment.

Our goal now is not to prove, using this assumption, that the claim holds the next time the❢❢ NB ❢❢

execution is at line 2. Such an implication does not exist.

Our goal is to prove that at the subsequent moment when the execution is at line 2 and
for the first time, the depth of the current A[i] is d + 1, it is the case that for all indices
j such that A[j] is at depth d, AJjK is a heap. As implied by Lemma 28 on page 174, that
subsequent moment is when i =

⌊
n

2d+1

⌋
.

In other words, the maintenance phase consists of the following:

• assuming that

A
r⌊ n
2d

⌋
+ 1

z
, A

r⌊ n
2d

⌋
+ 2

z
, . . . , A

r⌊ n

2d−1

⌋z

︸ ︷︷ ︸
the indices here are from the d−1 block

are heaps,

• show that

A
r⌊ n

2d+1

⌋
+ 1

z
, A

r⌊ n

2d+1

⌋
+ 2

z
, . . . , A

r⌊ n
2d

⌋z

︸ ︷︷ ︸
the indices here are from the d block

are heaps.

†In other words, d can be the depth of any vertex from A[1, . . . , n].

123

Problems with solutions in the Analysis of Algorithms c© Minko Markov

It is rather obvious that the the map

j→ {Left(j),Right(j)}

maps the d-block on the (d − 1)-block in the sense that the sets {Left(j),Right(j)} are
partitioning of the indices of the (d − 1)-block, if j takes its values from the set of indices
of the d-block. Of course, that holds if d > 0.

Apply Lemma 15 or Lemma 14, whichever one is applicable (depending on whether the
recursive or the iterative Heapify is used) on every one of

A
r⌊ n

2d+1

⌋
+ 1

z
, A

r⌊ n

2d+1

⌋
+ 2

z
, . . . , A

r⌊ n
2d

⌋z

For each index

j ∈
{⌊ n

2d+1

⌋
+ 1,

⌊ n

2d+1

⌋
+ 2, . . . ,

⌊ n
2d

⌋}

the premises of the Lemma include the assumption that AJLeft(j)K an AJRight(j)K are
heaps. But those two subtrees are from the set

{
A
r⌊ n
2d

⌋
+ 1

z
, A

r⌊ n
2d

⌋
+ 2

z
, . . . , A

r⌊ n

2d−1

⌋z}

and we did assume the elements of this set are heaps. So, the said Lemma provides the
desired result.

Termination. When the execution is at line 2 for the last time, i = 0. We agreed that
the dummy A[0] is of depth ⌊lgn⌋+ 1. Plug that value in the invariant to derive that every
element of A[] of depth ⌊lgn⌋, and the only such element is A[1], it is the case that AJ1K
is a heap. �

The following pseudocode uses the notation “A.size”. Assume that is a number such
that 1 ≤ A.size ≤ n, and Heapify works using it as an upper index of the array–heap,
not n as the pseudocode of Heapify says.

Heap Sort(A[1, 2, . . . , n])
1 Build Heap(A[])
2 A.size← n

3 for i← n downto 2

4 swap(A[1], A[i])
5 A.size← A.size − 1
6 Heapify(A[], 1)

Lemma 17. Heap Sort is a sorting algorithm.

Proof:

Let us call the original array, A ′[1, . . . , n]. The following is a loop invariant for the for loop
(lines 3–6):

Every time the execution of Heap Sort is at line 3, the current subarray
A[i + 1, . . . , n] consists of n − i in number biggest elements of A ′[1, . . . , n].
Furthermore, the current A[1, . . . , i] is a heap.

124

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Basis. The first time the execution reaches line 3, it is the case that i = n. The current
subarray A[i+ 1, . . . , n] is empty and thus, vacuously, it consists of zero in number biggest
elements from A ′[1, . . . , n], in sorted order. A[1, . . . , n] is a heap by Lemma 17, applied to
line 1.

Maintenance. Assume the claim holds at a certain execution of line 3 and the for loop
is to be executed at least once more. Let us call the array A[] at that moment, A ′′[]. By
the maintenance hypothesis, A ′′[i + 1, . . . , n] are n − i in number maximum elements of
A ′[], in sorted order. By the maintenance hypothesis again, A ′′[1] is a maximum element of
A ′′[1, . . . , i]. After the swap at line 4, A ′′[i, . . . , n] are n− i in number maximum elements
of A ′[], in sorted order. Relative to the new value of i the next time the execution is at
line 3, the first sentence of the invariant holds.

The second sentence holds, too, by applying Lemma 15 or Lemma 14, whichever one is
applicable (depending on whether the recursive or the iterative Heapify is used), at line 6.
Just keep in mind that Heapify considers the heap to be A[1, . . . , i − 1] because i equals
A.size when the execution is at line 6; note that because of line 5, A.size is i− 1 at line 6.
Thus at line 6, the current A[i] is outside the scope of the current heap.

Termination. Consider the moment when the execution is at line 3 for the last time.
Clearly, i equals 1. Plug the value 1 in place of i in the invariant to obtain “the current
subarray A[2, . . . , n] consists of n − 1 in number biggest elements of A ′[1, . . . , n].”. But
then A[1] has to be a minimum element from A ′[1, . . . , n]. And that concludes the proof of
the correctness of Heap Sort. �

125

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 5

Algorithmic Problems

5.1 Programming fragments

Problem 101. Determine the asymptotic running time of the following programming frag-
ment. Function q() is an unspecified function, it works in Θ(1) time and can swap elements
of the array A. Heapsort(A, i, j) sorts A[i..j] by the eponymous sorting algorithm.

int A[MAXINT];

int p(int, int);

void q(int, int);

int main() { return p(1, n); }

int p(int i, int j) {
int mid, a, b;

if (j > i) {
Heapsort(A, i, j);

q(i, j);

mid = (i+j)/2;

a = p(i, mid);

b = p(mid + 1, j);

return a + b; }
return 1; }

Solution:

It is well known that Heapsort has Θ(n lgn) worst case time complexity. We have to
assume that at every recursive level its complexity is the worst possible because we do not
know how q() works. There are two resursive calls at each execution of p(), therefore the
running time is determined by the recurrence

T(n) = 2T
(n
2

)
+Θ(n lgn)

Using Theorem 2 on page 91, we conclude T(n) = Θ(n lg2 n). �

126

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 102. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

void r(int, int, int);

int main() { return r(1, n, n*n); }

void r(int a, int b, int c) {
int k;

if (a + b + c > a + b + 1) {
for(k = 1; k < a + b + c; k = (k << 2) - 1) {
if(k % 3 == 0) break;

r(a, b, c - 1); }
for(k = 1; k < a + b + c; k <<= a + b + c)

r(a, b, c - 1); } }

Solution:

Only the third parameter of r() determines the recursion; the first two parameters are
insignificant. The body of the first for loop is executed precisely once because the second
value that k gets is (1 ∗ (22) − 1) = 3, then the condition of the if operator is evaluated to
True, and after the break operator the loop is executed no more.

The second for loop is executed only once, too: the second value that k gets is 2a+b+c,
and certainly 2a+b+c > a + b + c. There are two resursive calls at each execution of r(),
therefore the running time is determined by the recurrence

T(m) = 2T (m− 1) +Θ(1)

where m is the size of the input. The solution is known to be T(m) = Θ(2m). Having in

mind that m = n2, it is easy to see that T(n) = Θ
(
2n

2
)
. �

Problem 103. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int foo(int n) {
int s;

if (n == 0) s = 1;

else s = foo(n - 1) * 2;

bar(s);

return s; }

void bar(int m) {
int i;

for (i = m; i > 0; i /= 2)

cout << i % 2; }
Solution:

First we prove that foo(n) returns 2n. Note that the bar() function, while affecting the
running time, does not affect the value of s is any way. We prove the claim by induction

127

Problems with solutions in the Analysis of Algorithms c© Minko Markov

on n. For n = 0 it is obviously the case that foo(n) returns 1 = 20. Assuming foo(n-1)

returns 2n−1, it is clear foo(n) returns 2× 2n−1 = 2n.
Note that bar() runs in time Θ(lgm). Having in mind that s is 2n and bar() runs in

logarithmic time with respect to its input, it is clear that bar(s) runs in time Θ (lg (2n)) =
Θ(n). We conclude the time complexity of foo() is determined by the recurrence

T(n) = T(n − 1) + n

According to (3.19) on page 51, T(n) = Θ(n2). �

Problem 104. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int recf(int n) {
int s;

if (n == 0) s = 1;

else s = foo(n - 1) * 2;

bar(s);

return s; }

void bar(int m) {
int i;

for (i = m; i > 0; i /= 2)

cout << i % 2; }

Solution:

First we prove that foo(n) returns 2n. Note that the bar() function, while affecting the
running time, does not affect the value of s is any way. We prove the claim by induction
on n. For n = 0 it is obviously the case that foo(n) returns 1 = 20. Assuming foo(n-1)

returns 2n−1, it is clear foo(n) returns 2× 2n−1 = 2n.
Note that bar() runs in time Θ(lgm). Having in mind that s is 2n and bar() runs in

logarithmic time with respect to its input, it is clear that bar(s) runs in time Θ (lg (2n)) =
Θ(n). We conclude the time complexity of foo() is determined by the recurrence

T(n) = T(n − 1) + n

According to (3.19) on page 51, T(n) = Θ(n2). �

Problem 105. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int recf(int n) {
int i, s = 1;

if (n == 1) return s;

for (i = 0; i < 3; i ++) s += recf(n-1) * (i + 1);

for (i = 0; i < 4; i ++) s += recf(n-2) * (i + 1);

return s; }

128

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

The time complexity of recf() is determined by the recurrence

T(n) = 3T(n − 1) + 4T(n − 2) + 1

To see why, note there are three recursive calls with input of size n−1 and four, with input
of size n− 2. According to Problem 97 on page 98, T(n) = Θ(4n). �

We should not try to “optimise” the number of recursive calls. One may indeed be tempted❢❢ NB ❢❢

to think we can make only one recursive call with input n − 1 and then use the obtained
value three times, rather than making three consecutive recursive calls (and likewise, only
one call with input n − 2 and then use the result four times. Such “optimisations” are not
allowed: the algorithm should be investigated as it is. Furthermore, it is possible that the
shown fragment is an abbreviated version of a program that does a lot more, for instance
it may change a global variable. If that is the case, we cannot substitute a multitude of
recursive calls by a single call and claim that the new “optimised” program is necessarily
equivalent.

Problem 106. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int r(int n, int m) {
int i, s = 0;

if (n < 2) return n*m + 1;

for(i = 0; i < 3; i ++) {
s += r(n-1,m+i) * r(n-2,m-i); }

s += r(n-1,m);

return s; }

Solution:

The recurrence determining the asymptotic time complexity is

T(n) = 4T(n − 1) + 3T(n − 2) + 1

To see why that is true note that the variable that determines the recursive calls is n. The
other variable m does not affect the time complexity, though it surely affects the returned
quantity. There are three recursive calls with n − 2 and four with n − 1. The fact that
there is a multiplication r(n − 1,m + i) ∗ r(n − 2,m − i) is immaterial with respect to the
structure of the recursive calls. According to Problem 98 on page 98, T(n) = Θ((2+

√
7)n).

�

Problem 107. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int f(int n, int m) {
int i, s = 0;

if (n == 0 || n == 1)

return m;

129

Problems with solutions in the Analysis of Algorithms c© Minko Markov

for(i = 0; i < 5; i++) {
s += f(n-1, m + i);

s += f(n-2, m + 2*i); }
s += f(n-2, 2*m)*3;

return s; }

Solution:

The recurrence determining the asymptotic time complexity is

T(n) = 5T(n − 1) + 6T(n − 2) + 1

To see why, note that the variable that controls the recursive calls is n. The other variable
m does not affect the time complexity, though it surely affects the returned quantity. There
are six recursive calls with n− 2 and five with n− 1. According to Problem 99 on page 99,
T(n) = Θ(6n). �

Problem 108. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int r(int n) {
int i, s = 2;

if (n == 1)

return 2;

for(i = n; i > 0; i /= 2) {
s += 2; }

s += r(n/2)*r(n/2);

return s; }

Solution:

The recurrence determining the asymptotic time complexity is

T(n) = 2T
(n
2

)
+ lgn

To see why, note the for loop runs in Θ(lgn) time and afterwards two recursive calls are
made, each one on an input that is half the size of the original one. According to Problem 83
on page 92, T(n) = Θ(n). �

Problem 109. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int bf(int m, int v) {
if (m == 1)

return v;

return bf(m - 1, 1) * v && bf(m-1, 0) * (1 - v); }

int main() {
return bf(n, x); }

130

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

At a first glance, it seems the fragment has exponential time complexity: two recursive calls
are made, each with input of size n−1, and only constant work is done in addition to them,
therefore the recurrence T(n) = 2T(n− 1)+ 1 determines the complexity, and we know (see
Problem 91 on page 97) this recurrence has solution T(n) = Θ(2n).

However, if we take into account the operator precedence of the C language† and the
evaluation of the logical operators‡, the analysis is quite different. Suppose we make the
initial call bf(n, x) with a sufficiently large value of n. The first recursive call is bf(n -

1, 1). Inside it, the first recursive call is bf(n - 2, 1), etc., until bf(2, 1) calls bf(1,
1). Clearly, bf(1, 1) returns 1 and then bf(2, 1) makes its second recursive call, bf(1,
0). The latter returns 0 and the && operator within bf(2, 1) evaluates 1 && 0 to 0 and
passes 0 upwards to bf(3, 1). Now bf(3, 1) does not call bf(2, 0) because, by the rules
of C, the evaluation of the && operator is left to right and it stops once the value is known—
bf(2, 1) returning 0 implies the result within bf(3, 1) is necessarily 0. Thus bf(3, 1)

passes 0 upwards, bf(4, 1) does not call bf(3, 0) but passes 0 upwards directly, etc.,
until bf(n, x) returns 0 without calling bf(n - 1, 0). In other words, the recursion tree
is in fact a path, except that at the very bottom, bf(2, 1) has two children. It follows that
the time complexity is linear in n rather than exponential. The recursion tree is shown on
Figure 5.1.

Of course, that is the case only under the assumption that the rules of the C language
apply. If that fragment were written in pseudocode the time complexity would be proved
to be exponential since we have no standard rules for the direction and early stopping of
the evaluation of logical expressions in pseudocode. �

Problem 110. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

unsigned n;

int main() {
return recf(1, n); }

int recf(unsigned i, unsigned j) {
int k, s = 0;

if (j - i > 3) {
for(k = 0; k < 4; k ++) {

s += recf(i + k, j + k - 3); }
return s; }

else

return 1; }

Solution:

The execution of the recursion is controlled by the difference j− i of the two input variables.
Let us call it, the control difference. For all large enough values of the control difference, i.e.
whenever j− i > 3, there are exactly four recursive calls, each one having control difference

†See [KR88], pp. 53.
‡ibid., pp. 41: “More interesting are the logical operators && and ||. Expressions connected by && or ||

are evaluated left to right, and evaluation stops as soon as the truth or falsehood of the result is known.”

131

Problems with solutions in the Analysis of Algorithms c© Minko Markov

bf(n, x)

bf(n - 1, 1) bf(n - 1, 0)

bf(n-2,0) bf(n-2,1)bf(n-2,1)

bf(3,1)

bf(n-2,0)

bf(2,1) bf(2,0)

bf(1,1) bf(1,0) bf(1,1) bf(1,0)

0

0

1

0

0

0

0

Figure 5.1: The recursion tree of the fragment in Problem 109. We draw the whole
tree, i.e. what the tree would be if the considerations about the && operator were
not taken into account. The part of the tree that corresponds to the execution of
the fragment when these considerations are taken into account, is outlined with
dashed red line. The flow of the returned values is drawn in green.

132

Problems with solutions in the Analysis of Algorithms c© Minko Markov

that is smaller by three since j+ k− 3−(i+ k) = j− i− 3 for k ∈ {0, 1, 2, 3}. Therefore, the
following recurrence relation determines the asymptotic running time:

T(n) = 4T(n − 3) + 1

According to Problem 100 on page 99, T(n) = Θ
(
4

n
3

)
. �

5.2 Arrays and sortings

Problem 111. Let C1, C2, . . . , Cn be n cities placed along a straight line. Let di be the
distance between Ci and Ci+1, for 1 ≤ i < n. Initially each city Ci possesses some amount
xi ∈ R of a certain resource, say water. If xi < 0, what Ci possesses is not real water but
deficiency of water, e.g. if Ci has −5.5 units of water and afterwards we transport 6 units
of water to it, it is going to have +0.5 units. Each city Ci needs some amount li ∈ R+ of
water. We say Ci is satisfied iff li ≤ xi.

Water can be transported between any two adjacent cities but the transportation is lossy:
if we start transporting amount z from Ci to Ci+1 or vice versa, the amount that is going
to be delivered is max {z− di, 0}.

Design an algorithm that outputs True, in case there is a way to transport water between
the cities so that every city is satisfied, or False, otherwise. Assume that the amount of
water in any city is constant unless water is transported to, or from, it. Prove the correctness
of your algorithm and analyse its time complexity.

Solution: Define dn to be zero. Consider the following algorithm:

Transport(x1, . . . , xn, d1, . . . , dn, l1, . . . , ln)
1 s← 0

2 for i← 1 ton

3 ∆← xi − li
4 if s + ∆ ≥ 0
5 s← max {s+ ∆− di, 0}

6 else

7 s← s + ∆− di
8 if s ≥ 0
9 return True

10 else

11 return False

For any i such that 1 ≤ i ≤ n, let Ai be the subarray of cities [C1, C2, . . . , Ci]. Ai is
called good if there is a way to satisfy its cities by transporting water only between them.
Otherwise, Ai is called wanting. Suppose q is a positive amount. When we say Ai is
q-redundant we mean that:

• Ai is good and it remains good even if the amount in Ci is decreased by q units
beforehand.

• However, if the amount in Ai is decreased by q + ǫ units beforehand, for any ǫ > 0,
Ai becomes wanting.

133

Problems with solutions in the Analysis of Algorithms c© Minko Markov

When we say Ai is isolated we mean that:

• Ai is good.

• However, if the amount in Ai is decreased by di + ǫ units beforehand, for any ǫ > 0,
Ai becomes wanting.

When we say Ai is q-deficient we mean:

• Ai is wanting but it becomes good if the amount in Ci is increased by q units before-
hand.

• However, if the amount in Ai is increased by q − ǫ units beforehand, for any ǫ > 0,
Ai remains wanting.

Note the distintion between isolated and redundant: isolatedness is not a special case of
redundancy although it may sound like being a special case, namely for q = di. Now we
point out the difference. If Ai is di-redundant then it is good and di is precisely equal to
the largest quantity that can transported out of Ci beforehand (keeping Ai good). So, di
is a threshold value. On the other hand, if Ai is isolated then it is good and with certainty
transporting any amount ≥ di out of Ci ruins its goodness; the key observation is, it is
possible that transporting even the smallest quantity out of Ci may ruin the goodness – the
definition of isolatedness allows that. So, in the case with isolatedness, there is no certain
threshold quantity that can safely be transported out of Ci.

Lemma 18. Algorithm Transport returns True iff An is good.

Proof:

The following is a loop invariant for the for-loop (lines 2–7):

Every time the execution of Transport is at line 2,

• if s > 0 then Ai−1 is (s + di−1)-redundant.
• if s = 0 then Ai−1 is isolated.
• if s < 0 then Ai−1 is |s + di−1|-deficient.

Basis. The first time the execution is at line 2, i equals 1 and so Ai−1 is empty. The
empty subarray of cities is vacuously isolated because it is vacuously good (no deficiency)
and its water—of which there is none—cannot be decreased by any amount. On the other
hand, s equals 0 because of the assignment at line 1. So, the invariant holds.

Maintenance. Assume the claim holds at a certain execution of line 2 and the for loop
is to be executed at least once more. ∆ is set to xi − li at line 3. Let us call the value of s
prior to the execution of line 5 or line 7, sold, and the value of s after that execution, snew.

Case I: Suppose sold > 0. By the assumption, Ai−1 is (sold + di−1)-redundant. That
means we can deliver sold units of water to Ci by transporting sold + di−1 out of Ci−1 to Ci
(losing di−1 quantity along the way), Ai−1 remaining good. However, if we transport any
more water out of Ci−1 to Ci, Ai−1 becomes wanting. So, Ci can get at most sold water
more (keeping Ai−1 good).

Case I.1: Suppose sold + ∆ ≥ 0. Then the assignment at line 5 takes place. The
following two facts:

134

Problems with solutions in the Analysis of Algorithms c© Minko Markov

1. Ai−1 is good and Ci can get sold water more, Ai−1 staying good.

2. sold + ∆ ≥ 0.
imply Ai is good. Furthermore, sold +∆ is the surplus in Ci that can be transported out of
Ci (towards Ci+1), keeping Ai good; that is the threshold value, anything more out of Ci
makes Ai wanting. So, Ai is (sold + ∆)-redundant.

Case I.1.a: Suppose sold + ∆ − di > 0. Then snew = sold + ∆ − di. Now we prove
Ai is (snew + di)-redundant. We know Ai is good and (sold + ∆)-redundant. Observe that
sold + ∆ = sold + ∆ − di + di = snew + di and conclude Ai is (snew + di)-redundant. The
next time the execution is at line 2, i gets incremented by one. With respect to the new
value of i, it is the case that Ai−1 is (s + di−1)-redundant.

Case I.1.b: Suppose sold + ∆− di = 0. Then snew = 0. Recall that Ai is good. Note
that sold + ∆ − di − ǫ < 0 for any ǫ > 0. It follows Ai is isolated†. The next time the
execution is at line 2, i gets incremented by one. With respect to the new value of i, it is
the case that Ai−1 is isolated.

Case I.2: Suppose sold + ∆ < 0, which means ∆ < 0 since sold > 0. But then Ai
is wanting because, as we already pointed out, if Ci gets any more water than sold, Ai−1
becomes wanting. In order to make Ai good, at least |sold + ∆| has to be transported into
Ci. By defintion, Ai is |sold+∆|-deficient. Having in mind that sold+∆ = sold+∆−di+di =

snew + di, it follows Ai is |snew + di|-deficient. The next time the execution is at line 2, i
gets incremented by one. With respect to the new value of i, it is the case that Ai−1 is
|snew + di−1|-deficient.

Case II: Suppose sold = 0. By the induction hypothesis, Ai−1 is closed. That means
Ai−1 is good but we cannot transport di−1 + ǫ units of water out of Ci−1 (towards Ci), for
any ǫ > 0, and keep Ai−1 good. So, no amount of water from Ai−1 can go into Ci if we are
to keep Ai−1 good. It follows the status of Ai depends entirely on ∆ and di.

Case II.1: Suppose sold+∆ ≥ 0⇔ ∆ ≥ 0. Then the assignment at line 5 takes place.
Case II.1.a: Suppose ∆− di > 0. Then snew = ∆ − di. Ai is good and it is possible

to transport ∆ water out of Ci (towards Ci+1), keeping Ai good; furthermore, ∆ is the
threshold value, any more will make Ai wanting. Then Ai is ∆-redundant, i.e. (snew + di)-
redundant. The next time the execution is at line 2, i gets incremented by one. With
respect to the new value of i, it is the case that Ai−1 is (s + di−1)-redundant.

Case II.1.b: Suppose ∆ − di = 0. Then snew = 0. Clearly, Ai is good but no water
can be transported out of Ci, if we are to keep Ai good. It follows Ai is isolated. The next
time the execution is at line 2, i gets incremented by one. With respect to the new value
of i, it is the case that Ai−1 is isolated.

Case II.2: Suppose sold + ∆ < 0 ⇔ ∆ < 0. Then the assignment at line 7 takes
place and snew = ∆ − di, which is a negative amount since di > 0. Clearly, Ai is wanting.
It becomes good if at least |∆| water is transported into Ci; any less amount will keep
it wanting. By defintion, Ai is |∆|-deficient, i.e. |snew + di|-deficient. The next time the
execution is at line 2, i gets incremented by one. With respect to the new value of i, it is
the case that Ai−1 is |snew + di−1|-deficient.

Case III: Suppose sold < 0. By the induction hypothesis, Ai−1 is |sold+di−1|-deficient.
That means Ai−1 is wanting and unless we deliver at least |sold + di−1| units of water into

†As noted before, Ai can be both isolated and redundant.

135

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Ci−1, it stays wanting. To deliver at least |sold + di−1| units of water into Ci−1 means to
transport at least |sold + di−1| + di−1 units of water out of Ci (towards Ci−1) in order to
compensate for the loss of di−1 units along the way.

We claim that |sold| > di−1. To see why, note that the negative value sold was assigned
to s during the previous execution of the for-loop at line 7. Now we discuss the previous
iteration, so let us call iold the value of the variable i then. In order to reach line 7, it
must have been the case that s+∆ was negative. But −diold at line 7 was negative, too. It
follows the absolute value of what was assigned to s at line 7 was strictly larger than diold .
In other words, |sold| > diold . Finally, note that i got incremented by one since the previous
iteration, so iold = i− 1, with respect to the current i.

Having proved that |sold| > di−1 and having in mind that sold < 0, it is obvious that
|sold+di−1|+di−1 = |sold|. So, the threshold amount of water to transport out of Ci (towards
Ci−1) to make Ai−1 good is |sold |, anything less will keep Ai−1 wanting.

Case III.1: Suppose sold + ∆ ≥ 0. Then the assignment at line 5 takes place.
Case III.1.a: Suppose sold + ∆ − di > 0. Then snew = sold + ∆ − di. Since sold is

negative and −di is negative, it must be the case that ∆ is positive; furthermore, it must
be the case that ∆ > |sold|+di. Now we show Ai is (sold+∆)-redundant. There are ∆ units
of water in Ci. Transport |sold| units to Ci−1, thus making Ai−1 good. That amounts to
reducing the water in Ci down to sold + ∆ units (recall that sold is negative so sold + ∆ is
smaller than ∆, still being a positive quantity). Since |sold| is a threshold quantity, there is
no way to have more than sold + ∆ units in Ci and making Ai−1 good.

Since sold + ∆, the remaining quantity in Ci, is nonnegative, and Ai−1 is good, Ai is
(sold + ∆)-redundant. In other words, Ai is (snew + di)-redundant. The next time the
execution is at line 2, i gets incremented by one. With respect to the new value of i, it is
the case that Ai−1 is (s + di−1)-redundant.

Case III.1.b: Suppose sold + ∆ − dt = 0. Then snew = 0. We prove that Ai is
closed. Note that the water in Ci is ∆ = −sold + di, −sold being a positive amount, and
Ai−1 is wanting. We transport |sold| units of water from Ci back to Ct−1, making Ai−1 good.
We know that transporting anything less will keep Ai−1 wanting. After the transportation
Ci will be satisfied, too, having di water in it. So, Ai is good after the transportation.
However, it is not possible to make Ai−1 good and keep Ci satisfied and deliver ǫ units of
water into Ci+1, for any ǫ > 0, using the water in Ci. It follows Ai is isolated. The next
time the execution is at line 2, i gets incremented by one. With respect to the new value
of i, it is the case that Ai−1 is isolated.

Case III.2: Suppose sold + ∆ < 0. Then the assignment at line 7 takes place and
snew = sold + ∆ − di, which is a negative amount since di > 0. We prove Ai is |sold + ∆|-
deficient. Recall that Ai−1 is wanting and unless |sold| units are transported into Ci−1, it
remains waning. The quantity in Ci, viz. ∆, may be positive, zero, or negative, we do not
know that; what matters is that ∆ decremented by |sold|, i.e. sold + ∆, is negative—that
fact implies Ai is wanting. Furthermore, in order to make Ai good, the amount of water in
Ci must be increased by at least |sold + ∆|, any smaller increase leaves Ai wanting. To see
why that is true, note that under the current assumptions, ∆− |sold| + |sold + ∆| = 0. And
the latter is true since

∀x, y ∈ R, such that x < 0 and x+ y < 0, y− |x| + |x+ y| = 0

Since |sold +∆| is the threshold amount to be added to the water in Ci in order to make Ai
good, by definition Ai is |sold +∆|-deficient. Clearly, that is equivalent to saying that Ai is

136

Problems with solutions in the Analysis of Algorithms c© Minko Markov

|snew − di|-deficient. The next time the execution is at line 2, i gets incremented by one.
With respect to the new value of i, it is the case that Ai−1 is |snew + di−1|-deficient.

Termination. Consider the moment when the execution is at line 2 for the last time.
Clearly, i equals n+1. If the current s is non-negative then Ai−1 = An is either s-redundant
(recall then dn is defined to be zero) or isolated, therefore it is good. Accordingly, the
retuned value (line 9) is True. If s is negative then it is wanting. Accordingly, the retuned
value (line 11) is False.

The time complexity is obviously Θ(n). �

Problem 112. Imagine two rooms with no visibility between them. In one room there n
numbered light switches s1, s2, . . . , sn. In the other room there are n numbered light bulbs
l1, l2, . . . , ln. It is known that each switch turns on and off to exactly one bulb but we do
not know anything about the wiring between the switches and the bulbs. Initially we are in
the room with the switches. Our job is to tell the exact wiring, i.e. which switch operates
which bulb. We are allowed to press any switches and then go to the room with the bulbs
and perform an observation. We are not allowed to touch the bulbs – our only source of
information is the observation of the bulbs.

The switches are such that their physical appearance does not change when toggled so we
have no way of knowing beforehand whether pressing a certain switch leads to turning on
or turning off of a bulb. Every swtich has, of course, two states only, as any normal light
switch.

