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The Miller–Rabin primality test or Rabin–Miller primality test is a primality test: an algorithm which
determines whether a given number is prime, similar to the Fermat primality test and the Solovay–Strassen
primality test. Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the
unproven Extended Riemann hypothesis;[1] Michael O. Rabin modified it to obtain an unconditional
probabilistic algorithm.[2]
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Just like the Fermat and Solovay–Strassen tests, the Miller–Rabin test relies on an equality or set of
equalities that hold true for prime values, then checks whether or not they hold for a number that we want to
test for primality.

First, a lemma about square roots of unity in the finite field Z/pZ, where p is prime and p > 2. Certainly 1
and −1 always yield 1 when squared modulo p; call these trivial square roots of 1. There are no nontrivial
square roots of 1 modulo p (a special case of the result that, in a field, a polynomial has no more zeroes than
its degree). To show this, suppose that x is a square root of 1 modulo p. Then:

In other words, prime p divides the product (x − 1)(x + 1). By Euclid's lemma it divides one of the factors
x − 1 or x + 1, implying that x is congruent to either 1 or −1 modulo p.

Now, let n be prime with n > 2. It follows that n − 1 is even and we can write it as 2s·d, where s and d are
positive integers and d is odd. For each a in (Z/nZ)*, either

or

for some 0 ≤ r ≤ s − 1.

To show that one of these must be true, recall Fermat's little theorem, that for a prime number n:

By the lemma above, if we keep taking square roots of an−1, we will get either 1 or −1. If we get −1 then the
second equality holds and it is done. If we never get −1, then when we have taken out every power of 2, we
are left with the first equality.

The Miller–Rabin primality test is based on the contrapositive of the above claim. That is, if we can find an a
such that

and

for all 0 ≤ r ≤ s − 1, then n is not prime. We call a a witness for the compositeness of n (sometimes
misleadingly called a strong witness, although it is a certain proof of this fact). Otherwise a is called a strong
liar, and n is a strong probable prime to base a. The term "strong liar" refers to the case where n is composite
but nevertheless the equations hold as they would for a prime.

Every odd composite n has many witnesses a, however, no simple way of generating such an a is known.
The solution is to make the test probabilistic: we choose a non-zero a in Z/nZ randomly, and check whether
or not it is a witness for the compositeness of n. If n is composite, most of the choices for a will be witnesses,
and the test will detect n as composite with high probability. There is, nevertheless, a small chance that we
are unlucky and hit an a which is a strong liar for n. We may reduce the probability of such error by
repeating the test for several independently chosen a.

For testing large numbers, it is common to choose random bases a, as, a priori, we don't know the
distribution of witnesses and liars among the numbers 1, 2, ..., n − 1. In particular, Arnault [3] gave a
397-digit composite number for which all bases a less than 307 are strong liars. As expected this number was
reported to be prime by the Maple isprime() function, which implemented the Miller–Rabin test by
checking the specific bases 2,3,5,7, and 11. However, selection of a few specific small bases can guarantee
identification of composites for n less than some maximum determined by said bases. This maximum is
generally quite large compared to the bases. As random bases lack such determinism for small n, specific
bases are better in some circumstances.

Suppose we wish to determine if n = 221 is prime. We write n − 1 = 220 as 22·55, so that we have s = 2 and
d = 55. We randomly select a number a such that 1 < a < n - 1, say a = 174. We proceed to compute:

a20·d mod n = 17455 mod 221 = 47 ≠ 1, n − 1
a21·d mod n = 174110 mod 221 = 220 = n − 1.

Since 220 ≡ −1 mod n, either 221 is prime, or 174 is a strong liar for 221. We try another random a, this time
choosing a = 137:

a20·d mod n = 13755 mod 221 = 188 ≠ 1, n − 1
a21·d mod n = 137110 mod 221 = 205 ≠ n − 1.

Hence 137 is a witness for the compositeness of 221, and 174 was in fact a strong liar. Note that this tells us
nothing about the factors of 221 (which are 13 and 17). However, the example with 341 in the next section
shows how these calculations can sometimes produce a factor of n.

