
OOAD 9. Components and Deployment Diagrams 1

Components and

Deployment Diagrams

Components and Component Packages

Dependencies

Processors and Devices

Connections

Examples

OOAD 9. Components and Deployment Diagrams 2

The Implementation Model

in the Component View

An implementation model is a

collection of components, and the

implementation subsystems which

contain them.

A component diagram has a higher

level of abstraction than a Class

Diagram - usually a component is

implemented by one or more classes

(or objects at runtime).

Components

 Components are building blocks so a

component can eventually encompass a large

portion of a system.

 Components include both deliverable

components, such as executables, and

components from which the deliverables are

produced, such as source code files.

OOAD 9. Components and Deployment Diagrams 3

OOAD 9. Components and Deployment Diagrams 4

Implementation Model

in the Component View

The implementation model is a hierarchy of
implementation subsystems, with leaves
that are components. There is a package
that serves as the top-level (root) node in
the implementation model. A subsystem is a
collection of components and other
subsystems.

The implementation model can be divided

into components that are deliverables, such

as executables that are delivered to

customers; and those components from

which the deliverables are produced, such

as source code.

OOAD 9. Components and Deployment Diagrams 5

Implementation Model - Example

Example: In a banking system the implementation subsystems are
organized as a flat structure in the top-level node of the
implementation model. Another way of viewing the subsystems in

the implementation model is in layers.

The implementation model for a banking system, showing the

ownership hierarchy.

OOAD 9. Components and Deployment Diagrams 6

Implementation Subsystems.

Component Packages.

Subsystems take the form of directories, with additional structural
or management information. For example, a subsystem can be
created as a directory or a folder in a file system, or a subsystems
in Rational for C++ or Ada, or packages using Java.
Component packages represent clusters of logically related
components, or major pieces of your system. Component packages
parallel the role played by logical packages for class diagrams.
They allow you to partition the physical model of the system.

An implementation subsystem is a

collection of components and other

implementation subsystems that are used to

structure the implementation model by

dividing it into smaller parts.

OOAD 9. Components and Deployment Diagrams 7

Components

A component represents a piece of

software code (source, binary or

executable, relational schema), or a file

containing information.

A component can also be an aggregate

of other components (i.e., an application

consisting of several executables can be

a component).

Components may have stereotypes:

<<component>>, <<subsystem>>, ….

OOAD 9. Components and Deployment Diagrams 8

Components - examples

Examples of deliverable components

Executables .exe files

Load libraries .dll files

Applets .class for Java

Database tables SQL scripts

Examples of components from which deliverables are produced

Source code files .h, .cpp and .hpp files for C++,

CORBA IDL, or .java for Java

Binary files .o files that are linked into

executables

Components and packages

 Components are similar in practice to package

diagrams, as they define boundaries and are used to

group elements into logical structures.

 The difference between package diagrams and

component diagrams is that Component Diagrams

offer a more semantically-rich grouping mechanism.

OOAD 9. Components and Deployment Diagrams 9

OOAD 9. Components and Deployment Diagrams 10

Components – presentation and

specification

An interface circle attached to the component icon means that the
component supports that particular interface. There is no explicit
relationship arrow between a component and its interfaces.

Component Specification contains tabs such as:
 General – stereotypes (Main Program, Package Body,

Package Specification, Subprogram Body, Subprogram
Specification, Task Body, and Task Specification) and language

 Detail – declarations (as #Include)

 Realizes – classes building the component
 Files - attached files or URLs

OOAD 9. Components and Deployment Diagrams 11

Component Diagrams. Dependencies

A component diagram shows a collection of

declarative (static) model elements, such as

components, and implementation subsystems,

and their relationships.

A dependency from a component A to a

component B indicates component A has a

compilation dependency, or a run-time

dependency to B.

A compilation dependency exists from one
component to the components that are needed to
compile the component (i.e., #include

statements in C++, or import in Java).
Example: Invoicing_UI (the top), requires Invoice,

which requires Order to compile.

OOAD 9. Components and Deployment Diagrams 12

Import Dependency Among Packages

• An import dependency in the implementation model is a
stereotyped dependency whose source is an implementation
subsystem and whose target is another implementation subsystem.
• A component in a client subsystem can only compile against
components in a supplier subsystem, if the client subsystem imports
the supplier subsystem.

The subsystem Telephone

Banking has an import

dependency to the

subsystem Trading

Services, allowing

components in Telephone

Banking to compile against

public (visible) components

in Trading Services.