Describe an algorithm that discovers the wiring with minimum number of observations,
i.e. with minimum visits to the room with the bulbs. The algorithm should work iteratively,
at each iteration simulating toggling some switches and then simulating an observation by
calling some function Observe. The toggling is simulated by writing into a 0-1 array
P[1, . . . , n]. Say, P[i] = 1 means si is toggled, and P[i] = 0 means si is not toggled. The
result of the “observation” is written in some 0-1 array L[1, . . . , n]. Say, L[i] = 1 means li
is on, and L[i] = 0 means li is off. After every call to Observe, the algorithm temporarily
halts, the execution is supposed to be transfered to an outside agent and the algorithm
resumes after the outside agent finishes writing into L.

Prove an asymptotic lower bound for the number of observations. Is your algorithm
optimal in the asymptotic sense?

Solution:

Our algorithm maintains the following data structures:

• a 0-1 array A[1, . . . , n] to keep the result of the previous observation,

• an array S[1, . . . , n] that refers to the switches. Every element of S is a pointer.
Namely, S[i] points to a (doubly) linked list that represents the set of the bulbs, each
of which can possibly be connected to si according to currently available information.
We call this set of bulbs, the candidate set for si.

• an array B of positive integers of size 2n. During iteration i, B contains 2i elements
that determine a partitioning of S into subarrays. B[2j] and B[2j + 1] are numbers
such that B[2j] ≤ B[2j + 1] and the pair 〈B[2j], B[2j + 1]〉 represents the subarray
S[B[2j], . . . , B[2j + 1]].

137

Problems with solutions in the Analysis of Algorithms c© Minko Markov

• a multitide of doubly linked lists with n elements altogether. They represent a parti-
tion of the set of the bulbs. Each element contains an integer that corresponds to the
ID of precisely one bulb, and each list represents precisely one candidate set. Initially,
there is only one list in this multitude, call this list C. That reflects the fact that at
the beginning we have no restrictions on the possible connections between bulbs and
switches. At the end, there are n non-empty lists in this multitude. That reflects the
fact that at the end we know precisely the wiring between the switches and the bulbs.

Here is the pseudocode. Initially P[] is arbitrary.

Switches and Bulbs()
1 create doubly linked list C of n elements, one for each bulb
2 create S and set every pointer in it to C
3 B← [1, n]

4 Observe()
5 copy L into A
6 while the are less than 2n entities in B do

7 foreach pair 〈B[2j], B[2j + 1]〉 such that B[2j] < B[2j + 1]
8 mid← 1

2(B[2j] + B[2j + 1])

9 set P[B[2j], . . . ,mid] to ones
10 set P[mid + 1, . . . , B[2j + 1]] to zeros
11 update B so that for each applicable pair 〈B[2j], B[2j + 1]〉, it
12 is substituted by two pairs 〈B[2j],mid〉 and 〈mid+ 1, B[2j + 1]〉
13 Observe()
14 for i← 1 ton

15 if A[i] 6= L[i]
16 mark bulb i as changed
17 foreach list of bulbs
18 split the list, if necessary, into two lists: changed and unchanged bulbs
19 foreach element of S
20 update the pointer to the relevant list of bulbs
21 copy L into A
22 for i← 1 ton

23 print the sole element of the list pointed to by S[i]

The query complexity of the algorithm, i.e. the number of calls of Observe, is the
number of executions of the while loop plus one. The number of executions of the while

loop is logarithmic in n because we split each subarray, delineated by a couple from B,
roughly in half, with each execution. So, the number of queries is Θ(lgn).

Now we prove an Ω(lgn) lower bound of the number of such queries. We use the
decision tree model. The decision tree model is used, for instance, for proving an Ω(n lgn)
lower bound for comparison based sortings (see [CLR00]). However, the decision trees for
comparison based sortings are binary because there are precisely two possible outcomes of

each comparison of the kind ai
?
< aj. In contrast to that, any decision tree that corresponds

to the current problem of switches and bulbs has branching factor of 2n. To why this is true,
note that there are precisely 2n possible outcomes from each observation of the n bulbs.

The current problem is, essentially, computing a permutation, because the mapping

138

Problems with solutions in the Analysis of Algorithms c© Minko Markov

from switches to bulbs is a bijection. It follows that any decision tree for that problem
has to distinguish all possible n! permutations of n elements: if the decision tree has a leaf
labeled by at least two permutations then the corresponding algorithm is not correct. It
follows that the leaves must be at least n!.

The height of the tree is approximately logarithm to base the branching factor of the
number of leaves:

log2n n! =
log2 n!

log2 2
n
=
Θ(n lgn)

n
= Θ(lgn)

The height of the tree is a lower bound for the query complexity of any observation-based
algorithm for the problem of switches and bulbs. It follows that Θ(lgn) observations are
required if the only testing allowed is direct observation. It follows that algorithm Switches

and Bulbs is asymptotically optimal with respect to the number of performed ovservations.
�

Problem 113 ([CLR00], Problem 4-2, Finding the missing integer). An array A[1, . . . , n]
contains all the integers from 0 to n except one. It would be easy to determine the missing
integer in O(n) time by using an auxiliary array B[0, . . . , n] to record which numbers appear
in A. In this problem, however, we cannot access an entire integer in A with a single
operation. The elements of A are represented in binary, and the only operation we can use
to access them is “fetch the j-th bit of A[i],” which takes constant time. Show that if we use
only this operation, we can still determine the missing integer in O(n) time.

Solution:

Let m be the number of bits required to represent n in binary. It is well known that
m = ⌊log2 n⌋+ 1. In this problem we think of A as an m× n, 0-1 matrix. Row number m
of A consists of the least significant bits of the numbers in A, row number m − 1 consists
of the second least significant bits, etc., row number 1 consists of the most significant bits.
For instance, if n = 10 and the missing number is 6 = 0110b, A may look like:

A =

0 0 1 0 0 0 0 1 1 0

0 0 0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1

1 1 0 1 0 1 0 1 0 0

The only constant time access to it is of the form A[j][i], which the authors of [CLR00] call
“fetch the j-th bit of A[i]”, assuming the first bit is the most significant, etc.

Consider the following program in C.

int m = floor(logb(n)) + 1;

int A[m][n];

int main() {
int i, j, t, numrow, n0, n1, ntemp = n;

int B[n], res[m];

for(i = 0; i < n; i ++)

B[i] = i;

for(i = m - 1; i >= 0; i --) {

139

Problems with solutions in the Analysis of Algorithms c© Minko Markov

n0 = n1 = 0;

for(j = 0; j < ntemp; j ++) {
if (A[i][B[j]] == 0) n0 ++;

else n1 ++; }
if(n0 - n1 == 2 || n0 - n1 = 1) res[i] = 1;

if(n0 - n1 == 0 || n0 - n1 == -1) res[i] = 0;

for(j = 0, t = 0; j < ntemp; j ++)

if((res[i] == A[i][B[j]])) {
B[t] = B[j];

t ++; }
if(ntemp % 2 == 0) ntemp = (ntemp / 2);

else if(res[i] == 0) ntemp = floor(ntemp / 2);

else ntemp = ceil(ntemp / 2);

}
for(i = 0; i < n; i ++)

printf("%d", res[i]);

}

We claim the algorithm implemented by this program solves correctly the problem of de-
termining the missing bit. First we prove it is correct.

Define that a complete array of size n is a two dimensional bit array similar to the above
A but without any missing column from it. Clearly, such an array has n+ 1 columns. For
instance, a complete array of size 10 would be the following:

0 0 1 0 0 0 0 1 0 1 0

0 0 0 1 1 1 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 1

1 1 0 1 0 1 0 1 0 0 0

Define that an almost complete array of size n is a two dimensional bit array with precisely
one missing column from it†. Now consider any complete array Ã of size n. Call L̃ the
bottom row of Ã. That L̃ consists of the least significant bits of the numbers fron Ã. Let
ñ0 be the number of zeros and ñ1, the number of ones, in L̃. Let ∆̃ = ñ0 − ñ1. We claim
that:

∆̃ =

{
0, if n is odd

1, if n is even

Indeed, it is trivial to prove by induction that if the number n+ 1 of columns in Ã is even
then ∆̃ = 0 and if it is odd, ∆̃ = 1.

Now consider A: any almost complete array of size n, obtained from Ã by deleting a
column, i.e., the missing number. Let L be the bottom row of A. Let n0 be the number of
zeros and n1, the number of ones, in L. Let ∆ = n0 − n1. We claim that:

∆ =

{
∆̃ + 1, if the missing number is odd

∆̃ − 1, if the missing number is even

†It follows the array A in the current problem is an almost complete array of size n.

140

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Indeed, if the missing number is even there is a 0 less in L in comparison with L̃, while the
number of ones is the same; that is, n0 = ñ0 − 1 and n1 = ñ1. Likewise, if the missing
number is odd there is a 1 less in L in comparison with L̃, while the number of zeros is the
same; that is, n0 = ñ0 and n1 = ñ1 − 1. Having in mind the above considerations, it is
clear that:

∆ =






2, if n is even and the missing number is odd

1, if n is odd and the missing number is odd

0, if n is even and the missing number is even

−1, if n is odd and the missing number is even

We conclude that:

∆ ∈ {1, 2}⇒ the least significant bit of the missing number is 1 (5.1)

∆ ∈ {−1, 0}⇒ the least significant bit of the missing number is 0 (5.2)

So, with one linear scan along the bottom row of A we can compute ∆ and then in
constant time we can compute the least significant bit of the missing number. However, if
we attempt a similar approach for the other bits of the missing number, we will end up with
Ω(n lgn) computation because the number of rows is logarithmic in n. The key observation
is that in order to derermine the second least significant bit of the missing number, we need
to scan approximately half the columns of A. Namely, if the least significant bit was
determined to be 1, for the computation of the second least significant bit we need to scan
only the columns having 1 at the bottom row. Likewise, if the least significant bit was
determined to be 0, for the computation of the second least significant bit we need to scan
only the columns having 0 at the bottom row. Next we explain why this is true.

The number of rows of A is m = ⌊log2 n⌋+1. Define that A
(m−1)
0 is the two dimensional

array obtained from A by deleting the columns that have 0 in row m− 1, and then deleting

row m − 1. Define that A
(m−1)
1 is the two dimensional array obtained from A by deleting

the columns that have 1 in row m − 1, and then deleting row m − 1. Call the process of

deriving A
(m−1)
0 and A

(m−1)
1 , the reduction of A, and the two obtained arrays, the reduced

arrays. Let b be the least significant bit of the missing number and b be its complement.

Lemma 19. Under the current naming conventions, A
(m−1)
b is complete, and A

(m−1)

b
is

almost complete. Furthermore, the missing number in A
(m−1)

b
is obtained from the missing

number in A by removing the least significant bit (i.e., shift right).

Proof:

First we will see an example and then make a formal proof. To use the previously given
example with n = 10, m = 4, missing number 6 = 0110b, and

A =

0 0 1 0 0 0 0 1 1 0

0 0 0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1

1 1 0 1 0 1 0 1 0 0

the two derived subarrays are

141

Problems with solutions in the Analysis of Algorithms c© Minko Markov

A
(3)
0 =

0 0 0 0 1

0 0 1 1 0

1 0 1 0 0

A
(3)
1 =

1 0 0 1 0

0 1 0 0 0

1 0 0 0 1

Obviously, A
(3)
0 is complete and A

(3)
1 is almost complete: column

0
1
1

is missing from it. The

least significant bit of the missing number in A is 0; if we did not know which is the missing
number, we could deduce that its least significant bit is 0 by computing the aforementioned

∆ = 5 − 5 = 0. Indeed A
(3)

0
= A

(3)
1 is the array that is almost complete. And indeed the

missing number in it 011 is obtained from 0110 by shift right.

Let us prove the lemma. It is clear that if Ã is a complete array of size n, both Ã
(m−1)
0

and Ã
(m−1)
1 are complete. If n is odd then they contain the same columns (possibly in

different order left to right), otherwise Ã
(m−1)
1 contains one column more and the other

columns are the same. Now imagine A—the array obtained from Ã by the deletion of

precisely one column. If the bit at the bottom row of the deleted column is 0 then A
(m−1)
0

is the same as Ã
(m−1)
0 , so A

(m−1)
0 is complete. However, A

(m−1)
1 is not the same as Ã

(m−1)
1 :

Ã
(m−1)
1 contains one more column that corresponds to the missing number. It follows that

A
(m−1)
1 is almost complete. Alternatively, if the bit at the bottom row of the deleted column

is 1 then A
(m−1)
1 is the same as Ã

(m−1)
1 , so A

(m−1)
1 is complete, but A

(m−1)
0 is almost complete.

That concludes the proof of the lemma. �

Having all that in mind, the verification of the algorithm is straightforward. m is the number
of bits, i.e. the number of rows of A. The array res is the output: at each iteration of the
main for loop, one bit of res is computed, the direction being from the least significant
bit “upwards”. B is an auxilliary array of integers. The definition of the problem requires
bitwise access only to the elements of A; the array B can be accessed “normally”. B keeps
the indices of the columns whose i-th row we scan at every iteration of the main for loop.
Initially, of course, B contains the indices 0, 1, . . . , n-1, in that order, so when i is m-1

we simply scan the bottom row of A. At every iteration of the main for loop, ntemp is the
number of columns in the almost complete array whose last row we scan. Initially, ntemp
is n, which reflects the fact that at the first iteration we scan the bottom row of A. We will
verify the assignment of new value to ntemp later on.

Within the main for loop, the first nested for loop simply counts the zeros and ones
and stores the results in n0 and n1, respectively.

The difference n0 - n1 determines the i-th least significant bit res[i] according to 5.1
and 5.2.

The second nested for loop discovers the indices of the columns that correspond to the
columns of the next reduced array that is almost complete. To see why we consider only
values (of the last row of A) equal to res[i], check the above Lemma.

Finally, the asignment of new value to ntemp is done in accordance to the following
considerations. If ntemp is even then both derived arrays have the same length ntemp / 2.
Otherwise, note that we are interested in that derived subarray that is almost complete. If
res[i] is one then that subarray is the one obtained by deleting the columns with zeros at
the bottom; it has one more column than the complete derived subarray, so res[i] should
be ceil(ntemp / 2). Analogously, if res[i] is zero then res[i] should be floor(ntemp

142

Problems with solutions in the Analysis of Algorithms c© Minko Markov

/ 2). That concludes the verification of the algorithm. The reader is invited to make an
even more rigorous proof of correctness using loop invariant.

The number of accesses to A at each iteration of the main for loop is proportional to the
current value of ntemp. Clearly, the total number of accesses is proportional to

n +
n

2
+
n

4
+ . . . + 1 ≤ 2n = Θ(n)

�

Problem 114. Consider Problem 113 under the additional assumption that the numbers
in A, that is, the columns, appear in sorted order. Find the missing number with O(lgn)
bit accesses to A.

Solution:

If the numbers in A are sorted the problem can be solved by first determining the most
significant bit, then the second most significant bit, etc., the least significant bit, of the
missing number, with precisely one access to A for each bit.

Suppose Ã is the complete array of size n (see the definition of “complete array” in the
solution to Problem 113), i.e. there is no missing number. For instance, if n = 10 then Ã
is:

Ã =

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1 0 0 0

0 0 1 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10

Consider the boundary on the top row between the zeros and the ones. The rightmost zero

is in column 7 (7 = 2⌊log2 10⌋ − 1) and the leftmost one is in column 8 (8 = 2⌊log2 10⌋). It is
easy to generalise that the boundary is between columns 2⌊log2 n⌋− 1 and 2⌊log2 n⌋, provided
the leftmost column is number 0.

Now consider the boundary on the top row between the zeros and the ones in an almost
complete array A of size n. For instance, if n = 10 and the missing number is 6 = 0110b
then A is:

A =

0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0 0 0

0 0 1 1 0 0 1 0 0 1

0 1 0 1 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9

Consider positions 7 = 2⌊log2 10⌋ − 1 and 8 = 2⌊log2 10⌋ on the top row. Now the boundary
is not between them because the missing number has most significant bit 0, so the boundary
is “shifted” one position to the left in comparison with Ã. However, if we do not know what
the missing number’s most significant bit is, we can deduce it is 0 from the fact that there
are two 1’s at positions 7 and 8 on the top row.

143

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Clearly, if there were 0 and 1 at positions 7 and 8, respectively, on the top row, that
would mean the missing number’s most significant bit is 1, as in the following example
where the array is called B, n = 10 and the missing number is 9 = 1001b:

B =

0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 0 1

0 1 0 1 0 1 0 1 0 0

0 1 2 3 4 5 6 7 8 9

So, by inspecting only position 2⌊log2 n⌋−1 on the top row, we can deduce the most significant
bit of the missing number as follows:

the missing number’s most significant bit =

{
0, if A[0][2⌊log2 n⌋ − 1] = 1

1, if A[0][2⌊log2 n⌋ − 1] = 0

Having computed the most significant bit of the missing number in Θ(1) time, we compute
the second most significant bit in Θ(1) time, etc., until we compute all bits of the missing
number with Θ(lgn) attempts, each taking Θ(1) time.

Case I: If the most significant bit is 0, to compute the second most significant bit we
consider only the subarray of columns 0, 1, . . . , 2⌊log2 n⌋ − 2 and rows 1, 2, . . . , ⌊log2 n⌋.
Using the above A as an example, that subarray is, say, A ′:

A =

0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0 0 0

0 0 1 1 0 0 1 0 0 1

0 1 0 1 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9

7→ A ′ =

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 1

0 1 2 3 4 5 6

We proceed recursively with A ′ exactly as with A because A ′ is an almost complete array.
Let us compute the size of A ′. The initial A can be of any size but the size of A ′ is uniquely
determined by n. Let m = ⌊log2 n⌋ + 1, that is, the number of bits necessary to represent
n in binary (thus m is the number of rows in A). Let m ′ = m − 1. The derived A ′ is of
size 2m

′
− 1. The −1 comes from the fact that A ′ has a missing number.

Case II: If the most significant bit is 1, to compute the second most significant bit we
consider only the subarray whose columns have 1’s in the top row. Using the above B as
an example, that subarray is, say, B ′:

B =

0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 0 1

0 1 0 1 0 1 0 1 0 0

0 1 2 3 4 5 6 7 8 9

7→ B ′ =

0 0

0 1

0 0

0 1

The number of columns, call it c ′, in B ′ is easy to compute: it is c ′ = n − 2m
′
where

m ′ = ⌊log2 n⌋. In the concrete example, n = 10, m ′ = 3, thus c ′ = n − 2m
′
= 10 − 8 = 2.

144

Problems with solutions in the Analysis of Algorithms c© Minko Markov

However, B ′ is not necessarily an almost complete array—in order to be an almost complete
array it has to have at least one 1 at its top row. In fact, B ′ is an almost complete array
only when c ′ > 1

2(2
m ′

) = 2m
′−1. In this example, B ′ is not an almost complete array, it has

one row too many. We can conlude the second most significant bit of the missing number is
0 (the missing number is 9 = 1001b) just by knowing the dimensions of B ′; we do not have
to scan, or even examine bits of, the top row to make that conclusion. The rule is, while
c ′ ≤ 2m ′−1, write 0’s to into the missing number’s bit positions and perform m ′ ← m ′ − 1.
This process is equivalent to removing the necessary number of top rows from B ′. Once the
process is over and B ′ is reduced as necessary, it can be dealt with recursively.

Consider the following program in C.

int m = floor(logb(n)) + 1;

int A[m][n], res[m];

void find(int, int, int) ;

int main() {
find(0, n-1, 0);

return 0; }

void find(int low, int high, int row) {
int j, c, n1, n2, numel = high - low + 1;

if(row == m-1) {
res[row] = !(A[i][0]);

PrintResult();

return; }
n1 = floor(logb(numel));

n2 = 1 << n1;

if(A[row][low+n2-1] == 1) {
res[row] = 0;

find(low, n2-2, row+1); }
else {
j = 1;

res[row] = 1;

c = numel - n2;

while((n1 >= 0) & & c <= (1<<(--n1))) {
j ++;

res[row+j] = 0; }
if(row+j == m-1) {

PrintResult();

return; }
find(n2, high, row+j); } }

The correctness of the fragment follows from the previous discussion. The time complexity
is obviously Θ(lgn). �

Problem 115. A circular array A[1, . . . , n] is an array such that n ≥ 3 and A[1] and
A[n] are considered to be adjacent elements just like A[1] and A[2], A[2] and A[3], etc.,

145

Problems with solutions in the Analysis of Algorithms c© Minko Markov

are adjacent. We are given a circular array A[1, . . . , n] of nonnegative integers. For any
i, j ∈ {1, 2, . . . , n} such that i 6= j, dist(i, j) = max {|i− j|, n − |i− j|}. Design a linear time
algorithm that computes a maximum number t such that for some i, j ∈ {1, 2, . . . , n}, i 6= j,
t = A[i] +A[j] + dist(i, j).

Solution:

Consider the following algorithm, due to Mugurel Ionuţ Andreica [MAMc].

Circular Array(A[1, . . . , n]: circular array of nonnegative integers)
1 let B[0 . . . n] and C[1 . . . n] be linear arrays of nonnegative integers
2 B[0]← 0

3 for i← 1 to n

4 B[i]← max {B[i− 1], A[i] − (i− 1)}

5 C[i]← B[i− 1] +A[i] + (i − 1)

6 x← max {C[i] | 1 ≤ i ≤ n}
7 for i← 1 to n

8 B[i]← max {B[i− 1], A[i] + (i− 1)}

9 C[n]← A[n] + 1

10 for i← n − 1 downto 2

11 C[i]← max {C[i+ 1], A[i] + n − (i− 1)}

12 y← max {B[i] + C[i + 1] | 1 ≤ i ≤ n − 1}

13 return max {x, y}

It is obvious that the time complexity is Θ(n). Now we prove the correctness.

Lemma 20. Whenever the execution of the first for loop (lines 3–5) of Circular Array

is at line 5 and i ≥ 2, C[i] is assigned max {A[k] +A[i] + i− k | 1 ≤ k < i}.

Proof:

It is fairly obvious that at line 5 the value B[i− 1] is such that

B[i− 1] =

{
0, if A[k] − (k− 1) ≤ 0 ∀k such that 1 ≤ k < i
max {A[k] − (k− 1) | 1 ≤ k < i}, else

However, A[1] − (1 − 1) cannot be negative, therefore there is at least one non-negative
value in the sequence A[k] − (k − 1), 1 ≤ k < i, so we can say simply that B[i − 1] at
line 5 is B[i − 1] = max {A[k] − k+ 1 | 1 ≤ k < i}. It follows that C[i] is assigned the value
max {A[k] − k+ 1 | 1 ≤ k < i}+A[i] + i− 1 = max {A[k] +A[i] + i− k | 1 ≤ k < i}. �

It follows that x is assigned the value max {A[i] +A[j] + j− i | 1 ≤ i < j ≤ n} at line 6 of
Circular Array.

Lemma 21. y is assigned the value max {A[i] +A[j] + n− (j − i) | 1 ≤ i < j ≤ n} at line 12
of Circular Array.

Proof:

Consider the second for loop (lines 7–8). Since A[1] + (1 − 1) ≥ 0, it is the case that
∀i, 1 ≤ i ≤ n,B[i] = max {A[k] + (k− 1) | 1 ≤ k ≤ i} after the second for loop terminates.
Now consider the third for loop at lines 10–11. Think of the assignment at line 9 as
C[n] = A[n] + n − (n − 1). Having that in mind, it is fairly obvious that after that for

146

Problems with solutions in the Analysis of Algorithms c© Minko Markov

loop terminates, it is the case that C[i] = max {A[k] + n − (k− 1) | i ≤ k ≤ n}, ∀i, 2 ≤ i ≤ n
From these two considerations it follows immediately that at line 12, y is assigned the value

max {A[i] + (i− 1) +A[j] + n − (j− 1) | 1 ≤ i < j ≤ n} =
max {A[i] +A[j] + n − (j− i) | 1 ≤ i < j ≤ n}

�

It follows immediately that Circular Array indeed returns the maximum number t such
that for some i, j ∈ {1, 2, . . . , n}, i 6= j, t = A[i] +A[j] + dist(i, j). �

Problem 116 ([CLR00], Problem 10.3-8). Let X[1, . . . , n] and Y[1, . . . , n] be two arrays,
each containing n numbers already in sorted order. Give an O(lgn)-time algorithm to find
the median of all 2n elements in arrays X and Y.

Solution:

Assume that when n is even the median of X is X
[
n
2 + 1

]
. If the arrays are of equal size,

and that is the current case, we can solve the problem by a divide and conquer algorithm
that compares the medians of the two arrays and then discards the lower half of the array
with the smaller median and the upper half of the array with the bigger median. The
algorithm proceeds likewise until both arrays are reduced to 2 elements each. Then we
solve the reduced problem in constant time. In case the size is odd, by upper and lower half
we mean, the subarray from one end until and excluding the median. It is easy to show this
dichotomy brings the size of the array down to 2 regardless of what the initial n is, because
the iterator n→

⌈
n
2

⌉
reaches 2 regardless of the starting value of n.

Now consider a more general version of this problem where the arrays are X[1, . . . , p] and
Y[1, . . . , q] for possibly unequal values of p and q. The following solution is based on [LD05].
Let us call Z the array that would be obtained if we merged X and Y. Let m = p+ q. The
essence is the fact that we can check in Θ(1) time whether X[i] is the median of Z, for any
i such that 1 ≤ i ≤ p. According to our definition of median, the median is greater than
or equal to

⌊
m
2

⌋
elements of an m-element array. Having that in mind, clearly if X[i] is the

median then:

• X[i] is greater than or equal to i− 1 elements of X.

• X[i] is greater than or equal to j =
⌊
m
2

⌋
− i+ 1 elements of Y.

It takes only constant time to check if Y[j] ≤ X[i] ≤ Y[j + 1]† If that is fulfilled we have
found the median and it is X[i]. Otherwise, we binary search in X to see if the median is in
X. If that fails, the median must be from Y, and we can repeat the analogous process with
X and Y swapped.

Common Median(X[1, . . . , p], Y[1, . . . , q]: sorted arrays)
1 m← p+ q

2 k←Median Bin Search(X, Y, 1, p)

3 if k > 0

4 return X, k

†To avoid excessive boundary checks, pad X and Y at the left side with −∞ and with ∞ at the right side.

147

Problems with solutions in the Analysis of Algorithms c© Minko Markov

5 k←Median Bin Search(Y, X, 1, q)

6 return Y, k

Median Bin Search(A, B: sorted arrays, l, r: integers)
1 if l > r

2 return −1

3 i←
⌊
l+r
2

⌋

4 j←
⌊
m
2

⌋
−i+ 1

5 if B[j] ≤ A[i] ≤ B[j+ 1]
6 return i

7 if A[i] < B[j]

8 Median Bin Search(A,B, l, i)

9 if A[i] > B[j+ 1]

10 Median Bin Search(A,B, i + 1, r)

A not too formal proof of correctness of Common Median is simply pointing out the pre-
ceding discussion and knowing that the binary search idea is correct. The time complexity
is obviously Θ(lgm). Alternatively, we can say the complexity is Θ(max {lg p, lg q}). �

5.3 Graphs

Whenever we say “graph” without any qualifiers, we mean undirected graph without loops
and without edge weights. Whenever we say “weighted graph” we mean that the edges have
positive weights and the vertices, no weights. Unless otherwise specified, n is the number of
vertices of the graph under consideration and m is the number of its edges. If G is a graph,
we denote its vertex set by V(G) and its edge set, by E(G). adj(u) denotes the adjacency
list of vertex u.

To delete a vertex v from a graph G(V, E) means to delete v from V and to delete all edges
with one endpoint v from E. The vertex deletion operation is denoted by G− v. To remove
an edge e from a graph G(V, E) means to delete e from E without deleting its endpoints
from V . The edge deletion operation is denoted by G − e. To add an edge e ′ = (u, v) to
G means that (u, v) 6∈ E and then the operation E ← E ∪ {(u, v)} is performed. The edge
addition operation is denoted by G+ e ′.

By “path” we mean a simple path, i.e. without repeating vertices. Likewise, by “cycle”
we mean a simple cycle. The degree of a vertex u in undirected graph G is denoted by
deg(u) and is defined as deg(u) = |adj(u)|. If u is a vertex in multiple graphs, we write
degG(u) to emphasise we mean the degree of u in G.

5.3.1 Graph traversal related algorithms

Definition 7. Let G(V, E,w) be a weighted connected graph. The eccentricity of any ver-
tex v ∈ V is ecc(v) = max{dist(v, u) |u ∈ V \ {v}}. The diameter of G is diam(G) =

max{ecc(v) | v ∈ V}. �

The term “diameter” is overloaded, meaning either the maximum eccentricity, or any
path of such length whose endpoints are two vertices of maximum eccentricity. We encourage

148

Problems with solutions in the Analysis of Algorithms c© Minko Markov

the reader to have in mind that diameter is completely different from longest path: the
diameter is the longest one among the shortest paths between any two vertices in the
graph, while the longest path is the longest one among the longest paths between any two
vertices in the graph. As an extreme example, consider the complete graph Kn (with edge
weights ones). Its diameter is 1 because every vertex is connected to every other vertex
but its longest path is of length n− 1 because Kn is Hamiltonian. A notable exception are
trees. In any tree, “diameter” and “longest path” are the same thing, i.e. paths of the
same length. To see why, note that in trees there is a unique path between any two vertices.
Therefore, the longest path between any two vertices u and v has the same length as the
shortest path between u and v, because there is only one such path to begin with.

A cut vertex in a graph G with k connected components is any vertex u ∈ V(G) such
that the deletion of u leads to graph G ′ with ≥ k + 1 connected components. A bridge in
a graph G with k connected components is any edge e ∈ V(G) such that the deletion of u
leads to graph G ′ with k+ 1 connected components.

Now we present the well known algorithm DFS for graph traversal, in the version of Cormen
et al. [CLR00].

DFS(G(V, E): directed graph)
1 foreach u ∈ V
2 color[u]←White

3 π[u]← Nil

4 time← 0

5 foreach u ∈ V
6 if color[u] = White

7 DFS Visit(G,u)

DFS Visit(G(V, E): directed graph, u: vertex from V)
1 color[u]← Gray

2 time← time + 1
3 d[u]← time
4 foreach v ∈ adj(u)
5 if color[v] = White

6 π[v]← u

7 DFS Visit(G, v)

8 color[u]← Black

9 time← time + 1
10 f[u]← time

It is well known that DFS on undirected graphs partitions the edges into tree edges and
back edges according to the following rules: if the colour of v at line 5 is White then (u, v)

is a tree edge and if the colour of v at line 5 is Gray then (u, v) is a back edge. Also, it is
known it is not possible the said colour to be Black, so no other type of edge is possible
in undirected graphs.

149

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 117. Design a fast algorithm to compute the diameter of weighted tree. Analyse
its correctness and time complexity.

Solution:

We use a modified DFS as follows. The original DFS on the preceding page works on
nonweighted graphs. Assume the input graph is weighted and connected. Let the algorithm
use an additional array dist[1, . . . , n]. Consider the following modification of DFS Visit

that does not use d[], f[], and the variable time.

Eccentricity(T(V, E,w): weighted tree, u: vertex from V)
1 (∗ Returns an ordered pair 〈α,β〉 where α = ecc(u) and ∗)
2 (∗ β is a vertex at distance α from u. ∗)
3 foreach x ∈ V
4 color[x]←White

5 π[x]← Nil

6 dist[x]← 0

7 Ecc1(T, u)

8 α← max {dist[x] | x ∈ V}
9 β← any x ∈ V such that dist[x] = α
10 return 〈α,β〉

Ecc1(T(V, E,w): weighted tree, u: vertex from V)
1 color[u]← Gray

2 foreach v ∈ adj(u)
3 if color[v] = White

4 π[v]← u

5 dist[v]← dist[u] +w(u, v)

6 Ecc1(T, v)

7 color[u]← Black

It is trivial to prove by induction that after the call at line 7 in Eccentricity, for every
vertex x ∈ V , dist[x] contains the distances betwen x and u in T . Using the definition of
ecc(u), conclude that Eccentricity returns the eccentricity of u and a vertex that is at
that distance from u. Eccentricity has the time complexity of DFS and that is Θ(m+n).

Lemma 22. Let G be a connected graph, weighted or non-weighted. Any two paths of
maximum length in G share a vertex.

Proof:

Assume there are two paths of maximum length that are independent. It is not difficult
to show there is a path of even greater length, contrary to the assumption just made. We
leave the details to the reader. �

Corollary 2. Let T be a tree, weighted or non-weighted. Any two diameters in T share a
vertex. �

Corollary 3. Let T be a tree, weighted or non-weighted. Let V ′ be the union of the vertex
sets of all diameters in T . V ′ induces a subtree T ′ of T . Every leaf of T ′ is a leaf of T , too.
�

150

Problems with solutions in the Analysis of Algorithms c© Minko Markov

x

v

w

u y

q

p

p ′

q ′ q ′′

Figure 5.2: The paths p, q, p ′, and p ′′ under the assumption that u is an internal
vertex of the backbone T ′.

x

v

w

y

q

p

p ′

q ′ q ′′

u

z

Figure 5.3: The case when u is not in the backbone T ′.

We call the subtree T ′ from Corollary 3, the backbone of T. Note that T can coincide with
its backbone, e.g. if T is a star.

Lemma 23. Let T be a tree, weighted or non-weighted. Let T ′ be the backbone of T . For
any vertex u ∈ V(T), the eccentricity of u is the length of a path p such that one endpoint
of p is u and the other endpoint, call it v, of p is some leaf of T ′.

Proof:

Assume the opposite. First assume u is a leaf of T ′. By the definition of backbone, all
vertices at maximum distance from u are endpoints of some diameters in T , i.e. they are
leaves of T , hence the contradiction. Assume u is an internal vertex of T ′. Then there is a
diameter q of T such that u is an internal vertex in q. Having assumed that v is not a leaf
of T ′, it follows v is not a vertex of q. But p and q share at least one vertex, namely u.
Let the maximum contiguous subsequence (subpath) of p and q be u, . . . ,w. Let p ′ be the
subpath w, . . . , v of p. Let q ′ be the subpath w, . . . , x of q such that x is am endpoint of q
and u is not an internal vertex of q ′. Let q ′′ be the subpath of q from w to y where y is the
other endpoint of q (i.e., not x). It must be case that |p ′| > |q ′| according to the current
assumptions. It follows that using p ′ and q ′′ we can construct a path in T that is longer
than the diameter q, contrary to the fact that q is a longest path in T . See Figure 5.2.

Finally, assume u is not in T ′. It is clear there exists a unique vertex z in T ′ such that,
for every other vertex a from T ′, z is an internal vertex in the path between a and u. The
proof reduces to the previous one with z instead of u. See Figure 5.3. �

Having in mind Lemma 23 and the correctness of algorithm Eccentricity, it is obvious
that Eccentricity returns a vertex that is a leaf of the backbone of T . Now consider the
following algorithm.

Diameter of Tree(T(V, E,w): weighted tree)
1 u← arbitrary vertex from V

151

Problems with solutions in the Analysis of Algorithms c© Minko Markov

2 〈x, y〉← Eccentricity(T, u)

3 〈w, z〉← Eccentricity(T, y)

4 return 〈w, z〉

Using tha names of Diameter of Tree, y is a leaf of the backbone of T . Then the second
call of Eccentricity, namely Eccentricity(T, y), returns 〈w, z〉 such that z is another
leaf of the backbone, one that is at maximum distance from y, and w is the distance between
them, i.e. the diameter. That proves the correctness of the algorithm. Clearly, the time
complexity is Θ(n +m). �

Problem 118. Design a fast algorithm to output all cut vertices of a connected graph.
Analyse its correctness and time complexity.

Solution:

The solution is based on the solution in [Ski08, Section 5.9.2, pp. 173–177]. The main idea
is to modify DFS and thus to use its optimal time complexity.

Each execution of DFS on a connected graph G(V, E) generates a tree T . V(T) = V and
E(T) = {e ∈ E | e is classified as a tree edge by DFS.}. Clearly, the leaves of T cannot be
cut vertices. To see why, consider any vertex v ∈ V that is a leaf of T . If degG(v) = 1 then
the deletion of u from G leads to one connected component because such a vertex connects
only itself to the remainder of the graph. If degG(v) ≥ 2, the tree edges are sufficient to
hold the remainder of the graph together.

The root r of the tree may or may not be a cut vertex of G: if degT (r) = 1 then r is not
a cut vertex, otherwise it is a cut vertex.

Each of the remaining vertices may or may not be a cut vertex according to the following
lemma.

Lemma 24. Using the above names, for every vertex u that is not the root and is not a
leaf of T , u is a cut vertex iff there exists a child v of u in T such that the subtree of Tv
rooted at v is such that there is no back edge from any vertex from Tv to a proper ancestor
of u.

Proof:

Suppose there is no back edge from a vertex from V(Tv) to a proper ancestor of u. Then
for every path p with endpoints x and y such that x ∈ V(Tv) and y ∈ V(G) \ (V(Tv) ∪ {u}),
u is an internal vertex in p. So, u is a cut vertex in G. Suppose the opposite: there is a
back edge from a vertex from V(Tv) to a proper ancestor of u. Then there exists a path p
with endpoints x and y such that x ∈ V(Tv) and y ∈ V(G) \ (V(Tv) ∪ {u}), such that u is
not in p. So, u is not a cut vertex in G. �

The algorithm that implements these ideas is a modifed DFS. The arrays d[], f[], and π[],
and the variable “time” are not used. There is, however, an array level[1, . . . , n] of natural
numbers that keeps record of the levels of the vertices in the DFS tree. That is, level[i]
means the distance between vertex i and the root r. Obviously, the level of the root is 0.

Find Cut Vertices(G(V, E): undirected graph)
1 foreach u ∈ V
2 color[u]←White

152

Problems with solutions in the Analysis of Algorithms c© Minko Markov

3 let u be an arbitrary vertex from V

4 FCV1(G,u, 0);

FCV1(G(V, E): undirected graph, u: vertex from V , l: integer)
1 color[u]← Gray

2 level[u]← l

3 minback← level[u]
4 if level[u] = 0
5 count← 0

6 IsCut ← False

7 foreach v ∈ adj(u)
8 if color[v] = White {
9 if level[u] = 0
10 count← count+ 1

11 x← FCV1(G, v, l + 1)

12 if x ≥ level[u] and level[u] ≥ 1
13 IsCut ← True

14 minback← min {minback, x} }
15 if color[v] = Gray {
16 if level[v] < minback and level[v] 6= level[u] − 1
17 minback← level[v] }
18 if IsCut
19 print u
20 if level[u] = 0 and count ≥ 2
21 print u
22 color[u]← Black

23 return minback

We argue that the printing of cut vertices (line 19 or line 21) is correct. First, recall that
the root vertex is treated differently: the root, i.e. the starting vertex of the DFS, is a cut
vertex iff there are at least two tree edges incident to it. The number of tree edges incident
to the root is recorded in the count variable†. It is incremented at line 10 precisely when
the current u is 0, i.e. u is the root, and v is White, i.e. (u, v) is a tree egde. It follows
that after the for loop (lines 7–17) finishes, count ≥ 2 iff the current u is the root of the
DFS tree and it is indeed a cut vertex, and so the printing at line 21 is correct.

On the other hand, line 13 is reached iff

• vertex u is not the root, because level[u] ≥ 1 implies that, and

• there is no back edge from any vertex from Tv to a proper ancestor of u, because
at line 11, x is assigned the number of the lowest level proper ancestor of v that is
incident to a vertex from Tv; if that number is ≥ level[u] that vertex must be u or a
vertex from Tv, so by Lemma 24, u is a cut vertex.

†We emphasise that the number of tree edges incident to that vertex is completely different from the
degree of that vertex in G.

153

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Those two conditions imply u is a cut vertex. Of course, in order to give a complete formal
proof one has to prove by induction that FCV1 returns the number of the lowest level proper
ancestor of u that is incident to a vertex from Tu. We leave that job to the inquisitive reader.

We point out that the variable minback at line 17 is set to level[v] only if level[v] 6=
level[u] − 1 for the following reason. We know that DFS in the current implementation
visits every edge of an undirected graph twice because that edge is in two different adjacency
lists (one list for each endpoint). So, it makes sense to consider (u, v) at lines 16 and 17
as a back edge only when u is not the immediate ancestor of v. In other words, when
level[v] 6= level[u] − 1. We also point out that the code at lines 16–17 is executed for each
back edge (u, v).

That concludes the proof of the correctness of algorithm Find Cut Vertices. The
time complexity is, obviously, the same as that of DFS: Θ(m+ n). �

Problem 119. Design a fast algorithm to output all bridges of a connected graph. Analyse
its correctness and time complexity.

Solution:

This problem is similar to the previous one and the solution is quite close to algorithm Find

Cut Vertices. Again we use a modification of DFS and again we consider the partition
of the edges into tree edges and back edges.

Lemma 25. With respect to the work of DFS and the classification of edges into tree edges
and back edges, any edge (u, v) is a bridge iff u is the father of v in T and the subtree Tv
rooted at v is such that there is no back edge from a vertex from Tv to u or a proper ancestor
of u.

Proof:

The claim is obvious, having in mind that there is no back edge from a vertex from Tv to u
or a proper ancestor of u if and only if every path from a vertex from Tv to a vertex outside
Tv must contain the edge (u, v). �

Unlike the problem of finding the cut vertices, now the root and the leaves of the DFS tree
do not have to be treated differently from the other vertices.

Find Bridges(G(V, E): undirected graph)
1 foreach u ∈ V
2 color[u]←White

3 let u be an arbitrary vertex from V

4 FBR1(G,u, 0);

FBR1(G(V, E): undirected graph, u: vertex from V , l: integer)
1 color[u]← Gray

2 level[u]← l

3 minback← level[u]
4 foreach v ∈ adj(u)
5 if color[v] = White {
6 x← FBR1(G, v, l + 1)

154

Problems with solutions in the Analysis of Algorithms c© Minko Markov

7 if x > level[u]
8 print (u, v)

9 else if x < minback
10 minback← x }
11 if color[v] = Gray {
12 if level[v] < minback and level[v] 6= level[u] − 1
13 minback← level[v] }
14 color[u]← Black

15 return minback

The proof of the correctness of algorithm Find Bridges is simpler than that of Find Cut

Vertices. The edge (u, v) is printed (line 8) iff the condition specified in Lemma 25 is
fulfilled. Actually, the condition at line 7 is the main difference betweem this algorithm and
Find Cut Vertices (see line 12 there). The time complexity is, obviously, the same as
that of DFS: Θ(m + n). �

5.3.2 NP-hard problems on restricted graphs

One way of dealing with computational intractability, especially on graphs, is designing
fast algorithms for particular graphs. The most natural class of “simple” graphs—ones for
which there are fast algorithms for NP-hard problems—are trees.

Definition 8. Let G = (V, E) be a graph. Any subset U ⊆ V is called:

• vertex cover if ∀(u, v) ∈ E : u ∈ U or v ∈ U.

• dominating set if ∀v ∈ V : v ∈ U or ∃w ∈ U such that (v,w) ∈ E.

• independent set if ∀u ∈ U∀v ∈ U : (u, v) 6∈ E. �

The concepts from Definition 8 have their counterparts–computational problems. Here we
list the optimisation versions of the problems.

Computational Problem Vertex Cover

Generic Instance: A graph G
Objective: Compute the size of a minimum vertex cover of G �

Computational Problem Dominating Set

Generic Instance: A graph G
Objective: Compute the size of a minimum dominating set of G �

Computational Problem Independent Set

Generic Instance: A graph G
Objective: Compute the size of a maximum independent set of G �

Theorem 4. For any graph G = (V, E), for any U ⊆ V, U is an independent set iff V \U

is a vertex cover.

155

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Proof:

First assume U is an independent set. Assume V \U is not a vertex cover. It follows there
is an edge (u, v) such that u 6∈ V \U and v 6∈ V \U. But that is equivalent to saying there
is an edge (u, v) such that u ∈ U and v ∈ U. By definition, U is not an independent set,
contrary to the initial assumption.
Now assume V \ U is a vertex cover. Assume U is not an independent set. Negating the
definition of independent set, we derive ∃u ∈ U∃v ∈ U : (u, v) ∈ E. The definition of vertex
cover says that for every edge, at least one of its vertices is in the cover. Since V \ U is
a vertex cover and (u, v) is an edge, u ∈ V \ U or v ∈ V \ U. It follows u 6∈ U or v 6∈ U,
contrary to the previous conclusion that u ∈ U and v ∈ U. �

Corollary 4. For any graph G = (V, E) with n vertices, if m is the size of a minumum
vertex cover and t is the size of a maximum independent set, then m+ t = n. Furthermore,
every minimum vertex cover U trivially gives us a maximum independent set, namely V \U,
and vice versa. �

Problem 120. Construct a linear time algorithm for Independent Set on trees.

