Designing the
Software Architecture

Layers

Subsystems

Variants

Mapping the Data Model
Examples

4+1 Software architecture views

(by Kruchten)

Logical
view

UML Use Cases

Software Engineering by lan Sommerville, 9th 2

i deling.com
Sources: http'-//WWW-ag“emo edition (2010), Addison-Wesley Pub Co;

Software Architecture

Software architecture encompasses:

e the significant decisions about the organization of a
software system,

o the selection of the structural elements and their interfaces
by which the system is composed together with their
behavior as specified in the collaboration among those
elements,

e the composition of the structural and behavioral elements
into progressively larger subsystems,

e the architectural style that guides this organization, these
elements and their interfaces, their collaborations, and
their composition.

OOAD 10. Designing the System Architecture 3

Types of Architectural Structures
(>
Module Component- Allocation
and-Connector
Decomposition Class Gl:mmam
Server Data
UETEE gum:ngnw wort Implementation
l Assignment
Layered
~ 4

OOAD

10. Designing the System Architecture 4

Systems and Subsystems

System - an instance, an executable configuration of a
software application or of a software application family.

Subsystem - a model element which has the semantics
of a package, such that it can contain other model
elements, and class/classes, thus having its own behavior.

OOAD 10. Designing the System Architecture 5

System Coupling

e Decomposable system - One or more of the components of
a system have no interactions or other interrelationships with
any of the other components at the same level of abstraction
within the system

e A nearly decomposable system - Every component of the
system has a direct or indirect interaction or other
interrelationship with every other component at the same level
of abstraction within the same system

e Design Goal - The interaction or other interrelationship
between any two components at the same level of abstraction
within the system be as weak as possible

10. Designing the System 6 OOAD
Architecture

Measure of the modular
Interdependence

e Unnecessary object coupling:

needlessly decreases the reusability of the coupled
objects

Increases the chances of system corruption when
changes are made to one or more of the coupled
objects

10. Designing the System 7 OOAD
Architecture

Cure:
Decompose the
operation into
multiple primitive
operations

Types of Modular Coupling
In order of desirability

Data Coupling (weakest most desirabl
module is the input to another

Control Coupling - passing con
that one module controls th
steps in another module.

Global Data Coupling - two or more modules share the same
global data structures

Internal Data Coupling (strongest least desirable) - One module
directly modifies local data of another module (like C++ Friends)

Content Coupling (unrated)- some or all of the contents of one
module are Included in the contents of another (like C/C++
header files)

tput from one

ags between modules so
guencing of the processing

10. Designing the System 8 OOAD
Architecture

System Cohesion

e Cohesion — degree of functional relatedness

petween (sub) systems

f there are many objects related to each other and
nerforming similar tasks — high cohesion

f there are many objects not related to each other —

OOAD

ow cohesion

10. Designing the System Architecture 9

Source: 1) Object Coupling and Db'@q ®
Cohesion, chapter 7 of Essays on OQbjgsigQ@ented

CO h eS I O n fg;t:\;\;are Engineering, Vol 1, Berard, F:eﬂtice—HaII,
_ 2) SDSU & Roger Whitney,

e "Cohesion is the degree to which the tasks performed by|a

single module are functionally related.” IEEE, 1983

e "A software component is said to exhibit a high degree of
cohesion if the elements in that unit exhibit a high degree of
functional relatedness. This means that each element in the
program unit should be essential for that unit to achieve its
purpose.” Sommerville, 1989

e Types of Module Cohesion
Coincidental (worst)
Logical
Temporal
Procedural
Communication
Sequential
Functional (best)

10. Designing the System 10 OOAD
Architecture

Low cohesion example — Bruegge &

Duttoit’2004

—— S—
”/ N\\\\
DecisionSubs y:‘.:m\’ S
/I AJ
/ .] assesses | : I
/ Criterion — g Option | \\
: * *| w* 1
I
N /
N | | 4
N
RN . solvableBy | | ¢~
___..-——----“ttQE_S_"'EHPFDWEmJ ~ .- based-on
1o 1 *~?f_§T_::—=-_I;§_-‘vaeatw’
-7 | SubTask - S . —
‘ K T~ pecision |
AN \ _
\]
- \
| (.
I . - -
' |"“‘ 1 J / implementedBy
| ActionItem Task R
N - . subtasiks
\\ 7/
\\\ ”’/
sl:- —— _——_ ’,’
Figure 6-6 Decivion racking system (UML class diagram). The Decisiondubsysten has a low cohesion:

The classes Criterion. Option, and DesignProblem have no relationships with Subtask. Actionltem,

Cand Task.