The algorithm can be written in pseudocode as follows:

Input #1: n > 3, an odd integer to be tested for primality;
Input #2: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime

write n − 1 as 2r·d with d odd by factoring powers of 2 from n − 1
WitnessLoop: repeat k times:
   pick a random integer a in the range [2, n − 2]

x ← ad mod n
if x = 1 or x = n − 1 then

continue WitnessLoop
repeat r − 1 times:

x ← x2 mod n
if x = n − 1 then

continue WitnessLoop
return composite

return probably prime

Using modular exponentiation by repeated squaring, the running time of this algorithm is O(k log3n), where
k is the number of different values of a that we test; thus this is an efficient, polynomial-time algorithm.
FFT-based multiplication can push the running time down to
O(k log2n log log n log log log n) = Õ(k log2n).

If we insert Greatest common divisor calculations into the above algorithm, we can sometimes obtain a
factor of n instead of merely determining that n is composite. In particular, if n is a probable prime base a but
not a strong probable prime base a, then either GCD((ad mod n) − 1, n) or (for some r in the above

range) GCD((a2r·d mod n) − 1, n) will produce a (not necessarily prime) factor of n.[4]:1402 If factoring is
a goal, these GCDs can be inserted into the above algorithm at little additional computational cost.

For example, consider n = 341. We have n − 1 = 85·4. Then 285 mod 341 = 32. This tells us that n is not
a strong probable prime base 2, so we know n is composite. If we take a GCD at this stage, we can get a
factor of 341: GCD((285 mod 341) − 1, 341) = 31. This works because 341 is a pseudoprime base 2,
but is not a strong pseudoprime base 2.

In the case that the algorithm returns "composite" because x = 1, it has also discovered that d2r is (an odd
multiple of) the order of a—a fact which can (as in Shor's algorithm) be used to factorize n, since n then
divides

but not either factor by itself. The reason Miller–Rabin does not yield a probabilistic factorization algorithm
is that if

(i.e., n is not a pseudoprime to base a) then no such information is obtained about the period of a, and the
second "return composite" is taken.

The more bases a we test, the better the accuracy of the test. It can be shown that for any odd composite n,
at least 3/4 of the bases a are witnesses for the compositeness of n.[2][5] The Miller–Rabin test is strictly
stronger than the Solovay–Strassen primality test in the sense that for every composite n, the set of strong
liars for n is a subset of the set of Euler liars for n, and for many n, the subset is proper. If n is composite
then the Miller–Rabin primality test declares n probably prime with a probability at most 4−k. On the other
hand, the Solovay–Strassen primality test declares n probably prime with a probability at most 2−k.

It is important to note that in many common applications of this algorithm, we are not interested in the error
bound described above. The above error bound is the probability of a composite number being declared as a
probable prime after k rounds of testing. We are often instead interested in the probability that, after passing
k rounds of testing, the number being tested is actually a composite number. Formally, if we call the event of
declaring n a probable prime after k rounds of Miller–Rabin Yk, and we call the event that n is composite X

(and denote the event that n is prime ), then the above bound gives us , whereas we are
interested in . Bayes' theorem gives us a way to relate these two conditional probabilities, namely

.

This tells us that the probability that we are often interested in is related not just to the 4−k bound above, but
also probabilities related to the density of prime numbers in the region near n.

In addition, for large values of n, on average the probability that a composite number is declared probably
prime is significantly smaller than 4−k. Damgård, Landrock and Pomerance[6] compute some explicit bounds
and provide a method to make a reasonable selection for k for a desired error bound. Such bounds can, for
example, be used to generate probable primes; however, they should not be used to verify primes with
unknown origin, since in cryptographic applications an adversary might try to send you a pseudoprime in a
place where a prime number is required. In such cases, only the error bound of 4−k can be relied upon.

The Miller–Rabin algorithm can be made deterministic by trying all possible a below a certain limit. The
problem in general is to set the limit so that the test is still reliable.

If the tested number n is composite, the strong liars a coprime to n are contained in a proper subgroup of the
group (Z/nZ)*, which means that if we test all a from a set which generates (Z/nZ)*, one of them must be a
witness for the compositeness of n. Assuming the truth of the generalized Riemann hypothesis (GRH), it is
known that the group is generated by its elements smaller than O((log n)2), which was already noted by
Miller.[1] The constant involved in the Big O notation was reduced to 2 by Eric Bach.[7] This leads to the
following conditional primality testing algorithm:

Input: n > 1, an odd integer to test for primality.
Output: composite if n is composite, otherwise prime
write n−1 as 2s·d by factoring powers of 2 from n−1
repeat for all :

if then
return composite

return prime

The running time of the algorithm is Õ((log n)4) (with FFT-based multiplication). The full power of the
generalized Riemann hypothesis is not needed to ensure the correctness of the test: as we deal with
subgroups of even index, it suffices to assume the validity of GRH for quadratic Dirichlet characters.[5]

The Miller test (the algorithm above) is not used in practice. For most purposes, proper use of the
probabilistic Miller-Rabin test or the Baillie-PSW primality test gives sufficient confidence while running
much faster. It is also slower in practice than commonly used proof methods such as APR-CL and ECPP
which give results that do not rely on unproven assumptions. For theoretical purposes requiring a
deterministic polynomial time algorithm, it was superseded by the AKS primality test, which also does not
rely on unproven assumptions.

Note that Miller-Rabin pseudoprimes are called strong pseudoprimes.

When the number n to be tested is small, trying all a < 2(ln n)2 is not necessary, as much smaller sets of
potential witnesses are known to suffice. For example, Pomerance, Selfridge and Wagstaff[8] and Jaeschke[9]

have verified that

if n < 2,047, it is enough to test a = 2;
if n < 1,373,653, it is enough to test a = 2 and 3;
if n < 9,080,191, it is enough to test a = 31 and 73;
if n < 25,326,001, it is enough to test a = 2, 3, and 5;
if n < 3,215,031,751, it is enough to test a = 2, 3, 5, and 7;
if n < 4,759,123,141, it is enough to test a = 2, 7, and 61;
if n < 1,122,004,669,633, it is enough to test a = 2, 13, 23, and 1662803;
if n < 2,152,302,898,747, it is enough to test a = 2, 3, 5, 7, and 11;
if n < 3,474,749,660,383, it is enough to test a = 2, 3, 5, 7, 11, and 13;
if n < 341,550,071,728,321, it is enough to test a = 2, 3, 5, 7, 11, 13, and 17.

Using the work of Feitsma and Galway enumerating all base 2 pseudoprimes in 2010, this was extended (see
A014233), with the first result later shown using different methods in Jiang and Deng:[10]

if n < 3,825,123,056,546,413,051, it is enough to test a = 2, 3, 5, 7, 11, 13, 17, 19, and 23.
if n < 18,446,744,073,709,551,616 = 264, it is enough to test a = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
and 37.

Sorenson and Webster[11] verify the above and calculate precise results for these larger than 64-bit results:

if n < 318,665,857,834,031,151,167,461, it is enough to test a = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
and 37.
if n < 3,317,044,064,679,887,385,961,981, it is enough to test a = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, and 41.

Other criteria of this sort, often more efficient (fewer bases required) than those shown above, exist[12]

[13][14][15] and these results give very fast deterministic primality tests for numbers in the appropriate range
without any assumptions.

There is a small list of potential witnesses for every possible input size (at most n values for n-bit numbers).
However, no finite set of bases is sufficient for all composite numbers. Alford, Granville, and Pomerance
have shown that there exist infinitely many composite numbers n whose smallest compositeness witness is at
least (ln n)1/(3ln ln ln n).[16] They also argue heuristically that the smallest number w such that every
composite number below n has a compositeness witness less than w should be of order Θ(log n log log n).
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