Solution:

IS on trees, v1(T = (V, E): tree)
1 the algorithm uses arrays A[1, . . . , n] and B[1, . . . , n]
2 let r be an arbitrary vertex from V

3 make T rooted tree with root r
4 work from the leaves upwards in the following way
5 foreach leaf vertex u
6 A[u] = 1

7 B[u] = 0

8 foreach internal vertex u
9 let v1, v2, . . . , vk be the children of u
10 A[u] = 1 +

∑k
i=1 B[vi]

11 B[u] =
∑k
i=1max {A[vi], B[vi]}

12 return max {A[r], B[r]}

The arrays A[] and B[] keep the following information with respect to the rooted tree T .
Let Tu denote the subtree rooted at u, for every u. For every vertex u,

• A[u] is the size of a maximum independent set in Tu that contains u, and

• B[u] is the size of a maximum independent set in Tu that does not contain u.

The verification of the algorithm is based on the trivial fact that an optimum independent
set either contains a certain vertex, or does not contain that vertex. The assignments
at lines 6 and 7 are obviously correct. If we imagine a recursive implementation of the
algorithm, those lines correspond to the bottom of the recursion. The assignment at line 10
is because the if u is necessarily contained in any independent set, then v1, . . . , vk are
necessarily not in that set; therefore, we choose max independent sets in Tv1 , . . . , Tvk that
do not contain the respective roots v1, . . . , vk. Consider the assignment at line 11. If u is
not in the independent set, for any child vi we can pick the maximum independent set in
TvI regardless of whether it contains vi or not.

156

Problems with solutions in the Analysis of Algorithms c© Minko Markov

The key observation, unmentioned so far, with respect to the correctness, is that the
optimum set at any internal vertex is obtained from the optimum sets of its children,
independently of one another. That allows the divide and conquer approach.

The time complexity can be made as low as linear if we run a modified DFS. The
recursive function does not have to return any value because the relevant information can
be kept in global arrays A[] and B[]. �

157

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 6

Appendix

Problem 121.

n∑

k=1

lg k ≈ n lgn

Solution:

One way to solve it is to see that the sum is
∑n
k=1 lg k = lg (n!) and then use Problem 1.48

on page 12. There is another way. Let m = ⌊n2 ⌋, A =
∑m−1
k=1 lg k, and B =

∑n
k=m lg k. First

we prove that B ≈ n lgn.

n∑

k=m

lgm ≤
n∑

k=m

lg k ≤
n∑

k=m

lgn ⇔

(lgm)

n∑

k=m

1 ≤ B ≤ (lgn)

n∑

k=m

1 ⇔

(
lg
⌊n
2

⌋)(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
C

≤ B ≤ (lgn)
(
n −

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
D

Clearly, C ≈ n lgn and D ≈ n lgn. It must be the case that B ≈ n lgn. Now we prove
that A � B. A has n−2

2
terms, in case n is even, and n−3

2
terms, in case n is odd. In any

event, A has less terms than B. Furthermore, every term of A is smaller than any term of
B. It follows A � B. Since ∑n

k=1 lg k = A + B, it must be the case that
∑n
k=1 lg k ≈ n lgn.

�

Problem 122.

n∑

k=1

k lg k ≈ n2 lgn

Solution:

158

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Let m = ⌊n2 ⌋, A =
∑m−1
k=1 k lg k, and B =

∑n
k=m k lg k. First we prove that B ≈ n2 lgn.

n∑

k=m

m lgm ≤
n∑

k=m

k lg k ≤
n∑

k=m

n lgn ⇔

(m lgm)

n∑

k=m

1 ≤ B ≤ (n lgn)
n∑

k=m

1 ⇔

(⌊n
2

⌋
lg
⌊n
2

⌋)(
n −

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
C

≤ B ≤ (n lgn)
(
n −

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
D

Clearly, C ≈ n2 lgn and D ≈ n2 lgn. It must be the case that B ≈ n2 lgn. Now we prove
that A � B. A has n−2

2 terms, in case n is even, and n−3
2 terms, in case n is odd. In any

event, A has less terms than B. Furthermore, every term of A is smaller than any term of B.
It follows A � B. Since ∑n

k=1 k lg k = A+ B, it must be the case that
∑n
k=1 k lg k ≈ n lgn.

�

Problem 123. Find a closed formula for

n∑

k=0

2kk

Solution:

Let

Sn =

n∑

k=0

2kk

Then

Sn + (n + 1)2n+1 =

n∑

k=0

2kk+ (n + 1)2n+1 =

n∑

k=0

2k+1(k+ 1) = 2

n∑

k=0

2kk+ 2

n∑

k=0

2k

Since
∑n
k=0 2

k = 2n+1 − 1,

Sn + (n + 1)2n+1 = 2

n∑

k=0

2kk

︸ ︷︷ ︸
2Sn

+ 2(2n+1 − 1) = 2Sn + 2.2
n+1 − 2

Then

Sn = n2n+1 + 2n+1 − 2.2n+1 + 2 = n2n+1 − 2n+1 + 2

So,

Sn = (n − 1)2n+1 + 2 (6.1)

�

159

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 124. Find a closed formula for

n∑

k=0

2kk2

Solution:

Let

Sn =

n∑

k=0

2kk2

Then

Sn + 2
n+1(n + 1)2 =

n∑

k=0

2kk2 + 2n+1(n + 1)2 =

n∑

k=0

2k+1(k+ 1)2

= 2

n∑

k=0

2k(k2 + 2k + 1)

= 2

n∑

k=0

2kk2

︸ ︷︷ ︸
2Sn

+ 4

n∑

k=0

2kk

︸ ︷︷ ︸
4(n−1)2n+1+8

+ 2

n∑

k=0

2k

︸ ︷︷ ︸
2.2n+1−2

Then

Sn + n
22n+1 + 2n2n+1 + 2.2n+1 = 2Sn + 4n2

n+1 − 4.2n+1 + 8 + 2.2n+1 − 2

So,

Sn = n22n+1 − 2n2n+1 + 4.2n+1 − 6 (6.2)

�

Problem 125. Find a closed formula for the sum of the first n odd numbers

Sn = 1 + 3 + 5 + . . . + 2n − 1

Solution:

It is trivial to prove by induction on n that Sn = n2.
Basis: S1 = 1

2.
Induction hypothesis: assume Sn = n2.
Induction step:

Sn+1 = 1+ 3 + 5 + . . . + 2n − 1+ 2n + 1

= Sn + 2n + 1 by definition

= n2 + 2n + 1 by the induction hypothesis

= (n + 1)2

Indeed,

Sn = n2 (6.3)

There is a geometric proof of the same fact, illustrated on Figure 6.1. �

160

Problems with solutions in the Analysis of Algorithms c© Minko Markov

1+ 3 = 22

1+ 3+ 5+ 7 = 42
1+ 3+ 5 = 32

1 = 12

Figure 6.1: A geometric proof that the sum of the first n odd numbers is the nth

square n2.

Problem 126. Find a closed formula for

n∑

i=1

⌊√
i
⌋

Solution:

To gain some intuition, let us write down the sum explicitly, i.e. all the terms, for some
small n, say n = 17. For clarity put boxes around the terms whose positions are perfect
squares, i.e. around the first, fourth, ninth, and sixtienth term.

17∑

i=1

⌊√
i
⌋
= 1 + 1 + 1
︸ ︷︷ ︸

run 1

+ 2 + 2 + 2 + 2+ 2
︸ ︷︷ ︸

run 2

+ 3 + 3+ 3 + 3+ 3 + 3 + 3
︸ ︷︷ ︸

run 3

+ 4 + 4
︸ ︷︷ ︸
run 4

The pattern is clear: the sum is the first n, in this case n = 17, terms of a series whose
terms are the consecutive positive integers grouped in runs, run j being the sum of 2j + 1
in number j’s. Naturally, each run starts at a term whose position in the series is a perfect
square: run 1 starts at position 1, run 2 starts at position 4, run 3 starts at position 9,
etc. Problem 125 explains why the runs, except possibly for the last run, have lengths
that are the consecutive odd numbers—since the first j odd numbers sum precisely to a
perfect square, viz. j2, it follows the difference between the two consecutive perfect squares
(j + 1)2 − j2 is an odd number, viz. 2j + 1.

The run with the largest number can be incomplete, as is the case when n = 17—run
number 4 has only two terms. Let us call the number of complete runs, i.e. the ones that
have all the terms, kn. For instance, k17 = 3. We claim that

kn = ⌊
√
n + 1⌋ − 1

To see why, imagine that n decreases one by one and think of the moment when kn decreases.
That is not when n becomes a perfect square minus one but when n becomes a perfect square
minus two. For instance, k15 = 3 but k14 = 2. Hence we have

√
n+ 1, not

√
n.

Having all that in mind we break the desired sum down into two sums:

n∑

i=1

⌊√
i
⌋
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0
if and only if n is a perfect square minus one. More precisely, if we denote the number of

161

Problems with solutions in the Analysis of Algorithms c© Minko Markov

terms in S2 by ln,

ln = n − ⌊
√
n+ 1⌋2 + 1

For instance, l17 = 2 as seen above and indeed 17−⌊
√
17 + 1⌋2+1 = 17−42+1 = 2; l15 = 0

as seen above and indeed 15 − ⌊
√
15 + 1⌋2 + 1 = 15 − 42 + 1 = 0.

Let us first compute S1.

S1 = 1.3 + 2.5 + 3.7 + 4.9 + 5.11 + . . . + k(n)(2k(n) + 1)

=

k(n)∑

i=1

i(2i + 1)

= 2

k(n)∑

i=1

i2 +

k(n)∑

i=1

i

= 2
k(n).(k(n) + 1).(2k(n) + 1)

6
+
k(n).(k(n) + 1)

2
by (6.21) and (6.22)

= k(n).(k(n) + 1)

(
4k(n) + 2

6
+
3

6

)

=
1

6
k(n).(k(n) + 1).(4k(n) + 5)

=
1

6
(⌊
√
n + 1⌋ − 1)(⌊

√
n + 1⌋ − 1+ 1)(4⌊

√
n+ 1⌋− 4 + 5)

=
1

6
(⌊
√
n + 1⌋ − 1)⌊

√
n+ 1⌋(4⌊

√
n + 1⌋ + 1)

Clearly, S1 = Θ
(
n

3
2

)
. S2 is easier to compute, it has l(n) terms, each term being k(n) + 1.

S2 = ln(kn + 1)

= (n − ⌊
√
n + 1⌋2 + 1)(⌊

√
n+ 1⌋− 1 + 1)

= (n − ⌊
√
n + 1⌋2 + 1)⌊

√
n + 1⌋

Clearly, S2 = O
(
n

3
2

)
, therefore S1 + S2 = Θ

(
n

3
2

)
+O

(
n

3
2

)
= Θ

(
n

3
2

)
.

Let us denote ⌊
√
n+ 1⌋ by ñ. It follows that

S1 =
ñ(ñ − 1)(4ñ + 1)

6

S2 = (n − ñ2 + 1)ñ
n∑

i=1

⌊√
i
⌋
= ñ

(
(ñ − 1)(4ñ + 1)

6
+ (n− ñ2 + 1)

)
(6.4)

and
n∑

i=1

⌊√
i
⌋
= Θ

(
n

3
2

)
(6.5)

�

162

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 127. Find a closed formula for

n∑

i=1

⌈√
i
⌉

Solution:

Let us start with a small example as in Problem 126, say for n = 17. For clarity put boxes
around the terms whose positions are perfect squares, i.e. around the first, fourth, ninth,
and sixtienth term.

17∑

i=1

⌈√
i
⌉
= 1
︸︷︷︸
run 1

+ 2 + 2+ 2
︸ ︷︷ ︸

run 2

+ 3 + 3+ 3 + 3+ 3
︸ ︷︷ ︸

run 3

+ 4 + 4 + 4 + 4 + 4+ 4 + 4
︸ ︷︷ ︸

run 4

+ 5︸︷︷︸
run5

The pattern is quite similar to the one in Problem 126. We sum the first n terms of a series
whose terms are the consecutive positive integers grouped in runs, run j being the sum of
2j − 1 in number j’s.

The run with the largest number can be incomplete. For instance, if n = 17 then run
number 5 has only one term. Let us call the number of complete runs, i.e. the ones that
have all the terms, sn. For instance, s17 = 4. It is obvious that

sn = ⌊
√
n⌋

We break the desired sum down into two sums:
n∑

i=1

⌊√
i
⌋
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0
if and only if n is a perfect square. We denote the number of terms in S2 by tn.

tn = n− ⌊
√
n⌋2

For instance, t17 = 1 as seen above and indeed 17 − ⌊
√
17⌋2 = 17 − 42 = 1; t16 = 0 as seen

above and indeed 16 − ⌊
√
16⌋2 = 16 − 42 = 0.

Let us compute S1.

S1 = 1.1 + 2.3 + 3.5 + 4.7 + 5.9 + . . . + sn(2sn − 1)

=

sn∑

i=1

i(2i− 1)

= 2

sn∑

i=1

i2 −

sn∑

i=1

i

= 2
sn.(sn + 1).(2sn + 1)

6
−
sn.(sn + 1)

2
by (6.21) and (6.22)

= sn.(sn + 1)

(
4sn + 2

6
−
3

6

)

=
1

6
sn.(sn + 1).(4sn − 1)

=
1

6
(⌊
√
n⌋)(⌊

√
n⌋ + 1)(4⌊

√
n⌋− 1)

163

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Clearly, S1 = Θ
(
n

3
2

)
. Now we compute S2. It has tn terms, each term being sn + 1.

S2 = tn.(sn + 1)

= (n − ⌊
√
n⌋2)(⌊

√
n⌋+ 1)

Clearly, S2 = O
(
n

3
2

)
, therefore S1 + S2 = Θ

(
n

3
2

)
+O

(
n

3
2

)
= Θ

(
n

3
2

)
.

It follows that

n∑

i=1

⌈√
i
⌉
= (⌊

√
n⌋ + 1)

(⌊√n⌋(4⌊√n⌋− 1)
6

+ n − ⌊
√
n⌋2
)

(6.6)

and

n∑

i=1

⌈√
i
⌉
= Θ

(
n

3
2

)
(6.7)

�

Problem 128. Find a closed formula for

n∑

i=1

i
⌊√
i
⌋

Solution:

The line of reasoning is very similar to the one in Problem 126. We sum the first n terms of
a series, the series being the one mentioned in the solution of Problem 126 with each term
multiplied by its position. Consider for example n = 17. The terms whose positions are
perfect squares are boxed.

