Process management and job control
OnepauunoHHu cuctemu, MU, 2019/2020

binary

® process

thread
® common memory

® scheduling

context switch

Process

PID (Process ID)

priority & nice value
memory

security context
environment

file handles (file descriptors)

Process

kernel

init (PID 1)
child process
ps & pstree
fork()
exec ()

Process creation

Process states

Running (user)

A

Running (kernel)

A
Y

Blocked

Blocked in swap

Figure 1: process_states

Process states

R running/runnable (on run queue)

D uninterruptable sleep (usually 10)

S interruptible sleep (waiting for an event to complete)

T stopped, either by a job control signal or because it is being
traced

Z defunct (“zombie”) process, terminated but not reaped by
its parent

Process scheduling

® niceness (nice value) [-20,19]
® nice -n 15 foo
® renice 15 <pid>

® /proc

.ps
® ps -e
® ps —ef
® ps -u
® ps -e
® ps -u
® ps -u
[]

Viewing processes

pesho
-0 user,pid
pesho -o pid=process,user=account

pesho -o pid= -o user=

BSD (aux) vs. SysV (aef)

® top, htop, atop

Signals

special message that can be sent to a process

signal(7)

signal vs. value

different meanings on different architectures

signal handlers

some signals cannot be caught or ignored and are processed
by the kernel

SIGHUP(1)
SIGINT(2)
SIGQUIT(3)
SIGKILL(9)
SIGSEGV(11)
SIGTERM(15)
SIGSTOP(19)

Signals

Sending signals

® kill <pid>

® SIGTERM(15) by default

® -1 lists all supported signals

® kill -KILL <pid>orkill -9 <pid>
® killall <name>
® from keyboard

e Ctrl-C- SIGINT(2)

e Ctrl-Z - SIGSTOP(19)

suspend and resume

kernel support & user interface
running (in foreground)
stopped

running in background
SIGSTOP & SIGCONT

Job control

foo &

Ctrl-Z - SIGSTOP
jobs

fg <id>

bg <id>

Job control

