Concepts
 and $z^{p}=1(\operatorname{mad} d)$
$(x-1)(t+1)=0(\operatorname{mox} d p)$

$a^{a^{\prime}=1(\operatorname{mad} x)}$
$a^{a^{z}=-1(\bmod d)}$

 $a^{a} \neq 1(\bmod n)$

 and xample

Computational complexity

anodes stolele

ary
$\bar{z}=$
 Alognt

$a^{a n} \neq 1(\max n)$

 determinisitic variants
 .

:	
Votes	

为

