State and Activity
Diagrams

System Behavior

State Diagrams

Activity diagram

Interaction Overview Diagrams
Examples

System Behavior

System behavior — described by:

o Use case diagrams - use cases and scenarios

o Interactions diagrams — sequence and communication
(collaboration) diagrams

o State transition diagrams — show the behavior

inside an object

A State Specification enables you to display and modify the
properties and relationships of a state on:

* a state (before UML 2.0 - Statechart) diagram or on

* an activity diagram.

OOAD 7. State and Activity Diagrams 2

State Diagrams
(until UML 2.0 — Statechart Diagrams)

State A state (statechart) diagram shows a

- state machine, a dynamic behavior that
Diagram specifies the sequences of states that an
object goes through during its life in

E‘T;!—-&“ response to events, together with its
‘| responses and actions.

A state machine diagram models the behaviour of a single object,

specifying the sequence of events that an object goes through
during its lifetime in response to events.

It shows the sequences of states that an object goes through, the

events that cause a transition from one state to another, and the
actions that result from a state change.

OOAD

7. State and Activity Diagrams 3

State Diagrams (cont.)

OOAD

State (state-chart) diagrams versus activity diagrams:

Orientation - statechart diagrams are state centric, while
activity diagrams are activity centric

Purpose - a statechart diagram is typically used to model
the discrete stages of an object’s lifetime, whereas an

activity diagram is better suited to model the sequence of
activities in a process.

7. State and Activity Diagrams 4

State

OOAD

State - represents a condition or situation during the life
of an object during which it:

Satisfies some condition
Performs some action
Waits for some event

May be of type:
simple or composite state

real or pseudo-state

Each state represents the cumulative history of its
behavior. The state icon appears as a rectangle with
rounded corners and a name (i.e., Wait). It also
contains a compartment for actions.

7. State and Activity Diagrams 5

Start, End and Terminate States

A start (initial) pseudostate:

 explicitly shows the beginning of a workflow on an activity
diagram or the beginning of the events that cause a transition
on a statechart diagram

 source of single transition to the default state of the diagram or
the composite state

« can be only one. @ E=oin Process

An end (final) state:

« represents a final or terminal state

- final states can be severa/ @ s Prasess

« represent completion of the process (region)

A terminate pseudostate:

 implies termination of the state machine %’*X

« by destruction of its context object

OOAD 7. State and Activity Diagrams 6

Pseudostates

e Initial pseudostate

e terminate pseudostate

e entry point

e exit point

e choice

e jOIn

o fork

e junction

e shallow history pseudostate
e deep history pseudostate

OOAD 7. State and Activity Diagrams

State Transition

A state transition indicates that an object in the source state will

perform certain specified actions and enter the destination state
when:

o Non-automatic - a specified event occurs
e Automatic - when certain conditions are satisfied.

A state transition is a relationship between two states, two
activities, or between an activity and a state.

It takes the state machine from one state configuration to another,
representing the complete response of the state machine to an
occurrence of an event of a particular type

[State 1 Transition >< Aoty >

. o . 00
State Transition - Naming HE
Naming - transitions are labeled with the following syntax: °°
event (arguments) [condition] /

action “target.sendEvent (args)

Triggering event. behavior (operation) that occurs in the state

transition

Guard condition:. a boolean expression over the attributes that
allows the transition

Action: an action over the attributes

Send event. an event invoked in a target object

add=tudent Id)[coumnt=10] r
INmncri_-ount

S ourseHHFoster addStudent(lid)

(N —
[Sper -

T

Example (Sparxsystems Ltd.)

=m Protocol State Machine /

Openad
Creates

*

\

)

Closed
Clozef [doorilay-=isEmpty]
fk

COpen!

Lod Unlodkr

W

[Loz ked]

N.B.: not all events are valid in all states.