11

Architectural Layers

Layering represents an ordered grouping of functionality:
« with the application-specific located in the upper layers,
« functionality that spans application domains in the middle
layers, and

« functionality specific to the deployment environment at the
lower layers.

A layered structure:

« starts at the most general level of functionality, and
« grows towards more specific levels of functionality.

OOAD 10. Designing the System Architecture 12

Architectural Layers Structure

Disgtinct application subsystemthat
make up an application - contains the

value adding software developed by the
Organizaton

Business specific - contains a number
of reusable sybsysteme specific tothe
type of hEness.

Middleware - offers subsystens for utiity
dasses and platformindependent senices
for distributed object computing in
heterogeneous ervironments andso on.

Syrstemn software - contains the software for
the actual nirastnucure such as operating
srstemes, interfaces 1o speciiic hardwa e, device
drivers amnd so on.

OOAD 10. Designing the System Architecture 13

Subsystems Can Be Organized ecee
in Layers EE:’

The top layer, application layer, contains the application specific serVices.
The business-specific layer, contains business specific components.

The middleware layer contains components such as GUI-builders, interfaces
to DB, platform-independent operating system services, and OLE-components.

The system software layer, contains components such as OS, HW interfaces,
etc.

Tl
(L T=To k- RTIE wl la
T s el 1 r s - _ _
A ot ALz it
Ea nh ning Teleplte e PAST S e T s 1t Auppilication =
I T R B, < FEChu ol — i
L3 m ez o t Tra dimng BEBEusiness-
FPAEME o= m o= FAa magem =t Eoardaca it u B =l mel | T B
=d Ei iy P P LEE FaIladHamal =
PAE Mag =m =rh CEta o o A id dl eEvrEane
S nilEm PAar:E o= m = rnh
—I l—';:-F _ﬁ.:- -"'---- st --------- ";}—I --a
s r@ Hriog Ee tarm al Sy SsSterTn
5 b m E:'D.;?ED.".'-."'_ o Tiwvrarne

An example of a layered implementation model for a banking system. The
arrows shows top-down import dependencies between subsystems.

OOAD 10. Designing the System Architecture 14

Packages

A package is a collection of use cases & their diagrams (use.case
packages), of classes/relationships/ diagrams (design packages),
of components (/mplementation packages) and of other packages;
it is used to structure the design model by dividing it into smaller
parts. Packages are used primarily for model organization and
typically serve as a unit of configuration management.

1

Lipper
Lawver

- \

Faclkage .- Fackage B Lowvwer

Layer

>v<’) FPackage 2 T
o

a b FRackage B

Packages should not be cross-coupled (i.e. co-dependent)

Packages should only be dependent upon packages in the same layer or
next lower layer

OOAD 10. Designing the System Architecture 15

Hierarchical Decomposition

A hierarchical decomposition of a system yields an ordered set of layers. A layer 1s a
grouping of subsystems providing related services, possibly realized using services from another
layer. Layers are ordered in that each layer can depend only on lower level layers and has no
knowledge of the layers above it. The layer that does not depend on any other layer s called the
bottom layer, and the layer that is not used by any other is called the top layer (Figure 6-8). In a
closed architecture, cach layer can access only the layer immediately below it In an open
architecture,' a layer can also access layers at deeper levels.

