
OOAD 7. State and Activity Diagrams 1

State and Activity

Diagrams

System Behavior

State Diagrams

Activity diagram

Interaction Overview Diagrams

Examples

OOAD 7. State and Activity Diagrams 2

System Behavior

System behavior – described by:
• Use case diagrams - use cases and scenarios
• Interactions diagrams – sequence and communication

(collaboration) diagrams
• State transition diagrams – show the behavior
inside an object

A State Specification enables you to display and modify the
properties and relationships of a state on:

• a state (before UML 2.0 - Statechart) diagram or on

• an activity diagram.

OOAD 7. State and Activity Diagrams 3

State Diagrams
(until UML 2.0 – Statechart Diagrams)

• A state machine diagram models the behaviour of a single object,

specifying the sequence of events that an object goes through

during its lifetime in response to events.

• It shows the sequences of states that an object goes through, the
events that cause a transition from one state to another, and the
actions that result from a state change.

State

Diagram

A state (statechart) diagram shows a
state machine, a dynamic behavior that
specifies the sequences of states that an
object goes through during its life in
response to events, together with its
responses and actions.

OOAD 7. State and Activity Diagrams 4

State Diagrams (cont.)

State (state-chart) diagrams versus activity diagrams:

• Orientation - statechart diagrams are state centric, while
activity diagrams are activity centric

• Purpose - a statechart diagram is typically used to model
the discrete stages of an object’s lifetime, whereas an
activity diagram is better suited to model the sequence of
activities in a process.

OOAD 7. State and Activity Diagrams 5

State

 State - represents a condition or situation during the life
of an object during which it:

 Satisfies some condition

 Performs some action

 Waits for some event

 May be of type:

 simple or composite state

 real or pseudo-state

 Each state represents the cumulative history of its
behavior. The state icon appears as a rectangle with
rounded corners and a name (i.e., Wait). It also
contains a compartment for actions.

OOAD 7. State and Activity Diagrams 6

Start, End and Terminate States

A start (initial) pseudostate:
• explicitly shows the beginning of a workflow on an activity

diagram or the beginning of the events that cause a transition
on a statechart diagram

• source of single transition to the default state of the diagram or
the composite state

• can be only one.
An end (final) state:
• represents a final or terminal state
• final states can be several
• represent completion of the process (region)
A terminate pseudostate:
• implies termination of the state machine
• by destruction of its context object

Pseudostates

 initial pseudostate

 terminate pseudostate

 entry point

 exit point

 choice

 join

 fork

 junction

 shallow history pseudostate

 deep history pseudostate

OOAD 7. State and Activity Diagrams 7

OOAD 7. State and Activity Diagrams 8

State Transition

A state transition indicates that an object in the source state will
perform certain specified actions and enter the destination state
when:
•Non-automatic - a specified event occurs
•Automatic - when certain conditions are satisfied.

A state transition is a relationship between two states, two
activities, or between an activity and a state.
It takes the state machine from one state configuration to another,

representing the complete response of the state machine to an

occurrence of an event of a particular type

OOAD 7. State and Activity Diagrams 9

State Transition - Naming
Naming - transitions are labeled with the following syntax:

event (arguments) [condition] /

action ^target.sendEvent (args)

Triggering event: behavior (operation) that occurs in the state
transition
Guard condition: a boolean expression over the attributes that
allows the transition
Action: an action over the attributes
Send event: an event invoked in a target object

Example (Sparxsystems Ltd.)

OOAD 7. State and Activity Diagrams 10

N.B.: not all events are valid in all states.

OOAD 7. State and Activity Diagrams 11

Actions vs Activities

• An action is considered to take zero time and cannot

be interrupted. It has an atomic execution and

therefore completes without interruption

• In contrast, an activity is a more complex collection of

behavior that may run for a long duration.

• An activity may be interrupted by events, in which

case, it does not run to completion.

OOAD 7. State and Activity Diagrams 12

State Activities

Each state on a statechart (or activity) diagram may
contain any number of internal activities.

An activity is best described as a "task" that takes place
while inside a state.

An activity forms an abstraction of a computational

procedure.

OOAD 7. State and Activity Diagrams 13

State activity types

There are four possible activities types within a state:

•On Entry – the “task” must be performed when the object
enters the state
•On Exit – the “task” must be performed when the object exits
the state
•Do – the “task” must be performed when the object while in the
state, until exiting it
•On Event – the “task” triggers an action on a specific event

Example:

OOAD 7. State and Activity Diagrams 14

Composite (Nested) States

• States may be nested to any depth level.

• Enclosing states are referred to as superstates, and everything
that lies within the bounds of the superstate is referred to as its
contents.

• Nested states are called substates. Nested states can be moved,
resized, hide, and transitioned to/from just as if they were top level
states.