OOAD

7. State and Activity Diagrams 10

Actions vs Activities

 An action is considered to take zero time and cannot
be interrupted. It has an atomic execution and
therefore completes without interruption

* |In contrast, an activity is a more complex collection of
behavior that may run for a long duration.

« An activity may be interrupted by events, in which
case, it does not run to completion.

OOAD 7. State and Activity Diagrams 11

State Activities

Each state on a statechart (or activity) diagram may
contain any number of internal activities.

An activity is best described as a "task" that takes place
while inside a state.

An activity forms an abstraction of a computational
procedure.

OOAD 7. State and Activity Diagrams 12

State activity types

There are four possible activities types within a state:

e On Entry — the “task” must be performed when the object

enters the state

o On Exit — the “task” must be performed when the object exits

the state

e Do — the “task” must be performed when the object while in the

state, until exiting it

e On Event — the “task” triggers an action on a specific event

Example:

Light

-

. entrys turnCn
dos blinkFivetimes

L et turnOff y

OOAD 7. State and Activity Diagrams

13

Composite (Nested) States

e States may be nested to any depth level.

e Enclosing states are referred to as superstates, and everything
that lies within the bounds of the superstate is referred to as its
contents.

o Nested states are called substates. Nested states can be moved,
resized, hide, and transitioned to/from just as if they were top level
states.

e Substates could be sequential (disjoint) or concurrent.

e UML 2.4 defines composite state as the state which contains one
or more regions.

e A state is not allowed to have both regions and a submachine.

OOAD 7. State and Activity Diagrams 14

Submashine State

e hides the decomposition of a composite state

e useful In cases of a large number of states nested inside a
composite state not fitting in its graphical space

e represented by a simple state graphic with a special
"composite" icon

e the contents of the composite state are shown in a separate
diagram. The "hiding" is a matter of graphical convenience
and has no semantic significance in terms of access

restrictions @D state

(==

-.- Initial Pseudo State

(H) Shallow History

(H*) Deep History - m -

<= Choice Sub machineState

OOAD ﬁl Junckion { o } 15

[w =

=42 Fork

:

Entry Point e

. Entry Point - an entry point of a state machine or composite state (P)

e Sometimes you won't want to enter a sub-machine at the nJNmaI
Initial state. E.g., in the following sub-machine it would be normal to
begin in the "Initializing" state, but if for some reason it wasn'’t
necessary to perform the initialization, it would be possible to begin
In the "Ready" state by transitioning to the named entry point.

=m Entry Poirt =rm Ertry Foint [Higher]/

(Initi=lizing Net Already
. k [Imitizlized W

(Ready ™y Already Initialized Performing fuctiwvity
Skip Initializing k y Skip Initializing ——=

1 level up

OOAD 7. State and Activity Diagrams 16

ﬁ Entry Point

Exit Point %

X Terminate
Exit Point - an exit point of a state machine or cnmpnmte state ()

In a similar manner to entry points, it is possible to have named
alternative exit points.

Below, the state executed after the main processing state
depends on which route is used to transition out of the state.

=m Exit Paoirt -
/ FProcessing
Re=ding Instructic-nsw (Writing Error Repn:-rt]
o Failed to
Initial : J
nitia Fead

Processing Dizplayving Results
In=tructions
\ Final / Final

OOAD 7. State and Activity Diagrams 17

Init [ii=0] .

SelfTrans Tirme [ii=0]

AR

DirectTransition [ii=0]

EnteringSubMashine TimeEwsnt [i=0]

18

Nested States — a Robot example

Start Robot

entrys turnCOnHFaobot
dos blinkLights
exity engagelransmissiaon

HH#I#TTnnsﬂintﬁrSeﬂf
m changelir] speed =0] F sound&larm

FAoverment
i Foreward ﬁ
First Sear Upshift Second Sear
H entrys Display 1" D owwn s hift entrys Display "2"
dosf Flash Lights y L exitl Sound Siren

—

changelir] Speed =0] f reverseldotar

changelDir] Speed =0] f reversellotar

o

[if not Foreard] |,

Reverse]

L entrys Display "R"
entryy Sound Warning Beep

J Mested State

_—— Histoxry
G

Automatic Transmission Model for a Robot

OOAD

Superstate

entrys turnCOfRobot

7. State and Activity Diagrams

19

00
00
X
®
History Pseudo-State
=m Histary 7 . .
A history state is used to
westing H H remember the previous
state of a state machine
® when it was interrupted.
st-:.rel p ol pome r| st

Example: a state machine of a washing machine - when a washing
machine is running, it will progress from "Washing" through "Rinsing" to
"Spinning". If there is a power cut, the washing machine will stop running
and will go to the "Power Off" state. Then when the power is restored, the
Running state is entered at the "History State" symbol meaning that it
should resume where it last left-off.

OOAD 7. State and Activity Diagrams 20

Shallow history pseudostate

Shallow history pseudostate (H) represents the most recent
active substate of its containing state (but not the substates of
that substate).

A composite state can have at most one shallow history
vertex.

A transition coming into the shallow history vertex is
equivalent to a transition coming into the most recent active
substate of a state.

At most one transition may originate from the history
connector to the default shallow history state.

The entry action of the state represented by the shallow
history Is performed.

OOAD 7. State and Activity Diagrams 21

Deep history pseudostate

Deep history pseudostate (H*) represents the most recent
active configuration of the composite state that directly
contains this pseudostate (the state configuration that was
active when the composite state was last exited).

A composite state can have at most one deep history vertex.

At most one transition may originate from the history
connector to the default deep history state.

Entry actions of states entered on the implicit direct path from
the deep history to the innermost state(s) represented by a
deep history are performed.

The entry action is preformed only once for each state in the
active state configuration being restored.

OOAD 7. State and Activity Diagrams 22

Junction Pseudo-State

e Junction pseudo-states are used to chain together multiple transitions.

e A single junction can have one or more incoming, and one or more
outgoing, transitions; a guard can be applied to each transition.

e In the figure below, three message flows are joint and, next, three

guard conditions are applied to each of them.
=m Junction

Receiwving Woice Receiving SMS Receiving Fax
Message Message Message

Reply=5m5
[Reply=voice] [Reph=]

Creating woice Creating SMS
Mes=sage Mes=sage
OOAD

[Feph=F ax]

Creating Fax
Message
23

Incident state diagram
[Bruegge&Dutoit]

®
l

Y

//F Active

field officer
? arrives on site

Y

Reported Assessment
. A . -
dispatcher | field officer requests
allocates resources additional resources

Disengagement

Response
field officer l
_ releases resources @ -

all resources
deallocated when date > lyr.

Y

all resources
submitted reports

Figure 5-17 UML statechart for Incident.
OOAD 7. State and Activity Diagrams

24

Case study: UCR —-the Course Offering Class §§§:

de- Rational Rose — crsamnidl - [Statechart DMagrarmm: CCoursedxifering 2 CColvarse fxrferinigg
Fil= Edit e ey Format By ser F.epmaort L= Tool= Acdd-Trn= LY Lo P T T He=l)

e = == S = O T — R U~ o S 1= 1 O O = | O = O = B = o = T = W o « R - 3

I." T - |

=--C 3 Universit-Artifacts --I
----- Course Classes

----- B kAain

=B Course

----- 2 ZourseFarm

=B CourseOffering

gt ffering

addFroffesar

theFrofessarlinfo [Frofessaorlnfo

Teacher Info [Frofessarlnfo]

theZTourse [Course)

theCTourse [Course]

th=Course [CTourse) Cpen

S..10 [=Ztudentlntao 3

=& State S ctivits Ao e

add=Student Id J[count="10]
imncrizZount
S ourseRoster addStudent(id)

=
ABC
=1
=
=
‘__r,.;"'
1

CLOLSLOL0S] ¢ ¢

----- = Course Offering
----- [Z Activitys In CTourse Offering
=] Cancelaed
== C:I_c_ns;d _ carncel
I Initializatiaon T ourseRoster.
=1 DO peEn
----- - =tart
..... = Stop
..... S count

----- W adodSudent
----- T finalize Course

E B Ghrade State details [Entryy =
=B ProfessorCoursebdanager (< twrpes) T =ty SE
=Bl ReportiCard dos =irm
= Sssociations ==t e

CourseFRaoster — I =e~2rnt e~
e, — -
L

Case studyl: UCR —the Course Offering Statechart

Start state
(anly ane) Iﬁ -------------------- -<

addStudent(Id J)[count=10] ¢ init ¥ count=0
incriZount ~CourseRFRoster.Create

s ourseRoster addStudent(ld) "] narmesaction IL|

=end ewvent

[CIpen “l close[count=10] (Clo=ed]

,J . L clos finalizeCaourse
namesguard] Q]

cancel

~CourseRoster. cancel

“CourseRoskeEr . Delete

Canceled L

: - - Stap st:ate
State details ILI entryy simple action (3=3)
(1 types) T entrmy’ fewvent_name class. namelargs) tcan be mare)

claf simple action (b=b-1)
exit "event_name class__narme
evernt event._name[=<=0]f simple action

OOAD 7. State and Activity Diagrams 26

Case study 2: Thread states and life
cyclein Java6 1/4

New Is the thread state for a thread which was created but has
not yet started.

At OS level, JVM's runnable state could be considered as a
composite state with two sub-states. When a thread transitions to
the runnable JVM state, the thread first goes into the ready sub-
state. Thread scheduling decides when the thread could actually
start, proceed or be suspended. Thread.yield() is explicit
recommendation to thread scheduler to pause the currently
executing thread to allow some other thread to execute.

A thread in the runnable state is executing from the JVM point of
view but in fact it may be waiting for some resources from the
operating system.

OOAD 7. State and Activity Diagrams 27

Source: http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

Case study 2: Thread states and life
cyclein Java 6 2/4

e Timed waiting is a thread state for a thread waiting with a
specified waiting time. A thread is in the timed waiting state due
to calling one of the following methods with a specified positive
waiting time:

Thread.sleep(sleeptime)
Object.walit(timeout)
Thread.join(timeout)

e A thread is in the waiting state due to the calling one of the
following methods without timeout:
Object.wait()
Thread.join()
LockSupport.park()

OOAD 7. State and Activity Diagrams 28
Source: http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

Case study 2: Thread states and life
cyclein Java6 3/4

A thread in the waiting state is waiting for another thread to perform a
particular action. For example, a thread that has called Object.wait() on an
object is waiting for another thread to call Object.notify() or Object.notifyAll()
on that object. It means that waiting state could be made a composite state
with states corresponding to these specific conditions.

Thread is in the blocked state while waiting for the monitor lock to enter a
synchronized block or method or to reenter a synchronized block or method
after calling Object.walit().

A synchronized statement or method acquires a mutual-exclusion lock on
behalf of the executing thread, executes a block or method, and then
releases the lock.

After thread has completed execution of run() method, it is moved
"’%Dterm | N a‘ted State_ 7. State and Activity Diagrams 29

Source: http://www.uml-diagrams.org/examples/java-6-thread-state-machine-diagram-example.html

Case study 2: Thread states and life

cyclein Java 6 4/4

state machine Thread States {pmtooul})

m =

/— Runnable

thread was selected by —\\
thread scheduler to run/

Running

thread terminated/

yield/

thread was suspended

by thread scheduler/ /

\ sleep(sleeptime)/

A\ wait(timeout)/

\\ join(timeout)/

l'\LcckSuppDrt.park Manos()/

timeout elapsed! ./
Timed Waiting

l_ Terminated

M

thread terminated/ _//

&ockSupp-ort.parkUntilij.’