17∑

i=1

i
⌊√
i
⌋
= 1 + 2+ 3
︸ ︷︷ ︸

run 1

+ 8 + 10+ 12 + 14+ 16
︸ ︷︷ ︸

run 2

+ 27 + 30+ 33 + 36+ 39+ 42 + 45
︸ ︷︷ ︸

run 3

+ 64 + 68
︸ ︷︷ ︸

run 4

Unlike Problem 126, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 126, all the runs but the
last one are complete, the last run being either complete or incomplete. We denote the
number of the complete runs with kn and the number of terms in the incomplete run by
ln. It is the case that

kn = ⌊
√
n + 1⌋ − 1

ln = n − ⌊
√
n + 1⌋2 + 1

the reasoning being exactly the same as in Problem 126. We break the desired sum down
into two sums:

n∑

i=1

i
⌊√
i
⌋
= S1 + S2

164

Problems with solutions in the Analysis of Algorithms c© Minko Markov

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.

Let us first compute S1.

S1 = 1.(1 + 2 + 3) + 2.(4 + 5 + 6+ 7 + 8) + 3.(9 + 10 + 11 + 12 + 13 + 14 + 15)

+ 4.(16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24)

+ 5.(25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35)

+ . . .

+ kn
(
k2n + (k2n + 1) + (k2n + 2) + . . . + ((kn + 1)

2 − 1)
︸ ︷︷ ︸

k2n+2kn

)

=

kn∑

i=1

i

i2+2i∑

j=i2

j

=

kn∑

i=1

i



i2+2i∑

j=1

j−

i2−1∑

j=1

j




=

kn∑

i=1

i

(
(i2 + 2i)(i2 + 2i + 1)

2
−

(i2 − 1)i2

2

)

=
1

2

kn∑

i=1

i
(
i4 + 2i3 + i2 + 2i3 + 4i2 + 2i− i4 + i2

)

=
1

2

kn∑

i=1

i
(
4i3 + 6i2 + 2i

)

= 2

kn∑

i=1

i4 + 3

kn∑

i=1

i3 +

kn∑

i=1

i2 apply (6.22), (6.23), and (6.24)

= 2
kn(kn + 1)(2kn + 1)(3k

2
n + 3kn − 1)

30
+ 3

k2n(kn + 1)
2

4
+
kn(kn + 1)(2kn + 1)

6

=
kn(kn + 1)

2

(
(4kn + 2)(3k

2
n + 3kn − 1)

15
+
3kn(kn + 1)

2
+
2kn + 1

3

)

=
kn(kn + 1)

60

(
(8kn + 4)(3k

2
n + 3kn − 1) + 45kn(kn + 1) + 20kn + 10

)

=
kn(kn + 1)

60

(
24k3n + 24k

2
n − 8kn + 12k

2
n + 12kn − 4 + 45k

2
n + 45kn + 20kn + 10

)

=
kn(kn + 1)

60

(
24k3n + 81k

2
n + 69kn + 6

)

=
kn(kn + 1)(8k

3
n + 27k2n + 23kn + 2)

20
(6.8)

165

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Substitute kn with ⌊
√
n + 1⌋ − 1 in (6.8) to obtain

S1 =
1

20
⌊
√
n + 1⌋(⌊

√
n + 1⌋ − 1)

(
8(⌊

√
n + 1⌋ − 1)3+

27(⌊
√
n + 1⌋ − 1)2 + 23(⌊

√
n + 1⌋ − 1) + 2

)

=
1

20
⌊
√
n + 1⌋(⌊

√
n + 1⌋ − 1)

(
8⌊
√
n+ 1⌋3 − 24⌊

√
n+ 1⌋2 + 24⌊

√
n + 1⌋ − 8

27⌊
√
n+ 1⌋2 − 54⌊

√
n + 1⌋ + 27 + 23⌊

√
n + 1⌋ − 23 + 2

)

=
1

20
⌊
√
n + 1⌋(⌊

√
n + 1⌋ − 1)

(
8⌊
√
n+ 1⌋3 + 3⌊

√
n + 1⌋2 − 7⌊

√
n+ 1⌋− 2

)

Clearly, S1 = Θ
(
n

5
2

)
. Now we compute S2. It has ln terms, the first term is (kn+ 1)

3, and

the difference between every two consecutive terms is (kn + 1).

S2 =

ln∑

i=1

(kn + 1)
3 + (i − 1)(kn + 1)

= (kn + 1)
3
ln∑

i=1

1 + (kn + 1)

ln∑

i=1

(i − 1)

= (kn + 1)
3ln +

(kn + 1)(ln − 1)ln

2

= ⌊
√
n+ 1⌋3(n − ⌊

√
n + 1⌋2 + 1) + ⌊

√
n + 1⌋(n − ⌊

√
n+ 1⌋2)(n − ⌊

√
n+ 1⌋2 + 1)

2

Clearly, S2 = O
(
n

5
2

)
, therefore S1 + S2 = Θ

(
n

5
2

)
+O

(
n

5
2

)
= Θ

(
n

5
2

)
.

Let us denote ⌊
√
n+ 1⌋ by ñ. It follows that

S1 =
ñ(ñ − 1)(8ñ3 + 3ñ2 − 7ñ − 2)

20

S2 = ñ
3(n − ñ2 + 1) +

ñ(n − ñ2)(n − ñ2 + 1)

2

and
n∑

i=1

i
⌊√
i
⌋
=
ñ(ñ − 1)(8ñ3 + 3ñ2 − 7ñ − 2)

20
+ ñ3(n− ñ2 + 1) +

ñ(n− ñ2)(n − ñ2 + 1)

2

(6.9)

and
n∑

i=1

i
⌊√
i
⌋
= Θ

(
n

5
2

)
(6.10)

�

Problem 129. Find a closed formula for

n∑

i=1

i
⌈√
i
⌉

166

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

The solution of this problem is quite similar to the solution of Problem 127. We sum the
first n terms of a series, the series being the one mentioned in the solution of Problem 127
with each term multiplied by its position. Consider for example n = 17. The terms whose
positions are perfect squares are boxed.

17∑

i=1

i
⌈√
i
⌉
= 1
︸︷︷︸
run 1

+ 4+ 6+ 8
︸ ︷︷ ︸

run 2

+ 15+ 18+ 21 + 24+ 27
︸ ︷︷ ︸

run 3

+ 40+ 44+ 48 + 52+ 56+ 60 + 64
︸ ︷︷ ︸

run 4

+ 85︸︷︷︸
run5

Unlike Problem 127, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 127, all the runs but the
last one are complete, the last run being either complete or incomplete. We denote the
number of the complete runs with s(n) and

s(n) = ⌊
√
n⌋

the reasoning being exactly the same as in Problem 127. The number of terms in the
incomplete run is

t(n) = n − ⌊
√
n⌋2

We break the desired sum down into two sums:

n∑

i=1

i
⌈√
i
⌉
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.

167

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Let us first compute S1.

S1 = 1.1 + 2.(2 + 3 + 4) + 3.(5 + 6 + 7+ 8 + 9)

+ 4.(10 + 11 + 12 + 13 + 14 + 15 + 16)

+ 5.(17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25)

+ . . .

+ sn
(
((sn − 1)

2 + 1) + ((sn − 1)
2 + 2) + . . . + s2n︸ ︷︷ ︸

(sn−1)2+2sn−1

)

=

sn∑

i=1

i

2i−1∑

j=1

(i − 1)2 + j (6.11)

=

sn∑

i=1

i



2i−1∑

j=1

(i− 1)2 +

2i−1∑

j=1

j




=

sn∑

i=1

i

(
(i− 1)2(2i − 1) +

(2i − 1)2i

2

)

=

sn∑

i=1

i
(
(i2 − 2i+ 1)(2i − 1) + 2i2 − i

)

=

sn∑

i=1

i(2i3 − i2 − 4i2 + 2i + 2i− 1 + 2i2 − i)

=

sn∑

i=1

i(2i3 − 3i2 + 3i − 1)

= 2

sn∑

i=1

i4 − 3

sn∑

i=1

i3 + 3

sn∑

i=1

i2 −

sn∑

i=1

i apply (6.21), (6.22), (6.23), and (6.24)

= 2
sn(sn + 1)(2sn + 1)(3s2n + 3sn − 1)

30
− 3

s2n(sn + 1)
2

4
+

3
sn(sn + 1)(2sn + 1)

6
−
sn(sn + 1)

2

=
sn(sn + 1)

2

(
2(2sn + 1)(3s2n + 3sn − 1)

15
−
3sn(sn + 1)

2
+
6sn + 3

3
− 1

)
(6.12)

Simplify (6.12) to obtain

sn(sn + 1)

2

(
12s3n + 12s2n − 4sn + 6s2n + 6sn − 2

15
−
3s2n + 3sn

2
+
6sn + 3

3
− 1

)
=

sn(sn + 1)

2

(
24s3n + 36s2n + 4sn − 4

30
−
45s2n + 45sn

30
+
60sn + 30

30
−
30

30

)
=

sn(sn + 1)

60
(24s3n + 36s2n + 4sn − 4− 45s

2
n − 45sn + 60sn + 30 − 30) =

sn(sn + 1)(24s
3
n − 9s2n + 19sn − 4)

60
=

⌊√n⌋(⌊√n⌋ + 1)(24⌊√n⌋3 − 9⌊√n⌋2 + 19⌊√n⌋ − 4)
60

168

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Clearly, S1 = Θ
(
n

5
2

)
. Now we compute S2. It has tn terms, the first term is (s2n+1)(sn+1),

and the difference between every two consecutive terms is (sn + 1).

S2 =

tn∑

i=1

(s2n + 1)(sn + 1) + (i− 1)(sn + 1) =

= (s2n + 1)(sn + 1)

tn∑

i=1

1 + (sn + 1)

tn∑

i=1

(i− 1)

= tn(s
2
n + 1)(sn + 1) +

(sn + 1)(tn − 1)tn
2

=

=
tn(sn + 1)

2

(
2s2n + 2 + tn − 1

)
=

=
tn(sn + 1)(2s

2
n + tn + 1)

2

=
(n − ⌊√n⌋2)(⌊√n⌋+ 1)(2⌊√n⌋2 + n − ⌊√n⌋2 + 1)

2

=
(n − ⌊√n⌋2)(⌊√n⌋+ 1)(n + ⌊√n⌋2 + 1)

2

Clearly, S2 = O
(
n

5
2

)
, therefore S1 + S2 = Θ

(
n

5
2

)
+O

(
n

5
2

)
= Θ

(
n

5
2

)
. It follows that

n∑

i=1

i
⌊√
i
⌋
=

⌊√n⌋(⌊√n⌋ + 1)(24⌊√n⌋3 − 9⌊√n⌋2 + 19⌊√n⌋ − 4)
60

+

(n − ⌊√n⌋2)(⌊√n⌋+ 1)(n + ⌊√n⌋2 + 1)
2

(6.13)

and

n∑

i=1

i
⌈√
i
⌉
= Θ

(
n

5
2

)
(6.14)

�

Fact: The Fibonacci numbers are the natural numbers defined by the recurrence relation

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for all n > 1

The first several elements of the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The asymptotic growth rate of Fn is determined by the following equality [GKP94, pp. 300]

Fn =

⌊
φn√
5
+
1

2

⌋
=
φn√
5
, rounded to the nearest integer

169

Problems with solutions in the Analysis of Algorithms c© Minko Markov

where φ = 1+
√
5

2 is the so called “golden ratio”, the positive root of φ2 = φ + 1. Clearly,
for any positive constant c,

cFn = Θ

(
c

φn
√
5

)
= Θ

(
kφ

n
)
, where k = c

1√
5 (6.15)

�

Fact: The harmonic series

1 +
1

2
+
1

3
+
1

4
+ . . . =

∞∑

i=1

1

i

is divergent. Its nth partial sum is denoted by Hn.

Hn =
1

1
+
1

2
+
1

3
+ . . . +

1

n− 1
+
1

n
(6.16)

It is known that

Hn = Θ(lgn) (6.17)

Furthermore, lnn < Hn < lnn+ 1 for n > 1. For details, see [GKP94, pp. 272–278]. �

Fact: The sum of the first kth powers for some integer constant k ≥ 1 is

1k + 2k + . . . + nk =

n∑

i=0

ik (6.18)

It is well known that

n∑

i=0

ik =
1

k+ 1

k∑

j=0

(
k+ 1

j

)
Bj(n + 1)k+1−j (6.19)

where Bj is the j
th Bernoulli number. The Bernolli numbers are defined with the recurrence

B0 = 1

Bm = −
1

m

m−1∑

j=0

(
m + 1

j

)
Bj, for m ∈ N

+

For details on the summation formula (6.19) and plenty of information on the Bernoulli
numbers, see [GKP94, pp. 283–290]. Just keep in mind that Knuth et al. denote the sum
by Sk(n) and define it as

Sk(n) = 0
k + 1k + 2k + . . . + (n − 1)k

For our purposes in this manual it is sufficient to know that

1k + 2k + . . . + nk = Θ(nk+1) (6.20)

170

Problems with solutions in the Analysis of Algorithms c© Minko Markov

which fact follows easily from (6.19). In fact, (6.19) is a polynomial of degree k + 1 of
n because the

(
k+1
j

)
factor and the Bernoulli numbers are just constants and clearly the

highest degree of n is k+1. Strictly speaking, we have not proved here formally that (6.19)
is a degree k + 1 polynomial of n because we have not shown that the coefficient before
nk+1 is not zero. But that is indeed the case—see for instance [GKP94, (6.98), pp. 288].

Be careful to avoid the error of thinking that❢❢ NB ❢❢

1k + 2k + . . . + nk

is a degree k polynomial of n and thus erroneosly concluding that its order of growth is
Θ(nk). It is not a polynomial of n because a polynomial has an a priori fixed number of
terms, while the above sum has n terms where n is the variable.

Using (6.19), we can easily derive

1 + 2+ . . . + n =
n(n + 1)

2
(6.21)

12 + 22 + . . . + n2 =
n(n + 1)(2n + 1)

6
(6.22)

13 + 23 + . . . + n3 =
n2(n + 1)2

4
(6.23)

14 + 24 + . . . + n4 =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
(6.24)

�

Lemma 26.

n∑

k=1

k(k+ 1) =
p(p+ 1)(p + 2)

3

Proof:

n∑

k=1

k(k+ 1) = 1× (1 + 1) + 2× (2 + 1) + . . . + n(n + 1) =

1× 1 + 1 + 2× 2 + 2+ . . . n× n + n =

1× 1 + 2× 2+ . . . + n× n+ 1 + 2 + . . . + n = by (6.22) and (6.23)

n(n + 1)(2n + 1)

6
+
n(n + 1)

2
=

n(n + 1)

2

(
2n + 1

3
+ 1

)
=

n(n + 1)(n + 2)

3

�

Problem 130. Let T be a binary heap of height h vertices. Find the minimum and maix-
mum number of vertices in T .

