
OOAD 10. Designing the System Architecture 1

Designing the

Software Architecture

Layers

Subsystems

Variants

Mapping the Data Model

Examples

4+1 Software architecture views
(by Kruchten)

Logical
view

Code
view

Process
view

Deploy
ment
view

2Software Engineering by Ian Sommerville, 9th

edition (2010), Addison-Wesley Pub Co;

UML Use Cases

OOAD 10. Designing the System Architecture 3

Software Architecture

Software architecture encompasses:
• the significant decisions about the organization of a

software system,
• the selection of the structural elements and their interfaces

by which the system is composed together with their
behavior as specified in the collaboration among those
elements,

• the composition of the structural and behavioral elements
into progressively larger subsystems,

• the architectural style that guides this organization, these
elements and their interfaces, their collaborations, and
their composition.

Types of Architectural Structures

OOAD 10. Designing the System Architecture 4

OOAD 10. Designing the System Architecture 5

Systems and Subsystems

System - an instance, an executable configuration of a
software application or of a software application family.

Subsystem - a model element which has the semantics
of a package, such that it can contain other model
elements, and class/classes, thus having its own behavior.

10. Designing the System

Architecture

6 OOAD

System Coupling

 Decomposable system - One or more of the components of
a system have no interactions or other interrelationships with
any of the other components at the same level of abstraction
within the system

 A nearly decomposable system - Every component of the
system has a direct or indirect interaction or other
interrelationship with every other component at the same level
of abstraction within the same system

 Design Goal - The interaction or other interrelationship
between any two components at the same level of abstraction
within the system be as weak as possible

10. Designing the System

Architecture

7 OOAD

Measure of the modular

interdependence

 Unnecessary object coupling:

 needlessly decreases the reusability of the coupled

objects

 increases the chances of system corruption when

changes are made to one or more of the coupled

objects

10. Designing the System

Architecture

8 OOAD

Types of Modular Coupling

In order of desirability

Cure:

Decompose the

operation into

multiple primitive

operations

 Data Coupling (weakest most desirable) - output from one
module is the input to another

 Control Coupling - passing control flags between modules so
that one module controls the sequencing of the processing
steps in another module.

 Global Data Coupling - two or more modules share the same
global data structures

 Internal Data Coupling (strongest least desirable) - One module
directly modifies local data of another module (like C++ Friends)

 Content Coupling (unrated)- some or all of the contents of one
module are included in the contents of another (like C/C++
header files)

OOAD 10. Designing the System Architecture 9

System Cohesion

 Cohesion – degree of functional relatedness

between (sub) systems

 If there are many objects related to each other and

performing similar tasks – high cohesion

 If there are many objects not related to each other –

low cohesion

10. Designing the System

Architecture

10 OOAD

Cohesion
 "Cohesion is the degree to which the tasks performed by a

single module are functionally related.“ IEEE, 1983

 "A software component is said to exhibit a high degree of
cohesion if the elements in that unit exhibit a high degree of
functional relatedness. This means that each element in the
program unit should be essential for that unit to achieve its
purpose.“ Sommerville, 1989

 Types of Module Cohesion
 Coincidental (worst)

 Logical

 Temporal

 Procedural

 Communication

 Sequential

 Functional (best)

Source: 1) Object Coupling and Object

Cohesion, chapter 7 of Essays on Object-Oriented

Software Engineering, Vol 1, Berard, Prentice-Hall,

1993;

2) SDSU & Roger Whitney;

OOAD 10. Designing the System Architecture 11

Low cohesion example – Bruegge &

Duttoit’2004

OOAD 10. Designing the System Architecture 12

Architectural Layers

Layering represents an ordered grouping of functionality:

• with the application-specific located in the upper layers,

• functionality that spans application domains in the middle

layers, and

• functionality specific to the deployment environment at the

lower layers.

A layered structure:

• starts at the most general level of functionality, and

• grows towards more specific levels of functionality.

OOAD 10. Designing the System Architecture 13

Architectural Layers Structure

OOAD 10. Designing the System Architecture 14

Subsystems Can Be Organized

in Layers
 The top layer, application layer, contains the application specific services.
 The business-specific layer, contains business specific components.
 The middleware layer contains components such as GUI-builders, interfaces

to DB, platform-independent operating system services, and OLE-components.
 The system software layer, contains components such as OS, HW interfaces,

etc.

An example of a layered implementation model for a banking system. The

arrows shows top-down import dependencies between subsystems.

OOAD 10. Designing the System Architecture 15

Packages

A package is a collection of use cases & their diagrams (use case
packages), of classes/relationships/ diagrams (design packages),
of components (implementation packages) and of other packages;
it is used to structure the design model by dividing it into smaller
parts. Packages are used primarily for model organization and
typically serve as a unit of configuration management.

a b

• Packages should not be cross-coupled (i.e. co-dependent)

• Packages should only be dependent upon packages in the same layer or

next lower layer

OOAD 10. Designing the System Architecture 16

Hierarchical Decomposition

OOAD 10. Designing the System Architecture 17

Example of closed system [Bruegge

& Duttoit’2004]

OOAD 10. Designing the System Architecture 18

Example of open system [Bruegge &

Duttoit’2004]

OOAD 10. Designing the System Architecture 19

System Variants

Many systems are delivered in more than one variant. This means
that the system is configured, packaged and installed differently
for different (classes of) customers.

a) different languages

b) different platforms: in the example below, the
platform-specific code is located in one subsystem. A compilation
file (a 'makefile') specifies which version of each source code file
should be compiled together.

OOAD 10. Designing the System Architecture 20

System Variants for

Different Platforms

OOAD 10. Designing the System Architecture 21

System Variants – cont.

c) different parts of the system - for example, a
banking system is delivered as two different products. Variant 1 of
the system, contains everything about telephone banking; and
variant 2, contains everything about teller account management 

d) variant components 

The seven levels of software

architecture*

Global architecture

Corporative architecture

* Mowbray and Malveau, 1997

System architecture

ORB

OO architecture

Macro-architecture
Applied software frameworks

Applied architecture

Subsystems

Micro-architecture

Software OO design patterns

Objects
OO programming

OOAD 10. Designing the System Architecture 23

Architectural Style

- Defines a family of systems by means of
pattern for structural organization. In other
words, it defines:

 Component dictionary and types of
connecting elements

 Set of restrictions and how we can combine
them

 One or more semantic models specifying how
to determine common system properties
based on the properties of its building blocks.

OOAD 10. Designing the System Architecture 24

Repository Style [Bruegge &

Duttoit’2004]

OOAD 10. Designing the System Architecture 25

Repository Style for a Compiler

Shared
data

Text editor

Lexical
analyzer

Syntax
analyzer

Linker

Optimization

Code
generation

Benefits of the shared-data style

 Scalability - new components can be easily added

 Concurrency - all components can work in parallel

 Highly efficient when exchanging large amounts of

data

 Centralized data management:

 Better security, backup, etc.

 The components are independent of the data manufacturer

10. Designing the System Architecture 26

Drawbacks of shared-data

 It is difficult to apply in a distributed environment

 Shared data must support a single data model

 Changes to the model can lead to unnecessary

costs

 Close relationship between blackboard and data

source

 It can become a bottleneck in case of too many

customers

10. Designing the System Architecture 27

OOAD 10. Designing the System Architecture 28

Model-View-Controller (MVC)

Style

 Allows independence between data, data presentation and

user control

 The Model component represents knowledge. It manages the

behavior and data of the application's domain, sends

information about its state (to the view) and responds to

instructions to change the state (usually from the controller)

 View has the obligation to manage the presentation of

information to users

 The Controller controls the interaction with the user (eg

mouse clicks, keystrokes, etc.) and informs the model or view

to take appropriate action

MVC

OOAD 10. Designing the System Architecture 29

MVC - benefits

 Great flexibility
 Easy to maintain and implement future improvements

 Clear separation between presentation logic and business logic

 Easier update - e.g. when supporting new types of users

 The appearance is separate and in most systems
undergoes many changes

 The development of the application is fast - many
developers can easily collaborate and work together

 Easier to debug - we have several levels in the
application

10. Designing the System Architecture 30

MVC - drawbacks

 Even if the data model is simple, this style can

be complex and require a lot of additional

code

 Not suitable for small applications - the

architecture is relatively complex

 Performance issue with frequent updates to

the model

 There must be strict rules on methods

10. Designing the System Architecture 31

OOAD 10. Designing the System Architecture 32

Client-Server Style [Bruegge &

Duttoit’2004]

Thin or Fat Client at the Client-

Server Style?

OOAD 10. Designing the System Architecture 33

OOAD 10. Designing the System Architecture 34

Three (Four) Tier Style

Pros’s & Con’s of the Client-

Server Style

 Pro’s:

 Centralization of data – reusability, portability,

modularity + abstractness

 Security - at the client and at the servers

 Easy implementation of backup and recovery

 Con’s:

 Server workload can increase too much on a large

number of servers

 What do we do in case of server failure - need for

redundancy / fault-tolerance

10. Designing the System Architecture 35

OOAD 10. Designing the System Architecture 36

Peer-to-Peer Style [Bruegge &

Duttoit’2004]

Pipe and Filter Style 1/2

 Each component (filter) in the system transfers the

data in sequential order to the next component

 The connectors (pipes) between the filters are the

actual data transmission mechanisms

OOAD 10. Designing the System Architecture 37

Encrypt Decrypt Authenticate

OOAD 10. Designing the System Architecture 38

Pipe and Filter Style 2/2

Subsystems (filters) process data received from other subsystems

and send them via pipes (associations b/n subsystems).

A Pipeline Architecture of a

Compiler

Code generation

Optimization

Linker

Syntax analyzer

Lexical analyzer

Text editor

10. Designing the System Architecture
39

Pipe-and-Filter style – FEATURES

 Complexity - in a distributed environment, filters can
run on different servers

 Reliability - uses an infrastructure that ensures that
data will not be lost when the data passes between
the filters in the pipeline

 Idempotency - detects and removes duplicate
messages

 Context and state - each filter must be provided
with sufficient context to perform its work, which may
require a significant amount of status information

10. Designing the System Architecture 40

Benefits of pipe-and-filter style

 Intuitive and easy to understand

 The filters are self-contained and can be treated as black
boxes, which leads to flexibility in terms of maintenance
and reuse

 Easy to implement parallelism (not in batch sequence
where computations start after receiving all the
packages)

 It is directly applicable to the structures of many business
processes

 Easy to use when the processing required by the
application can be easily decomposed into a set of
discrete, independent steps

10. Designing the System Architecture 41

Drawbacks of the pipe-and-filter

style

 Due to the successive implementation steps, it is

difficult to implement interactive applications

 Low productivity

 Each filter must analyze the data

 Difficult to share global data

 Filters must agree on the format of the data

10. Designing the System Architecture 42

OOAD 10. Designing the System Architecture 43

Software Architecture

Document

Software

Architecture

Document

The Software Architecture Document

provides a comprehensive

architectural overview of the system,

using a number of different

architectural views to depict different

system aspects.

OOAD 10. Designing the System Architecture 44

Software Architecture

Document may include:

1. Objectives
2. Scope - what it applies to
3. References
4. Architectural Representation
5. Architectural Goals and Constraints
6. Use-Case View
7. Logical View
8. Process View
9. Deployment View
10. Implementation View
11. Data View (optional)
12. Size and Performance
13. Quality: extendibility, reliability, portability…

OOAD 10. Designing the System Architecture 45

The Data Model

A Data Model is a description of the persistent data storage perspective
of the system. This section is optional if there is little or no persistent data,
or trivial translation between the Design and Data Model.

The data model is a subset of the

implementation model which describes the

logical and physical representation of

persistent data in the system. It also includes

any behavior defined in the database, such as

stored procedures, triggers, constraints, etc.

UML representation

A top-level Package stereotyped as «data

model», containing a set of Components which

represent the physical storage of persistent data

in the system.

OOAD 10. Designing the System Architecture

46

Data Model Properties

Name Brief Description UML Representation

Packages The packages used for

organizational grouping purposes.

Owned via the association "represents", or

recursively via the aggregation "owns".

Tables The tables in the data model,

owned by the packages.

Components, stereotyped as <<table>>.

Relationships The relationships between tables in

the model.

Associations, stereotyped as <<foreign

key>>.

Columns The data values of the tables. Attributes, stereotyped as <<column>>.

Diagrams The diagrams in the model, owned

by the packages.

- " -

Indexes Event-activated behavior

associated with tables.

Components, stereotyped as <<index>>.

Triggers Event-activated behavior

associated with tables.

Operation, stereotyped as <<trigger>>.

Procedures Explicitly invoked behavior,

associated with tables or with the

model as a whole.

Component, stereotyped as <<procedure>>.

OOAD 10. Designing the System Architecture 47

The Relational Model

The relational model is composed of entities and relations. An

entity may be a physical table or a logical projection of several

tables also known as a view.

An entity has columns and records or rows. Each entity has one

or more primary keys. The primary keys uniquely identifies each

record. Foreign key columns contain data which can relate specific

records in the entity to the related entity.

In the physical model relations are typically implemented using

foreign key/primary key references. Relations have multiplicity

(also known as cardinality). Common cardinalities are 1:1, 1:m, m:1,

and m:n.

OOAD 10. Designing the System Architecture 48

The Object Model

The object model contains classes defining the structure and
behavior of a set of objects; sometimes called objects instances.
The structure is represented as attributes (data values) and
associations (relationships between classes). Supports
inheritance. The following figure illustrates a simple class
diagram model, showing only attributes (data) of the classes.

OOAD 10. Designing the System Architecture 49

Persistence Frameworks (ORM Tools)

The role of the object-relational framework is to generically

encapsulate the physical data store and to provide appropriate

object translation services.

Application developers spend over 30% of their time implementing
relational DB access in OO applications. Implementing an object-
relational framework captures this investment. The object-relational
mapping (ORM) tools can be reused in subsequent applications
reducing the object-relational implementation cost to less than 10%
of the total implementation costs.

OOAD 10. Designing the System Architecture 50

OOAD 10. Designing the System Architecture 51

Mapping Persistent Classes to Tables

In a relational database written in third normal form,

every row in the tables – every "tuple" – is regarded as
an object. A column in a table is equivalent to a
persistent attribute of a class. So, in the simple case
where we have no associations to other classes, the
mapping between the two worlds is simple. The data
type of the attribute corresponds to one of the
allowable data types for columns.

OOAD 10. Designing the System Architecture 52

Mapping Associations between Persistent Objects

When we map this into relational tables, we get an Order table
and a Customer table. The Order table will have columns for
attributes listed, plus an additional column Customer_ID which
contains foreign-key references to associated rows in the Customer
table. For a given Order, the Customer_ID column will contain the
identifier of the Customer to whom the Order is associated.
Foreign keys allow the RDBMS to join related information together.

Associations between two persistent
objects are realized as foreign keys to
the associated objects. A foreign key
is a column in one table which contains
the primary key value of associated
object.

OOAD 10. Designing the System Architecture 53

Mapping of 1:N association
[Bruegge & Duttoit’2004]

OOAD 10. Designing the System Architecture 54

Mapping of M:N association
[Bruegge & Duttoit’2004]

OOAD 10. Designing the System Architecture 55

Mapping Aggregation Associations to the Data Model

Aggregation is also modeled using foreign key relationships.

When we map this into relational tables, we get an Order table

and a Line_Item table. The Line_Item table will have columns for

attributes listed, plus an additional column Order_ID which

contains foreign-key references to associated rows in the Order

table. For a given Line Item, the Order_ID column will contain

the Order_ID of the Order that the Line Item is associated with.

Foreign keys allow the RDBMS to join related information

together.

OOAD 10. Designing the System Architecture 56

Modeling Inheritance and Many-to-Many

Associations

The standard relational data model does not support modeling
inheritance associations in a direct way but:

1. Use separate tables to represent the super-class and sub-class.
Have, in the sub-class table, a foreign key references to the super-
class table.

2. Duplicate all inherited attributes and associations as separate
columns in the sub-class table. This is similar to de-normalization
in the standard RDBS.

A standard technique in relational modeling is to use an
intersection entity to represent many-to-many associations. The
same approach should be used here: an intersection table should be
used to represent the association.

Example: If Suppliers can supply many Products, and a Product
can be supplied by many Suppliers, the solution is to create a
Supplier/Product table.

Homework: VP ORM Mapping

OOAD 10. Designing the System Architecture 57

https://www.visual-paradigm.com/VPGallery/orm/Overview.html

https://www.visual-paradigm.com/VPGallery/orm/Overview.html