\ wait/

N
TN oty

\ joins

notifyAllY A

\ LockSupport.park/

Waiting

thread terminated/ ’/

wait for lock to enter
\\Synchro block or method

N

wait for lock to reenter

l\slynchrc block ar method

Blocked
monitor lock acquired/

@ uml-diagrams.org

30

Activity diagrams

Provide a way to model the workflow (sequence of activitie
producing observable value) of a business process. You can also
use activity diagrams to model code-specific information such as a
class operation as using flowcharts.

An activity diagram is basically a special case of a state machine in
which most of the states are activities and most of the transitions
are implicitly triggered by completion of the actions in the source
activities.

The main difference between activity diagrams and statecharts is
activity diagrams are activity centric, while statecharts are state
centric.

An activity diagram is composed by activities, actions, objects,
object flows, pins, decisions, synchronizations, swimlanes, states
and transitions. 7. State and Activity Diagrams 31

Activities vs States

Activity represent the performance of task or duty in a workflow.
It may also represent the execution of a statement in a procedure.

An activity is similar to a state, but expresses the intent

that there is no significant waiting (for events) in an
activity. Transitions connect activities with other model elements

and object flows connect activities with objects.

The activity icon appears as a rectangle with rounded ends with a
name (Take Order and Process Order) and a compartment for
actions.

OOAD

32

Transitions In activity diagrams

e Transitions in an activity diagram do not have labels

They indicate the completion of an action or subactivity and
show the sequence of actions or subactivities

Consequently, these transitions are not based on external
events

e An activity diagram may describe a use case, an
operation or a message

Purpose: to describe implementation-oriented detalls

OOAD 7. State and Activity Diagrams 33

Activity versus action

OOAD

Activity : A sequence of actions that take finite time and can
be interrupted; the specification of a parameterized sequence
of behavior. An activity is shown as a round-cornered
rectangle enclosing all the actions, control flows and other
elements that make up the activity

Action: An atomic task that cannot be interrupted (at least
from user’s perspective). An action represents a single step
within an activity. Actions are denoted by round-cornered
rectangles. An action state (UML 1.*) represents the
execution of an atomic action, typically the invocation of an
operation. ActionState has been replaced, as of UML 2.0, by
Action.

7. State and Activity Diagrams 34

Action constraints

e Constraints can be ad Conditions. 7
attaChed tO an -ch-:--:.s.lIF'r.eI:-:-n-:liti-:-n::-
. A drink iz selected that the
aCtlon wending machine czantains}
e The diagram right- :
side shows an [nigpenge j
Drink

action with local pre-
and post-conditions.

wlocalPostCaondition=

{The wvending machina
dizpensed the drink selected]}

OOAD 7. State and Activity Diagrams

35

Swimlanes (partitions)

Swimlanes only appear on activity diagrams and determine
which unit is responsible for carrying out the specific activity.

Customer =S=ale= Urarse houase |

\3{(Take Call >
e
<L’3rder F'I"EII‘.‘ILIC'IZ)\
ﬂ(@et P‘rnduct)

I_(=hip FProduct)

I
-

Example: Get Product and Ship Product activities reside within the
Warehouse swimlane indicating that the warehouse is responsible for
getting the correct product and then shipping the product to the
customer. The workflow ends when the customer (noted through the
Customer swimlane) receives-the-proguct. 36

Decision nodes

A decision represents a specific location where the workflow=may
branch based upon guard conditions. There may be more than
two outgoing transitions with different guard conditions, but
for the most part, a decision will have only two outgoing
transitions determined by a Boolean expression.

The following figure displays a decision with [correct] and
[incorrect] as the guard conditions. If the personal identification
number (PIN) is incorrect, the flow of control goes back to the

Enter PIN activity. If it is correct, the flow of control moves to the
Continue activity.