171

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Solution:

The vertices of any binary tree are partitioned into levels, the vertices from level number i
being the ones that are at distance i from the root. By definition, every level i in T , except
possibly for level h, is complete in the sense it has all the 2i vertices possible. The last
level (number h) can have anywhere between 1 and 2h vertices inclusive. If n denotes the
number of vertices in the heap, it is the case that

20 + 21 + 22 + . . . + 2h−1︸ ︷︷ ︸
the number of vertices in the complete levels

+1 ≤ n ≤ 20 + 21 + 22 + . . . + 2h−1︸ ︷︷ ︸
the number of vertices in the complete levels

+2h

Since 20 + 21 + 22 + . . . + 2h−1 = 2h−1
2−1

= 2h − 1, it follows that

2h − 1 + 1 ≤ n ≤ 2h − 1 + 2h

2h ≤ n ≤ 2h+1 − 1 (6.25)

�

Problem 131. Let T be a binary heap with n vertices. Find the height h of T .

Solution:

2h ≤ n ≤ 2h+1 − 1 see Problem 130, (6.25)

2h ≤ n < 2h+1
h ≤ lgn < h+ 1 take lg of both sides

Clearly,

h = ⌊lgn⌋ (6.26)

�

Problem 132. Let T be a binary heap with n vertices. Prove that the number of leaves of
T is

⌈
n
2

⌉
and the number of internal vertices in T is

⌊
n
2

⌋
.

Solution:

Let h be the height of T . We know (6.26) that h = ⌊lgn⌋. Let V ′ be the vertices of T
at level h. Let T ′′ be obtained from T by deleting V ′ (see Figure 6.2). Clearly, T ′′ is a
complete binary tree of height h− 1 = ⌊lgn⌋ − 1. The number of its vertices is

2⌊lg n⌋−1+1 − 1 = 2⌊lgn⌋ − 1 (6.27)

It follows

|V ′| = n− (2⌊lg n⌋ − 1) = n+ 1 − 2⌊lgn⌋ (6.28)

The vertices at level h− 1 are 2h−1 = 2⌊lgn⌋−1. Those vertices are partitioned into V ′′, the
vertices that have no children, and V ′′′, the vertices that have a child or two children (see
Figure 6.2). So,

|V ′′| + |V ′′′| = 2⌊lg n⌋−1 (6.29)

172

Problems with solutions in the Analysis of Algorithms c© Minko Markov

h− 1 h

V ′

V ′′

T ′′

V ′′′

Figure 6.2: The heap in Problem 132.

Note that |V ′′′| =
⌈
|V ′|
2

⌉
. Having in mind (6.28), it follows that

|V ′′′| =

⌈
n+ 1 − 2⌊lgn⌋

2

⌉
=

⌈
n + 1

2
−
2⌊lg n⌋

2

⌉
=

⌈
n+ 1

2
− 2⌊lgn⌋−1

⌉
=

⌈
n+ 1

2

⌉
− 2⌊lgn⌋−1 since 2⌊lg n⌋−1 is integer (6.30)

Use (6.29) and (6.30) to conclude that

|V ′′| = 2⌊lgn⌋−1 −

(⌈
n + 1

2

⌉
− 2⌊lg n⌋−1

)

= 2⌊lgn⌋−1 −

⌈
n + 1

2

⌉
+ 2⌊lgn⌋−1

= 2.2⌊lg n⌋−1 −

⌈
n + 1

2

⌉

= 2⌊lgn⌋ −

⌈
n + 1

2

⌉
(6.31)

It is obvious the leaves of T are V ′ ∪ V ′′. Use (6.28) and (6.31) to conclude that

|V ′| + |V ′′| = n + 1 − 2⌊lgn⌋ + 2⌊lgn⌋ −

⌈
n + 1

2

⌉

= n + 1−

⌈
n + 1

2

⌉
= n+ 1 +

⌊
−
n+ 1

2

⌋

=

⌊
n + 1−

n + 1

2

⌋
since n + 1 is integer

=

⌊
n + 1

2

⌋
=
⌈n
2

⌉
(6.32)

173

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Then the internal vertices of T must be
⌊
n
2

⌋
sincem =

⌊
m
2

⌋
+
⌈
m
2

⌉
for any natural numberm.

�

Lemma 27 ([GKP94], pp. 71). Let f(x) be any continuous, monotonically increasing
function with the property that

f(x) is integer ⇒ x is integer

Then,

⌊f(x)⌋ = ⌊f(⌊x⌋)⌋ and ⌈f(x)⌉ = ⌈f(⌈x⌉)⌉

�

Corollary 5.

∀x ∈ R
+ ∀b ∈ N

+ :

(⌊⌊x⌋
b

⌋
=
⌊x
b

⌋
and

⌈⌈x⌉
b

⌉
=
⌈x
b

⌉)

Proof:

Apply Lemma 27 with f(x) = x
b . �

The equalities in Corollary 6 are presented in [CLR00] but without any proof.

Corollary 6.

∀x ∈ R
+ ∀a ∈ N

+ ∀b ∈ N
+ :

(⌊⌊ xa⌋
b

⌋
=
⌊ x
ab

⌋
and

⌈⌈ xa⌉
b

⌉
=
⌈ x
ab

⌉)

Proof:

Apply Corollary 5 with x
a
instead of x. �

Lemma 28. In any binary heap T of n vertices, there are precisely

⌈⌊
n
2d

⌋

2

⌉
vertices of

depth d and
⌊ n
2d

⌋
vertices of depth ≥ d.

Proof:

Depth is defined as follows: any vertex u has depth d if the longest path p—that does
not contain the parent of u if one exists—between u and any leaf is of length d (see also
Definition 5 on page 116). The proof is by induction on d.

Basis. d = 0. The vertices of depth 0 are precisely the leaves of T . But there are precisely
⌈n
2

⌉
=

⌈⌊
n
20

⌋

2

⌉
leaves in T (see Problem 132 on page 172) and n =

⌊ n
20

⌋
vertices in T .

Induction Hypothesis. Assume the claim holds for some depth d.

Induction Step. Delete all vertices of depth < d from T . In the obtained tree, call it T ′:

• the vertices of depth 0 are precisely the vertices of depth d in T , and

• all vertices are precisely the vertices of depth ≥ d in T .

174

Problems with solutions in the Analysis of Algorithms c© Minko Markov

We know (see Problem 132 on page 172) there are

⌈
n ′

2

⌉
leaves and

⌊
n ′

2

⌋
internal vertices

in T ′, where n ′ is the number of vertices in T ′. By the induction hypothesis, there are
⌊ n
2d

⌋

vertices of depth d in T , so n ′ =
⌊ n
2d

⌋
. It follows there are

⌈⌊
n
2d

⌋

2

⌉
vertices of depth d and

⌊⌊
n
2d

⌋

2

⌋
vertices of depth ≥ d in T . By Corollary 6,

⌊⌊
n
2d

⌋

2

⌋
=

⌊
n

2× 2d
⌋
, and certainly

⌊
n

2× 2d
⌋
=
⌊ n

2d+1

⌋
. �

Problem 133. Find a closed formula for

n∑

k=0

⌊
k− 1

2

⌋⌈
k− 1

2

⌉

Solution:

n∑

k=0

⌊
k− 1

2

⌋⌈
k− 1

2

⌉
=

⌊
0 − 1

2

⌋⌈
0 − 1

2

⌉
+

⌊
1− 1

2

⌋⌈
1− 1

2

⌉
+

⌊
2− 1

2

⌋⌈
2 − 1

2

⌉
+

⌊
3 − 1

2

⌋⌈
3 − 1

2

⌉
+

. . . +

⌊
(n − 1) − 1

2

⌋⌈
(n − 1) − 1

2

⌉
+

⌊
n− 1

2

⌋ ⌈
n− 1

2

⌉
=

(−1)× 0 + 0× 0 + 0× 1 + 1× 1 + 1× 2+

. . . +

⌊
(n − 1) − 1

2

⌋⌈
(n − 1) − 1

2

⌉
+

⌊
n− 1

2

⌋ ⌈
n− 1

2

⌉

Suppose n is odd, i.e. n = 2t+ 1 for some t ∈ N. We have to evaluate the sum

1× 1+ 1× 2+ 2× 2+ 2× 3+ . . .+ (t− 1)× t+ t× t =
1× 1+ 2× 2+ . . . + (t− 1)× (t − 1) + t × t
︸ ︷︷ ︸

A

+ 1× 2+ 2× 3+ . . .+ (t − 2)× (t− 1) + (t− 1)× t
︸ ︷︷ ︸

B

By (6.23) on page 171, A =
t(t+1)(2t+1)

6 , and by Lemma 26 on page 171, B =
(t−1)t(t+1)

3 . So,

A+ B =
t(t+ 1)(2t + 1)

6
+

(t− 1)t(t + 1)

3
=
t(t+ 1)

3

(
2t + 1

2
+ (t − 1)

)
=

t(t+ 1)

3

(
2t+ 1 + 2t− 2

2

)
=
t(t+ 1)(4t − 1)

6

Now suppose n is even, i.e. n = 2t for some t ∈ N. We have to evaluate the sum

1× 1+ 1× 2+ 2× 2+ 2× 3+ . . .+ (t− 1)× (t− 1) + (t− 1) × t =
1× 1+ 2× 2+ . . . + (t− 1)× (t − 1)
︸ ︷︷ ︸

A

+ 1× 2+ 2× 3+ . . . + (t− 2)× (t− 1) + (t− 1)× t
︸ ︷︷ ︸

B

175

Problems with solutions in the Analysis of Algorithms c© Minko Markov

By (6.23) on page 171, A =
(t−1)t(2t−1)

6 , and by Lemma 26 on page 171, B =
(t−1)t(t+1)

3 . So,

A+ B =
(t − 1)t(2t − 1)

6
+

(t− 1)t(t + 1)

3
=
t(t− 1)

3

(
2t − 1

2
+ (t + 1)

)
=

t(t− 1)

3

(
2t− 1 + 2t+ 2

2

)
=
t(t− 1)(4t + 1)

6

Overall,

n∑

k=0

⌊
k− 1

2

⌋⌈
k− 1

2

⌉
=






(n − 1)(n + 1)(2n − 3)

24
, n odd

(n − 2)n(2n + 1)

24
, n even

(6.33)

�

Computational Problem Halting Problem

Generic Instance: 〈P,I〉 where P is a computer program and I its input
Question: Does P(I) halt? �

The following is a simplistic version of the proof of the famous undecidability result. For a
more thorough treatment see, for instance, [Sip06].

Theorem 5. The Halting Problem is algorithmically unsolvable.

Proof:

Assume the opposite. Then there exists an program Q with input an ordered pair 〈P,I〉
of (the encoding of) a computer program P and its input I (i.e., I is input to P), such
that Q(P,I) returns True if P(I) halts, and False otherwise. Define program S(P) as
Q(P,P). That is, S(P) consists of the single line

return Q(P,P)

Define yet another program T(P) as follows:

if S(P) then loop forever

else return True

Analyse T(T). If it goes into infinite loop, it must be the case that S(T) returns True.
Then it must be the case that Q(T,T) returns True. Then it must be the case that T halts
with input T. This is a contradiction.

If T halts, it returns True. Then it must be the case that S(T) returns False. Then
it must be the case that Q(T,T) returns False. Then it must be the case that T does not
halt with input T. This is a contradiction, too.

�

176

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 7

Acknowledgements

I express my gratitude to:

Zornitsa Kostadinova, Iskren Chernev, Stoyan Dimitrov, Martin To-

shev, Georgi Georgiev, Yordan Stefanov, Mariya Zhelezova, andNikolina

Eftimova

for all the errors and typos they discovered and corrected in this manual. In addition, I
thank Georgi Georgiev for suggesting solutions and improvement to several problems.

177

Problems with solutions in the Analysis of Algorithms c© Minko Markov

Bibliography

[AB98] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations.
Computational Optimization and Applications, 10(2):195–210, 1998.

[Bal91] V. K. Balakrishnan. Introductory Discrete Mathematics. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 1991. Available online at http:

//books.google.com/books?id=pOBXUoVZ9EEC&printsec=frontcover&dq=

Introductory+discrete+mathematics++By+V.+K.+Balakrishnan&source=

bl&ots=1lYLvMpVfY&sig=Jwklfma4Zf3EIvNC0UH-fmI5JPA&hl=en&ei=

1MCkTf2II4_1sgaR0ISBBw&sa=X&oi=book_result&ct=result&resnum=

1&ved=0CBcQ6AEwAA#v=onepage&q&f=false.

[Buz99] Kevin Buzzard. Review of Modular forms and Fermat’s Last Theorem, by G.
Cornell, J. H. Silverman, and G. Stevens, Springer-Verlag, New York, 1997, xix
+ 582 pp., $49.95, ISBN 0-387-94609-8. Bulletin (New Series) of the American
Mathematical Society, Volume 36, Number 2, Pages 261–266, 1999.

[CLR00] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill Book Company, first edition, 2000.

[CSS97] G. Cornell, J.H. Silverman, and G. Stevens. Modular forms and Fermat’s last
theorem. Springer, 1997. Available online at http://books.google.com/books?
id=Va-quzVwtMsC .

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathemat-
ics. Addison-Wesley, second edition, 1994.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6:323–350, 1977.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley
Publishing Company, second edition, 1973.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language
Second Edition. Prentice-Hall, Inc., 1988.

[LD05] Charles Leiserson and Erik Demaine. Assignments with solutions to free
online course “Introduction to Algorithms”, 2005. Available online at http:

//ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-046j-introduction-to-algorithms-sma-5503-fall-2005/assignments/.

178

Problems with solutions in the Analysis of Algorithms c© Minko Markov

[Lei96] Leighton. Note on Better Master Theorems for Divide-and-Conquer Recurrences,
1996. Available online at http://courses.csail.mit.edu/6.046/spring04/

handouts/akrabazzi.pdf.

[MAMc] Minko Markov, Mugurel Ionuţ Andreica, Krassimir Manev, and Nicolae Ţăpuş.
A linear time algorithm for computing longest paths in cactus graphs. Submitted
for publication in Journal of Discrete Algorithms.

[Man05] Krasimir Manev. Uvod v Diskretnata Matematika. KLMN – Krasimir Manev,
fourth edition, 2005.

[NIS] tree (data structure). National Institute of Standards and Technology’s web site.
URL http://xlinux.nist.gov/dads//HTML/tree.html .

[Sip06] Michael Sipser. Introduction to the theory of computation: second edition. PWS
Pub., Boston, 2 edition, 2006.

[Ski08] Steven S. Skiena. The Algorithm Design Manual. Springer Publishing Company,
Incorporated, 2nd edition, 2008.

[Slo] N. J. Sloane. The on-line encyclopedia of integer sequences. maintained by N.
J. A. Sloane njas@research.att.com, available at http://www.research.att.
com/~njas/sequences/.

179