• Substates could be sequential (disjoint) or concurrent.

• UML 2.4 defines composite state as the state which contains one
or more regions.

• A state is not allowed to have both regions and a submachine.

Submashine State

 hides the decomposition of a composite state

 useful in cases of a large number of states nested inside a

composite state not fitting in its graphical space

 represented by a simple state graphic with a special

"composite" icon

 the contents of the composite state are shown in a separate

diagram. The "hiding" is a matter of graphical convenience

and has no semantic significance in terms of access

restrictions

OOAD 7. State and Activity Diagrams 15

Entry Point

 Sometimes you won’t want to enter a sub-machine at the normal

initial state. E.g., in the following sub-machine it would be normal to

begin in the "Initializing" state, but if for some reason it wasn’t

necessary to perform the initialization, it would be possible to begin

in the "Ready" state by transitioning to the named entry point.

OOAD 7. State and Activity Diagrams 16

1 level up

Exit Point

OOAD 7. State and Activity Diagrams 17

In a similar manner to entry points, it is possible to have named

alternative exit points.

Below, the state executed after the main processing state

depends on which route is used to transition out of the state.

OOAD 18

OOAD 7. State and Activity Diagrams 19

Nested States – a Robot example

History Pseudo-State

OOAD 7. State and Activity Diagrams 20

A history state is used to
remember the previous
state of a state machine
when it was interrupted.

Example: a state machine of a washing machine - when a washing
machine is running, it will progress from "Washing" through "Rinsing" to
"Spinning". If there is a power cut, the washing machine will stop running
and will go to the "Power Off" state. Then when the power is restored, the
Running state is entered at the "History State" symbol meaning that it
should resume where it last left-off.

Shallow history pseudostate

 Shallow history pseudostate (H) represents the most recent

active substate of its containing state (but not the substates of

that substate).

 A composite state can have at most one shallow history

vertex.

 A transition coming into the shallow history vertex is

equivalent to a transition coming into the most recent active

substate of a state.

 At most one transition may originate from the history

connector to the default shallow history state.

 The entry action of the state represented by the shallow

history is performed.
OOAD 7. State and Activity Diagrams 21

Deep history pseudostate

 Deep history pseudostate (H*) represents the most recent

active configuration of the composite state that directly

contains this pseudostate (the state configuration that was

active when the composite state was last exited).

 A composite state can have at most one deep history vertex.

 At most one transition may originate from the history

connector to the default deep history state.

 Entry actions of states entered on the implicit direct path from

the deep history to the innermost state(s) represented by a

deep history are performed.

 The entry action is preformed only once for each state in the

active state configuration being restored.
OOAD 7. State and Activity Diagrams 22

Junction Pseudo-State
 Junction pseudo-states are used to chain together multiple transitions.

 A single junction can have one or more incoming, and one or more

outgoing, transitions; a guard can be applied to each transition.

 In the figure below, three message flows are joint and, next, three

guard conditions are applied to each of them.

OOAD 7. State and Activity Diagrams 23

OOAD 7. State and Activity Diagrams 24

Incident state diagram
[Bruegge&Dutoit]

OOAD 7. State and Activity Diagrams 25

Case study: UCR – the Course Offering Class

OOAD 7. State and Activity Diagrams 26

Case study1: UCR – the Course Offering Statechart

Case study 2: Thread states and life

cycle in Java 6 1/4

 New is the thread state for a thread which was created but has

not yet started.

 At OS level, JVM’s runnable state could be considered as a

composite state with two sub-states. When a thread transitions to

the runnable JVM state, the thread first goes into the ready sub-

state. Thread scheduling decides when the thread could actually

start, proceed or be suspended. Thread.yield() is explicit

recommendation to thread scheduler to pause the currently

executing thread to allow some other thread to execute.

 A thread in the runnable state is executing from the JVM point of

view but in fact it may be waiting for some resources from the

operating system.
OOAD 7. State and Activity Diagrams 27

Source: http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

Case study 2: Thread states and life

cycle in Java 6 2/4

 Timed waiting is a thread state for a thread waiting with a

specified waiting time. A thread is in the timed waiting state due

to calling one of the following methods with a specified positive

waiting time:

 Thread.sleep(sleeptime)

 Object.wait(timeout)

 Thread.join(timeout)

 A thread is in the waiting state due to the calling one of the

following methods without timeout:

 Object.wait()

 Thread.join()

 LockSupport.park()

OOAD 7. State and Activity Diagrams 28

Source: http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

Case study 2: Thread states and life

cycle in Java 6 3/4

 A thread in the waiting state is waiting for another thread to perform a

particular action. For example, a thread that has called Object.wait() on an

object is waiting for another thread to call Object.notify() or Object.notifyAll()

on that object. It means that waiting state could be made a composite state

with states corresponding to these specific conditions.

 Thread is in the blocked state while waiting for the monitor lock to enter a

synchronized block or method or to reenter a synchronized block or method

after calling Object.wait().

 A synchronized statement or method acquires a mutual-exclusion lock on

behalf of the executing thread, executes a block or method, and then

releases the lock.

 After thread has completed execution of run() method, it is moved

into terminated state.OOAD 7. State and Activity Diagrams 29

Source: http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

Case study 2: Thread states and life

cycle in Java 6 4/4

OOAD 7. State and Activity Diagrams 30

OOAD 7. State and Activity Diagrams 31

Activity diagrams

Provide a way to model the workflow (sequence of activities

producing observable value) of a business process. You can also

use activity diagrams to model code-specific information such as a

class operation as using flowcharts.

An activity diagram is basically a special case of a state machine in

which most of the states are activities and most of the transitions

are implicitly triggered by completion of the actions in the source

activities.

The main difference between activity diagrams and statecharts is

activity diagrams are activity centric, while statecharts are state

centric.

An activity diagram is composed by activities, actions, objects,

object flows, pins, decisions, synchronizations, swimlanes, states

and transitions.

OOAD 7. State and Activity Diagrams 32

Activities vs States
Activity represent the performance of task or duty in a workflow.
It may also represent the execution of a statement in a procedure.
An activity is similar to a state, but expresses the intent
that there is no significant waiting (for events) in an
activity. Transitions connect activities with other model elements
and object flows connect activities with objects.

The activity icon appears as a rectangle with rounded ends with a
name (Take Order and Process Order) and a compartment for
actions.

Transitions in activity diagrams

 Transitions in an activity diagram do not have labels

 They indicate the completion of an action or subactivity and

show the sequence of actions or subactivities

 Consequently, these transitions are not based on external

events

 An activity diagram may describe a use case, an

operation or a message

 Purpose: to describe implementation-oriented details

OOAD 7. State and Activity Diagrams 33

Activity versus action

 Activity : A sequence of actions that take finite time and can

be interrupted; the specification of a parameterized sequence

of behavior. An activity is shown as a round-cornered

rectangle enclosing all the actions, control flows and other

elements that make up the activity

 Action: An atomic task that cannot be interrupted (at least

from user’s perspective). An action represents a single step

within an activity. Actions are denoted by round-cornered

rectangles. An action state (UML 1.*) represents the

execution of an atomic action, typically the invocation of an

operation. ActionState has been replaced, as of UML 2.0, by

Action.
OOAD 7. State and Activity Diagrams 34

Action constraints

 Constraints can be

attached to an

action.

 The diagram right-

side shows an

action with local pre-

and post-conditions.

OOAD 7. State and Activity Diagrams 35

OOAD 7. State and Activity Diagrams 36

Swimlanes (partitions)
Swimlanes only appear on activity diagrams and determine

which unit is responsible for carrying out the specific activity.

Example: Get Product and Ship Product activities reside within the
Warehouse swimlane indicating that the warehouse is responsible for
getting the correct product and then shipping the product to the
customer. The workflow ends when the customer (noted through the
Customer swimlane) receives the product.

OOAD 7. State and Activity Diagrams 37

Decision nodes

A decision represents a specific location where the workflow may
branch based upon guard conditions. There may be more than
two outgoing transitions with different guard conditions, but
for the most part, a decision will have only two outgoing
transitions determined by a Boolean expression.

The following figure displays a decision with [correct] and
[incorrect] as the guard conditions. If the personal identification
number (PIN) is incorrect, the flow of control goes back to the
Enter PIN activity. If it is correct, the flow of control moves to the
Continue activity.

Branch Factor May Be Greater

Than 2

OOAD 7. State and Activity Diagrams 38

An outgoing transition from an action state may end up in a

condition box (a diamond symbol) and hence will be split into 2 or

3 transitions

The conditions must be MUTUALLY EXCLUSIVE

Merging Nodes

OOAD 7. State and Activity Diagrams 39

OOAD 7. State and Activity Diagrams 40

Synchronizations
Synchronizations enable you to see a simultaneous workflow.

Synchronizations visually define forks and joins representing

parallel workflow.

A fork construct is used to model a single flow of control that

divides into two or more separate, but simultaneous flows.

A join consists of two of more flows of control that unite into a

single flow of control. All activities and states that appear

between a fork and join must complete before the flow of controls

can unite into one.

OOAD 7. State and Activity Diagrams 41

Activity Diagram of a Use-Case Sample

Ordering, making, paying for, and shipping a part for a machine

Annotations vs swimlanes

 Annotations

can be

used instead of

swimlanes as a

way of showing

responsibility

directly

in the action

OOAD 7. State and Activity Diagrams 42

Expansion Region

 Expansion regions show that actions in a region

are performed for each item in an input collection.

 For example, an expansion region could be used

to model a software function that takes a list of

files as input and searches each file for a search

term.

OOAD 7. State and Activity Diagrams 43

OOAD 7. State and Activity Diagrams 44

Object Flows (since UML 1.5)
An object flow on an activity diagram represents the

relationship between an activity and the object that creates it
(as an output) or uses it (as an input).

Some UML editors draws object flows as dashed arrows
rather than solid arrows to distinguish them from ordinary
transitions.

 objects may appear more than once and in several states
 activities may change object state
 objects connect with activities through object flows

Flow and activity final nodes

There are two types of final node: activity and

flow final nodes.

 The activity final node is depicted as

a circle with a dot inside.

 The flow final node is depicted as

a circle with a cross inside.

 The difference between the two node types is

that the flow final node denotes the end of a

single control flow; the activity final node denotes

the end of all control flows within the activity.OOAD 7. State and Activity Diagrams 45

46

Customer Sales Stockroom

Request

service

Take Order

Pay
Fill Order

Deliver order
Collect order

: Order

[placed]

:Order

[entered]

: Order

[filled]

:Order

[delivered]

Pins (UML 2.x)

 An input pin means that the specified object is

input to an action.

 An output pin means that the specified object is

output from an action.

OOAD 7. State and Activity Diagrams 47

Pins instead object flow

OOAD 7. State and Activity Diagrams 48

An object flow is shown as a connector with an
arrowhead denoting the direction the object is being
passed.

An object flow must have an object on at least one of its
ends. A shorthand notation for the above diagram would
be to use input and output pins.

Send and Receive signals 1/2

In activity diagrams, signals represent interactions with

external participants. Signals are messages that can be

sent or received, e.g.:

 The receipt of an order prompts an order handling process to

begin (received, from the perspective of the order handling

activity).

 The click of a button causes code associated with the button to

execute (received, from the perspective of the button event

handling activity).

 The system notifies a customer that his shipment has been

delayed (sent, from the perspective of the order shipping activity).

OOAD 7. State and Activity Diagrams 49

Send and Receive signals 2/2

OOAD 7. State and Activity Diagrams 50

Exception handlers

 Exception handlers can be modeled on activity

diagrams as in the example below.

OOAD 7. State and Activity Diagrams 51

Interruptible Activity Region

 An interruptible activity region surrounds a group of actions that

can be interrupted.

 E.g., the "Process Order" action will execute until completion, when

it will pass control to the "Close Order" action, unless a "Cancel

Request" interrupt is received, which will pass control to the

"Cancel Order" action.

OOAD 7. State and Activity Diagrams 52

Time Events

 A time event with no incoming flows models a

repeating time event

OOAD 7. State and Activity Diagrams 53

OOAD 7. State and Activity Diagrams 54

Analyses

activities
[Bruegge &

Dutoit]

OOAD 7. State and Activity Diagrams 55

Design

activities
[Bruegge &

Dutoit]

OOAD 7. State and Activity Diagrams 56

Revision

activities
[Bruegge &

Dutoit]

57

Interaction Overview Diagram

variants on UML activity diagrams which

overview control flow

the nodes within the diagram are frames, not

activities

58

Interaction Overview Diagram
Two types of frame shown:

 interaction frames depicting any type of UML interaction diagram

(sequence diagram: sd, communication diagram: cd, timing diagram: td ,

interaction overview diagram: iod)

 interaction occurrence frames (ref; typically anonymous) which indicate

an activity or operation to invoke.

sd Enroll in Seminar lifelines :Student :Seminar :Course :Enrollment

:Student :Seminar :Course

ref
Select Seminar()

getPrereq ()
isEligible(std)

sd Determine Eligibility

{0..7msec}

[not eligible]

:Seminar :Enrollment
Number enrolled

cd Determine Seat Availability

ref
AddToWaitingList()

ref
Enroll in Seminar()

[seat available]

[no seat]

Source: http://www.agilemodeling.com/artifacts/interactionOverviewDiagram.htm

http://www.agilemodeling.com/artifacts/interactionOverviewDiagram.htm

59

sd Withdrawal

:User :ATM :Bank

ref
Authenticate

PIN OK PIN NOK

withdraw

msg (“amount”)

amount (a) chkAcct (a)

msg (“card”)

msg (“illegal entry”)

not enough balmsg(“amount too big”)

Interaction Overview Diagram

:User :ATM :Bank

sd

:User :ATM

sd

:User :ATM

sd

enough bal
money

receipt

:User :ATM :Bank

sd sd

Relationship with Sequence Diagram?

UML 2.x Diagrams

OOAD 4. Objects and Classes. Class Stereotypes and

Assotiations. Analyses.

60