Assembly connectors (UML 2.*)

 The assembly connector bridges a component’s required

interface (Component1) with the provided interface of

another component (Component2);

 The assembly connector allows one component to provide

the services (the boll) that another component requires

(the socket).

OOAD 9. Components and Deployment Diagrams 13

Components with ports (UML 2.*)

 Ports model related interfaces

 They allow for a service or behavior to

be specified to its environment as well

as a service or behavior that a

component requires.

 Ports may specify inputs and outputs

as they can operate bi-directionally.

 Example: a component with a port for

online services along with two

provided interfaces order entry and

tracking as well as a required interface

payment.
OOAD 9. Components and Deployment Diagrams 14

Focusing on the key components

and interfaces

OOAD 9. Components and Deployment Diagrams 15

Source: Learning UML 2.0,

by Kim Hamilton and Russell Miles,

O’Reilly 2006.

Focusing on component

dependencies and manifesting

interfaces

OOAD 9. Components and Deployment Diagrams 16

Source: Learning UML 2.0,

by Kim Hamilton and

Russell Miles,

O’Reilly 2006.

Classes realizing a component –

alternative views

OOAD 9. Components and Deployment Diagrams 17

OOAD 9. Components and Deployment Diagrams 18

Case Study: ATM example

(IBM Rose XDE)

ATM Use Cases and Actors – Global View

OOAD 9. Components and Deployment Diagrams 19

ATM Example – Use Cases Local Views

OOAD 9. Components and Deployment Diagrams 20

ATM Example – Component View

The implementation model is built by three subsystems

OOAD 9. Components and Deployment Diagrams 21

ATM Example:

Component Specification

OOAD 9. Components and Deployment Diagrams 22

ATM Example:

Component Specification - 2

The Fuel Dispenser component realizes one interface and three classes

OOAD 9. Components and Deployment Diagrams 23

ATM Example: Class Specification shows Built

Components

The Fuel Sensor is one of the classes building the Fuel Dispenser
component

OOAD 9. Components and Deployment Diagrams 24

ATM Example:

Code Generation

Note: first specify the Classpath etc. in the “Project

Specification…” menu

OOAD 9. Components and Deployment Diagrams 25

Deployment Diagrams
The deployment architectural view shows the configuration of run-
time processing elements and the software processes living in them.
Deployment diagrams are created to show the different nodes
along with their connections in the system. They represent system
topology and mapping executable subsystems to processors.

Issues concerned:

 processor architecture

 speed

 inter-process communication and synchronization

 etc.

A deployment diagram shows processors, devices, and connections.
Each model contains a single deployment diagram which shows the
connections between its processors and devices, and the allocation
of its processes to processors.

Nodes

hardware nodes execution environment nodes

Server

Desktop PC

Disk drives

Operating system

J2EE container

Web server

Application server

OOAD 9. Components and Deployment Diagrams 26

A node is a hardware or software resource that can

host software or related files. You can think of a

software node as an application context; generally not

part of the software you developed, but a third-party

environment that provides services to your software

Artifacts within nodes

 Drawing an artifact inside a node shows that the artifact is

deployed to the node

 But where is JVM? ->

 Your deployment diagrams should contain details about your

system that are important to your audience. If it is important to

show the hardware, firmware, operating system, runtime

environments, or even device drivers of your system, then you

should include these in your deployment diagram.
OOAD 9. Components and Deployment Diagrams 27

OOAD 9. Components and Deployment Diagrams 28

Processors, Devices and Connections

Processor - identify its processes
and specify the type of process
scheduling (preemptive, non-
preemptive, cyclic, executive,
manual).

Device – in some models: a
hardware component with no or
restricted computing power (i.e.,
"modem" or "terminal”); in others:
specialization of node.

Connection - represents some
type of hardware coupling between
two entities. An entity is either a
processor or a device. The
hardware coupling can be direct,
such as an RS232 cable, or
indirect, such as satellite-to-ground
communication.

OOAD 9. Components and Deployment Diagrams 29

ATM Example:

Deployment Diagram

OOAD 9. Components and Deployment Diagrams 30

UML deployment diagram [Bruegge & Dutoit]

OOAD 9. Components and Deployment Diagrams 31

The refined diagram [Bruegge & Dutoit]

OOAD 9. Components and Deployment Diagrams 32

The MyTrip example [Bruegge & Dutoit]

A real

example

OOAD 9. Components and Deployment Diagrams 33

UML 2.x Diagrams

OOAD
8. OCL & Timing Diagrams

34