Automatic Taeller lachine BHank Sw=ste

OOAD

< Continue > [STorrect] | 37
I

Branch Factor May Be Greater
Than 2

[wordCount = 0] } Motify Blog Entry
can't be empty

[wordCount =0 &

1000
:3"{:'{ wordCourt < 1000] xl‘f Save Blog EntrrbH Duaplayrstatui-)
%

\

} Motify Blog Entry “1
too long

‘ Decision D1 I Merge Iﬁ

An outgoing transition from an action state may end up in a
condition box (a diamond symbol) and hence will be split into 2 or
3 transitions

The conditions must be MUTUALLY EXCLUSIVE

OOAD 7. State and Activity Diagrams 38

!
[wordCount = = 1000

Merging Nodes

Commonly seen in UML 1.x

—><

\

[low priority] Low Pnonty
Processing

|

{medium priority) == Medium Priorit

/

Processing

y St . oo
Processing

[high priority) >(u;'gh Priority
ocessing

NI |

)

Preferred in UML 2.0

=>4

[low priority) >(Low Priority
Processing

-

Branches mer
at merge n

/

[medium priority) Medium Priorit
> Processing

y
HH Pcocessmg

[high priority) > High Priority
Pracessing

Branches point
directly into next
action node

39

Synchronizations

Synchronizations enable you to see a simultaneous workflow.
Synchronizations visually define forks and joins representing
parallel workflow.

A fork construct is used to model a single flow of control that
divides into two or more separate, but simultaneous flows.

A join consists of two of more flows of control that unite into a
single flow of control. All activities and states that appear
between a fork and join must complete before the flow of controls
can unite into one. ¢ Figesss

OOAD ot ity 40
Custormer

Activity Diagram of a Use-Case Sample

QR%

0]6)

S N
ETEI{E l:lrclerjé:ff—

Sales=

>

Collect Fund=

hilanufacturing

Custormer

=hip FPart

Ordering, making, paying for, and shipping a part for a machine

Shipping

FAake Part
T, =

<>

FrManufacturing

Customer

Part to

C

Shipping L
dos ~erify Cluality ﬁ

Fackage

Fart >

exits Sive ta Shipping

-

entrys “Wrap Fart
IFIEI.I" arity Sddress

>"-.-“-.-"eigh FPackage

if =5 lb=s. |5 Ship Mext|Diay
Ship Mext T
Doy A

entrys SApply Shipping Lab
exit’ Send to Custarmer

if =
[i 3

.-"5 Ib=.]/ Ship Second Day Adar

Ship Second ™,

Cray Air

A

entrys Spply Shipping Label
exits Send to Custormer

FReceive Fart
ntrys “arify Fart

Annotations vs swimlanes

!

(1st Level Support)
Log Complaint

{Advanced Support)
Investigate Problem

(else]
[known problem) [workaround exists)
(1st Level Support) (Advanced Support)
Inform (ustomer of Fix Inform Customer
of Workaround

%
&>

9 (Product Engineering)
Investigate Severity

(Product Engineering)

[else] Add to Change Request
Database for Next Release
[urgent]

(Product Engineering)
Add to Change Request
Database for nnca! Patch

$<

{1st Level Support)
Close Gall

.

OOAD

((Product Engmeenng))
us

Uform Customer of Stat

7. State and Activity Diagrams

e Annotations
can be

used instead of
swimlanes as a
way of showing
responsibility
directly

In the action

42

Expansion Region

e EXxpansion regions show that actions in a region
are performed for each item in an input collection.

e For example, an expansion region could be used
to model a software function that takes a list of
files as input and searches each file for a search
term. e,

ug Epnrt
Munf[.r
U'I-'EI"-'IEW of Enqm eering of
Eug Reparts [operator error] Bugs to Fix

OOAD 7. State and Activity Diagrams 43

Object Flows (since UML 1.5)

An object flow on an activity diagram represents the

relationship between an activity and the object that crea

(as an output) or uses it (as an input).

Some UML editors draws object flows as dashed arrows
rather than solid arrows to distinguish them from ordinary

transitions.

tes It

objects may appear more than once and in several states

activities may change object state

‘objects connect with activities through object flows

SR Aactiwvity Diagram: Hse Case Wiew 5 Object Flow Example

Push FPlay >
ELI‘I:‘!:DI“I
o
O F"Ia'\-.rer ______ FPu=sh Fause
[Flayingl] EI_It.tDI“I

g

D FPlayer) FPush Stop
[Fausaed] Eutton

>

i

— D FPlayver
OOAD [Stoppaed]

> [

44

Flow and activity final nodes

There are two types of final node: activity and
flow final nodes. s ity it/

e The activity final node Is depicted as ©
a circle with a dot inside. —

o Thg flow final node i§ d_epicted as o
a circle with a cross inside.

e The difference between the two node types is
that the flow final node denotes the end of a
single control flow; the activity final node denotes

cthe end of all controt-flows-within the activity. &

o000
Fr Y
X
Customer Sales Stockroon®
Request } |
Lprvi(:(a v :Order
[placed]
| ; , :Order
[entered]
Take Order :
;
[Pay } |
:Order Fill Order
[filled] RS -

Order .

<" [delivered] = T~
P

[Collect order }\@

~

~
~
~

) [Deliver order }

46

Pins (UML 2.X)

e An Input pin means that the specified object Is
Input to an action.

e An output pin means that the specified object is
output from an action.

. :T: Receive :[:]:::Je | Approve Submit
Order Request Jr' Order M payment Order

I \

\

i

N N

Output pin Input pin

OOAD 7. State and Activity Diagrams 47

Pins instead object flow

An object flow is shown as a connector with an
arrowhead denoting the direction the object is being
passed.

ad Object Flc-w/
Send Invoice Pake
Mol ce FPayrnent

An object flow must have an object on at least one of its
ends. A shorthand notation for the above diagram would
be to use input and output pins.

ad Object Flow [alt]/

Send M=z ke

I oice) Fayrert
Inwoice Invoice

OOAD 48

Send and Recelve signals 1/2

In activity diagrams, signals represent interactions with
external participants. Signhals are messages that can be
sent or received, e.g.:

e The receipt of an order prompts an order handling process to
begin (received, from the perspective of the order handling
activity).

e The click of a button causes code associated with the button to
execute (received, from the perspective of the button event
handling activity).

e The system notifies a customer that his shipment has been
delayed (sent, from the perspective of the order shipping activity).

OOAD 7. State and Activity Diagrams 49

Send and Recelve signals 2/2

Send Receive
signal node signal node

! |
| |
._}. Calculate Send Reguest for Receive Update Order
Total Credit Card Approval Response status

OOAD 7. State and Activity Diagrams 50

Exception handlers

e Exception handlers can be modeled on activity

diagrams as in the example below.

ad Exception Handler /

Frotected Hode

ExceptionType

r’HI_E}:cepti-:-n Handler Node

L

OOAD

7. State and Activity Diagrams

51

Interruptible Activity Region

e An interruptible activity region surrounds a group of actions that
can be interrupted.

e E.g., the "Process Order" action will execute until completion, when
it will pass control to the "Close Order" action, unless a "Cancel

Request"” interrupt is received, which will pass control to the
"Cancel Order" action.

ad Irterruptible Activity Region /

Cancel
Order

OOAD Temmmmmemmmmsomooomeoones d

52

Time Events

e A time event with no incoming flows models a
repeating time event

Wit 2 days
.—::r(Ship {I'rdEr} % i }(Send Bill H@

T Second
limeout

Update
Progress Bar

OOAD 7. State and Activity Diagrams 53

|
Y

(Define X

"\ use cases)
{

/ Define
—participating
\\\ objects

Analyses
activities
| [Bruegge &
fDefine DUtOlt]

Y ¥ A

/" Define Define Define

entity boundary control
objects objects objects

l

interactions

| J
. ; v

, . Define
[Define Define state-dependent
\associations attributes hehavior

l | i

Consolidate
mode

|

Review i) 54
model
N /

o

-
4

—<j7$e1ect Subsystem~j>

v
—_—

Specification

\ | Reuse

\

-

< Identifying missing'\\‘__hj il / i > :
attributes & operations/ -"\fde"t’fy1"g cosponents l

r__LEgecifying visibiIitE)

7 Specifying types &
signatures /

(Adjusti fﬁ\T
justing components

l
~—1

ey

(Identifying patterns |

AL

'::Spec'ifyin constf‘aintg
\ =
\

[Specifying exceptions
4

' Adi i ttA e
ustIn a erns
\\ 3 g p 4/

T

358
—— -
l

2 ‘\
! Check Use Cases
=4

NG
T

Restructuring

Optimization

A\

AN | l

paths

___(: Optimizing access 2

Caching complex
computaticns

/~ Delaying cemplex ;:j

computations

” Revisiting N

{ : Z —
= | inheritance 5
. N
| Collapsing classes)
4

ealizing associations}]
oK
Es]

Design
activities
[Bruegge &
Dutoit]

55

Client Developer

Report prob1€\\ k//6551gn change
or and

change requeés/fi \Q§t1mate impac

|

v

/Review propos;a\
\\» change 4//

Update
requirements

Update
design

Design
test

Y

Update code
(if applicable)
7
e

:

Execute all
relevant tests

i|

Review actual
change

—>
Y [change approved] !

Archive
request

Figure

5-22 An example of a revision process (UML activity diagram).

Revision
activities
[Bruegge &
Dutoit]

56

Interaction Overview Diagram

variants on UML activity diagrams which
overview control flow

the nodes within the diagram are frames, not
activities

57

. . . 000
Interaction Overview Diagram HE
Two types of frame shown: -
I interaction frames depicting any type of UML interaction diagram

(sequence diagram: sd, communication diagram: cd, timing diagram: td ,
Interaction overview diagram: iod)
I interaction occurrence frames (ref; typically anonymous) which indicate

an activity or operation to invoke.

sd Enroll in Seminar lifelines :Student :Seminar :Course :Enrollment)

ref | sd Determine Eligibilit
-/ Sselect Seminar() gibilty)
| :Student :Seminar :Course || {0J.7msec]
[not eligible] | isEligible(std) |
< O | getPrereq () ! b
J

cd Determine Seat Availabilit;d

_Jseat available]

Number enrolle
:Seminar :Enrollment

[no seat]

A 4

ref /|
AddToWaitingList()

ref /| _ .
— Enroll in Seminar(] sk

Source: http://www.agilemodeling.com/artifacts/interactionOverviewDiagram.htm

http://www.agilemodeling.com/artifacts/interactionOverviewDiagram.htm

Interaction Overview Dia

gram

Relationship with Sequence Diagram?

sd Withdrawa)) I
ref |
-/ Authenticate
/<g\,
[PNOK | _ PINNOK]\
< a
Scu SdJ
:User ATM :Bank :User ‘ATM
, withdraw ! ! !
: | ntry”) !
| chkAcct (a) \
\
sd) sd)
:User ‘ATM :Bank ‘User :ATM :Bank
: e enough bal | - : .
« money | ; not enough bal
sdJ
‘User :ATM

msg (“card”)

v
Y>A
<«

00
000 o
. L Y X
o000
UML 2.x Diagrams o2
a
Diagram
[
Behaviour Structure
Diagram Diagram
i &2
Activity State Machine Class Component Object
Diagram Diagram Diagram Diagram Diagram
— - oSt Deployment Package
: 2= e et Diagram Diagram
Diagram Diagram — J J
Profile
Diagram
Communication pieracton Sequence Timing
Diagram Diagram Diagram Diagram
OOAD 4. Objects and Classes. Class Stereotypes and 60

Assotiations. Analyses.

