
In  mathematics  and  computer  algebra,  automatic  differentiation  (AD),  also  called  algorithmic  differentiation  or

computational differentiation,[1][2] is  a set of  techniques to numerically evaluate the derivative of  a function specified by a

computer  program.  AD  exploits  the  fact  that  every  computer  program,  no  matter  how  complicated,  executes  a  sequence  of

elementary arithmetic operations (addition, subtraction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos,

etc.).  By  applying the  chain  rule  repeatedly  to  these  operations, derivatives  of  arbitrary  order can  be  computed automatically,

accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

Automatic differentiation is not:

Symbolic differentiation, nor
Numerical differentiation (the method of finite differences).

These classical methods run into problems: symbolic differentiation leads

to  inefficient  code  (unless  done  carefully)  and  faces  the  difficulty  of

converting a computer program into a single expression, while  numerical

differentiation can introduce round-off errors in the discretization process

and cancellation.  Both  classical  methods  have  problems  with  calculating

higher derivatives, where the complexity and errors increase. Finally, both

classical methods are slow at computing the partial derivatives of a function

with respect to many inputs, as is needed for gradient-based optimization

algorithms. