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Process states

R running/runnable (on run queue)

D uninterruptable sleep (usually 10)

S interruptible sleep (waiting for an event to complete)

T stopped, either by a job control signal or because it is being
traced

Z defunct (“zombie”) process, terminated but not reaped by
its parent



Process scheduling

® niceness (nice value) [-20,19]
® nice -n 15 foo
® renice 15 <pid>



® /proc

.ps
® ps -e
® ps —ef
® ps -u
® ps -e
® ps -u
® ps -u
[ ]

Viewing processes

pesho
-0 user,pid
pesho -o pid=process,user=account

pesho -o pid= -o user=

BSD (aux) vs. SysV (aef)

® top, htop, atop



Signals

special message that can be sent to a process

signal(7)

signal vs. value

different meanings on different architectures

signal handlers

some signals cannot be caught or ignored and are processed
by the kernel



SIGHUP(1)
SIGINT(2)
SIGQUIT(3)
SIGKILL(9)
SIGSEGV(11)
SIGTERM(15)
SIGSTOP(19)

Signals



Sending signals

® kill <pid>

® SIGTERM(15) by default

® -1 lists all supported signals

® kill -KILL <pid>orkill -9 <pid>
® killall <name>
® from keyboard

e Ctrl-C- SIGINT(2)

e Ctrl-Z - SIGSTOP(19)
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