)
| A:Subsystem Layer 1 (Top)
F m
| B:Subsystem | C:Subsystem | | D:Subsystem | Layer 2
) — e
|[E:Subsystem |_| | F:Subsystem i G:Subsystem | Layer 3 (Bottom)

Figure 6-8 Subsysiem decomposition of a system into three layers (UML object diagram). -"'h 5"-"3'5_*?' from
a lavered decomposition that includes at least one subsystem from cach laver is called a vertical slice. For

example, the subsystems A, B. and E constitute a vertical slice, whereas the subsystems D and G do not. 16

Example of closed system [Bruegge
& Duttoit’2004]

Application
i

X

Presentatian - Object
. —_—
: . ™ CORBA
h
Sessian e~
|
i _
Transportc - Socket]
.
e
i —
NeTwork b= TCP/IP

| r
d LY x .

Datal 1k

[
!
Physical e — — Exhernet

Wire

S

Figure 6-10 An example of closed architecture (ML class diagram). CORBA cnables the access of
objects implemented in different languages on differemt hosis. CORBA effectively implements the

Presantation and 5essicon layvers of the OS51 srack.
OOAD 10. Designing the System Architecture 17

Example of open system [Bruegge &

_Duttoit’2004]
f_\ .ﬂ.pp'l"i-:::r.icrn

Lol |

|

. i
Swing 5
' |

|

e e e e —

Figure 6-11 Anexample of open architecture: the Saing user interface library on an X131 platform (UML
class I.ﬁ‘il;:l'ﬂﬂ:h Fﬂ.:'.'.;_;.;::,. I.'lJ-HﬂP."-I:I.”. N1t [l!l'l.!lﬂdﬂ low-level ﬂﬂ!"‘i’il‘lﬂ facilities. AWT 15 the Jowsjevel e ace
provided by Java 1o shicld programmers from the window syslem. Swing provides a large number of
sophisticaied wser interface objects, Some Applications often bypass the Swing laver.

OOAD 10. Designing the System Architecture

e R

18

System Variants

Many systems are delivered in more than one variant. This means
that the system is configured, packaged and installed differently
for different (classes of) customers.

a) different languages

b) different platforms: in the example below, the
platform-specific code is located in one subsystem. A compilation
file (a 'makefile') specifies which version of each source code file

should be compiled together.

OOAD 10. Designing the System Architecture 19

System Variants for
Different Platforms

“arnant fonariant for
Unix YWindows

OOAD

Build for Unix

Applications - =

Business-
specific

Middleware

System

software

J J“J I

Build for

YWindo w

10. Designing the System Architecture

A2pplications

Business-
specific

Middleware

System
software

Applications

Business-
specific

Middleweare

term
nghvare

20

00
System Variants — cont. 113
raumr :ETTt1 E M@miirﬂiz :.

Boa=mineaa———
== A

g B e P | R g

==t =rm

=0T =m e =

c) different parts of the system - for example, a
banking system is delivered as two different products. Variant 1 of
the system, contains everything about telephone banking; and
variant 2, contains everything about teller account management T

d) variant components |

Report Managemant Report Managemant
Cwvariarmnt 173 wariamnt 273
| dentical
COm ponent=s
reportGe nerator .cgop reportGenaerator . cpop
==lilge== ==Tfil ==
[=—_Tn N =Ty ¥]
== fil == crate h wfile= =.
== filee= = ==fil&=e==
" N

nigue for variant 1 LUHmigue for varianmnt 2
OOAD 10. Designing the System Architecture 21

The seven levels of software
architecture’
Global architecture

: . © © O (OO architecture
Corporative architecture
ORB Subsystems
© O O

System architecture — @H&

Applied archltecture

/ Applied software frameworks
Macro-architecture

Software OO design patterns

Micro-architecture —— -0 ‘:

Objects Q00O

OO programming
* Mowbray and Malveau, 1997

Architectural Style

- Defines a family of systems by means of
pattern for structural organization. In other
words, it defines:

e Component dictionary and types of
connecting elements

e Set of restrictions and how we can combine
them

e One or more semantic models specifying how
to determine common system properties
based on the properties of its building blocks.

OOAD 10. Designing the System Architecture 23

Repository Style [Bruegge &
Duttoit’2004]

In the repository architectural style (see Figure 6-12), subsystems access and modify 3
single data structure called the central repository. Subsystems are relatively independent and
interact only through the repository. Control flow can be dictated either by the central repository
(¢.2., triggers on the data invoke peripheral svstems) or by the subsystems (e.g., independent
Aow of control and synchronization through locks in the repository).

Repositary

Subsystem —|‘ ————— createData()

setData()
getDatal)
| searchData()

Figure 6-12 Repository architectural sryvle (UML class diagram). Every Subsystem depends enly on a
central data structure called the Repository. The Repository has no knowledge of the other Subsystems.
OOAD 10. Designing the System Architecture 24

Repository Style for a Compliler

Lexical
analyzer

Text editor

Code
generation

OOAD 10. Designing the System Architecture 25

Benefits of the shared-data style

e Scalability - new components can be easily added
e Concurrency - all components can work in parallel

e Highly efficient when exchanging large amounts of
data

e Centralized data management:

Better security, backup, etc.
The components are independent of the data manufacturer

10. Designing the System Architecture 26

Drawbacks of shared-data

e It is difficult to apply in a distributed environment
e Shared data must support a single data model

e Changes to the model can lead to unnecessary
Costs

e Close relationship between blackboard and data
source

e |t can become a bottleneck in case of too many
customers

10. Designing the System Architecture 27

Model-View-Controller (MVC)
Style

e Allows independence between data, data presentation and
user control

e The Model component represents knowledge. It manages the
behavior and data of the application's domain, sends
iInformation about its state (to the view) and responds to
Instructions to change the state (usually from the controller)

e View has the obligation to manage the presentation of
iInformation to users

e The Controller controls the interaction with the user (eg
mouse clicks, keystrokes, etc.) and informs the model or view
to take appropriate action

OOAD 10. Designing the System Architecture 28

MVC

Maps User Actions
to Model Updates
Selects View

View

Selection

Renders Model
=| Requests Model Updates

il

State
Change

OOAD

Encapsulates Application
State
Notifies View of State

Changes

User Events

Sends User Events to

Controller
A
Change
MNotification
State
Query

10. Designing the System Architecture 29

MVC - benefits

o Great flexibility
Easy to maintain and implement future improvements
Clear separation between presentation logic and business logic

e Easier update - e.g. when supporting new types of users

e The appearance is separate and in most systems
undergoes many changes

e The development of the application is fast - many
developers can easily collaborate and work together

e Easier to debug - we have several levels in the
application

10. Designing the System Architecture 30

MVC - drawbacks

e Even If the data model is simple, this style can
be complex and require a lot of additional
code

e Not suitable for small applications - the
architecture is relatively complex

e Performance issue with frequent updates to
the model

e There must be strict rules on methods

10. Designing the System Architecture 31

Client-Server Style [Bruegge &

Duttoit’2004]

Client

LErwer
- -
FEQUes T e Prowider| Servi I:-ILE;
servicel

__serviceN()

Figurc 6-17 Clicntssmoer architectural stvle (UAL ¢lass diagram) Clients reguesl services fhoom odne of
more Servers. The Server has no knowiledge of the Cl1ient. The clicntfsener architectural sivle is a

speialization of the ropository arc hitectural sy Be.

An information system with a central Jdatabase is an example of a clicntfserver
architectural stvle. The clients are responsible for receiving inputs from the user. performing
range checks. and initiasting database transactions when all necessary data are collected. The
server is then responsible for performing the transaction and guarantccing the integrity of the
data. In this case, a clieoVserver architectural style is a special case of the rcposilony
architectural sivle in which the central data structure is managzed by a process. Clicnufserver
syvitems. however, are not restricted 1o a single server. On the World Wide Web. a single clicmt

can easily access data from thousands of different servers (Figure 6-18).

I nerscapeé:webBrowser

Torer:x r

mosaic-wWebBrowmser

S |

e

e TS =

—'_'_"_._._

OOAD

10. Designing the System Architecture

32

Thin or Fat Client at the Client-
Server Style?

Presentation

Thin-Client Database

Model Data Management
Application Processing

Presentation
Application Processing

Fat-Client
Model

Database
Data Management

OOAD 10. Designing the System Architecture 33

Three (Four) Tier Style

OOAD

Presentation
Layer

Business Logic
Layer

i

Data Access
Layer

Presentation
Layer

(-Busmess Laye ~

Business Logic
Layer

Data Access
Layer

Data Tier
{Database)

Data Tier
{Database)

34

Pros’s & Con’s of the Client-
Server Style

e Pro’s:

Centralization of data — reusabillity, portability,
modularity + abstractness

Security - at the client and at the servers
Easy implementation of backup and recovery

e Con’s:

Server workload can increase too much on a large
number of servers

What do we do In case of server failure - need for
redundancy / fault-tolerance

10. Designing the System Architecture 35

Peer-to-Peer Style [Bruegge &
Duttoit’2004]

L rEegueESTEr
S reaue

—

servicel{
serviced(

serviceN(d g WL

e

Figure 6-19 Peer-to-peer architeciural siyle (UML class diagram). Peers can request semviccs from. and
provide semvices i other poors.

An example of a pecr-to-peer architectural style is a dawabase that both accepts requesis
from the application and notifies 1o the application whenever cemain data are changed
(Figure 6-20). Pecr-to-peer systems are more difficult wo design than clienuserver systems
because they introduce the possibility of deadlocks and complicate the control flow.

Callbacks are opcrations thal are temporary and customized for a specific purpose. For
example, 4 OBUser peer in Figure 6-20 can tell the DBMS peer which operation o 1 invoke upon a
change notification. The DEUser then uses the callback operation specified by each DEBUser for
notification when a change occurs. Peer-io-peer systems in which a “server” peer invokes
“client™ pecrs only through callbacks are often referred 10 as clienl/server sysiems, even though
this is inaccurate since the “scrver™ can also initiate the control Aow.

|‘|—'———"‘— 1

applicationl: DBUsSEr

1. wpdateDatadl)

: |
| database DEMS 1
E' _-_‘H. . _2 'B] 2. norify{change)
applicaciond - r
 —

OOAD 10. Designing the System Architecture 36

Pipe and Filter Style 1/2

e Each component (filter) in the system transfers the
data in sequential order to the next component

e The connectors (pipes) between the filters are the
actual data transmission mechanisms

OOAD 10. Designing the System Architecture 37

Pipe and Filter Style 2/2

The "pump”is the initiating
event: it "‘pumps" 3
megiage irto the pipeline

.-ﬂﬂ

The output of each filker
operation becomes the input of
the next filter operation .

Pt

Each filter compan et
peromms some sare of
proce ssing ofthe message

The "snk" iz the inal
destination ofthe
fransomed message.

Subsystems (filters) process data received from other subsystems
and send them via pipes (associations b/n subsystems).

OOAD

10. Designing the System Architecture

38

A Pipeline Architecture of a
Compiler

Text editor

Lexical analyzer

Syntax analyzer

Optimization

w
©

Code generation

10. Designing the System Architecture

Pipe-and-Filter style - FEATURES

e Complexity - in a distributed environment, filters can
run on different servers

e Reliability - uses an infrastructure that ensures that
data will not be lost when the data passes between
the filters in the pipeline

e Ildempotency - detects and removes duplicate
messages

e Context and state - each filter must be provided
with sufficient context to perform its work, which may
require a significant amount of status information

10. Designing the System Architecture 40

Benefits of pipe-and-filter style

e Intuitive and easy to understand

e The filters are self-contained and can be treated as black
boxes, which leads to flexibility in terms of maintenance
and reuse

e Easy to implement parallelism (not in batch sequence
where computations start after receiving all the

packages)

e It is directly applicable to the structures of many business

Drocesses

e Easy to use when the processing required by the
application can be easily decomposed into a set of
discrete, independent steps

10. Designing the System Architecture 41

Drawbacks of the pipe-and-filter
style

e Due to the successive implementation steps, it Is
difficult to implement interactive applications

e Low productivity
Each filter must analyze the data
Difficult to share global data
Filters must agree on the format of the data

10. Designing the System Architecture 42

Software Architecture
Document

‘ IT
Software

Architecture
Document

The Software Architecture Document
provides a comprehensive
architectural overview of the system,
using a number of different
architectural views to depict different
system aspects.

OOAD

10. Designing the System Architecture 43

Software Architecture
Document may include:

. Objectives

. Scope - what it applies to

. References

. Architectural Representation
. Architectural Goals and Constraints
. Use-Case View

Logical View

. Process View

. Deployment View

10 Implementation View

11. Data View (optional)
12. Size and Performance

OONOUTDAWNR

13. Quality: extendibility, reliability, portability...

OOAD 10. Designing the System Architecture

44

The Data Model

The data model is a subset of the
Implementation model which describes the
e = Rl logical and physical representation of
persistent data in the system. It also includes
any behavior defined in the database, such as
stored procedures, triggers, constraints, etc.

A top-level Package stereotyped as «data
model», containing a set of Components which
UML representation | 'EPresent the physical storage of persistent data
In the system.

A Data Model is a description of the persistent data storage perspective
of the system. This section is optional if there is little or no persistent data,
or trivial translation between the Design and Data Model.

OOAD 10. Designing the System Architecture 45

owned by the packages.

00
_ o0 0
Data Model Properties o
Name Brief Description UML Representation
Packages The packages used for Owned via the association "represents”, or
organizational grouping purposes. | recursively via the aggregation "owns".
Tables The tables in the data model, Components, stereotyped as <<table>>.

Relationships

The relationships between tables in
the model.

Associations, stereotyped as <<foreign

key>>.

Columns The data values of the tables. Attributes, stereotyped as <<column>>.,

Diagrams The diagrams in the model, owned | -" -
by the packages.

Indexes Event-activated behavior Components, stereotyped as <<index>>.
associated with tables.

Triggers Event-activated behavior Operation, stereotyped as <<trigger>>.
associated with tables.

Procedures Explicitly invoked behavior, Component, stereotyped as <<procedure>>.
associated with tables or with the
model as a whole. 45

OOAD 10. Designing the System Architecture

The Relational Model

The relational model is composed of entities and relations+An
entity may be a physical table or a logical projection of several
tables also known as a view.

An entity has columns and records or rows. Each entity has one
or more primary keys. The primary keys uniquely identifies each
record. Foreign key columns contain data which can relate specific
records in the entity to the related entity.

In the physical model relations are typically implemented using
foreign key/primary key references. Relations have multiplicity
(also known as cardinality). Common cardinalities are 1:1, 1:m, m:1,
and m:n.

r’_-:::-RDER

Lir=Itex_ T4 Description
1xtiber .
| o T, Eup IirteIlt=exns

IinetIt=r Crde I4
cxder Bl (PRODUCT
Craanmitite IDate_ &Svwvwailablde
7

LINEITEM

The Object Model

The object model contains classes defining the structure and
behavior of a set of objects; sometimes called objects instances.
The structure is represented as attributes (data values) and
associations (relationships between classes). Supports

inheritance. The following figure illustrates a simple class
diagram model, showing only attributes (data) of the classes.

OOAD

Order

lﬂ;:-nur‘nl::uer Cinteger

Linelterm

+linelterms | Sequantity - INnteaer
1..= |SEzrnurmber : Integer

+orcder

+product 1.1

Froduct

Srnurmber : Integer
Eredescription 1 String
E=unit price : Double

PN

SoftewareProduct
Seversion - Doukble

10. Designing the System Architecture

HardwwwareFroduouct

Seassembly - String

48

Persistence Frameworks (ORM Tools)

The role of the object-relational framework is to genericall

encapsulate the physical data store and to provide appropriate
object translation services. =— ovectz

foo()

Application developers spend over 30% of their time implementing
relational DB access in OO applications. Implementing an object-
relational framework captures this investment. The object-relational
mapping (ORM) tools can be reused in subsequent applications
reducing the object-relational implementation cost to less than 10%

10. Designing the System Architecture 49

of the total implementation costs.

OOAD

Employee Class

ID
MName
Address = Hibernate
Phone :> {mapping}
Date of birth
(object) @ ﬁ
id name address phone date_of_birth

(relational)

10. Designing the System Architecture

50

Mapping Persistent Classes to Tables

In a relational database written in third normal form,

every row in the tables — every "tuple" — is regarded as
an object. A column in a table is equivalent to a
persistent attribute of a class. So, in the simple case
where we have no associations to other classes, the
mapping between the two worlds is simple. The data
type of the attribute corresponds to one of the
allowable data types for columns.

Custormer
Eename ;. String
Eeaddress - String
EecustomerlD © String

Hew Customer Object Table

Hame Customer |0 —— Attributes from the

Object | underlying object
Instance Ward Tech Comm | w123456 type

OOAD 51

Mapping Associations between Persistent Objects

Associations between two persistent e
objects are realized as foreign keys to
the associated objects. A foreign key

1..1

IS @ column in one table which contains P y—
the primary key value of associated = el e

. SEecustarmearlD - String
object.

When we map this into relational tables, we get an Order table
and a Customer table. The Order table will have columns for
attributes listed, plus an additional column Customer_ID which
contains foreign-key references to associated rows in the Customer
table. For a given Order, the Customer_ID column will contain the
identifier of the Customer to whom the Order is associated.

Foreign keys allow the RDBMS to join related information together.

OOAD 10. Designing the System Architecture 52

Mapping of 1:N association
[Bruegge & Duttoit’2004]
R

1]
yomre—

Leaguc table

LeagueQwner lable —
[id:long vam
kllong red
s |

Fipure 10-19 Mapping of the Leag seOuner/League association as a buried association.

OOAD 10. Designing the System Architecture

53

(XX
Mapping of M:N association 11
[Brueg_ge & Duttoit’2004] .
.:Tnm:;namini- 2 - - L____[P'm';.*tr ‘
Tournameni 1able Tﬂumlnlﬂﬁlﬂ_jill':ﬂfm—k‘iﬂi““ table ITE“}"ET luble
!1I nome . 'l... tnuTlnmi | plaver id n:ll_m: | e |
| M noviee B .'.23 o S ._.'i-ﬁ-_‘ alice |
A :xpﬂ'l -I [| B 21 k) 74 l ju.hn | |

Fipure 1020 Mapping of the Tournament,/Player asseciation as a separate 1able,

OOAD 10. Designing the System Architecture 54

Mapping Aggregation Associations to the Data Maod

Aggregation is also modeled using foreign key relationships.

-0 00

I

When we map this into relational tables, we get an Order table
and a Line_Item table. The Line_Item table will have columns for
attributes listed, plus an additional column Order_ID which
contains foreign-key references to associated rows in the Order
table. For a given Line Item, the Order_ID column will contain
the Order_ID of the Order that the Line Item Is associated with.
Foreign keys allow the RDBMS to join related information

together.

arder

SEenumber : Integer

OOAD

+linelterms=

-‘I__‘.'.—

10. Designing the System Architecture

Linelterm

SEequantity - Integer
Senurmber ; Integer

55

Modeling Inheritance and Many-to-Many -4+
Associations o

The standard relational data model does not support modeling
inheritance associations in a direct way but:
. Use separate tables to represent the super-class and sub-class.
Have, in the sub-class table, a foreign key references to the super-
class table.

. Duplicate all inherited attributes and associations as separate
columns in the sub-class table. This is similar to de-normalization
in the standard RDBS.

A standard technique in relational modeling is to use an
Intersection entity to represent many-to-many associations. The
same approach should be used here: an intersection table should be
used to represent the association.

Example: If Suppliers can supply many Products, and a Product

can be supplied by many,Suppliers. the.solution is to create a
Supplier/Product table.

https://www.visual-paradigm.com/VPGallery/orm/Overview.html|

Homework: VP ORM Mapping

=

57

https://www.visual-paradigm.com/VPGallery/orm/Overview.html

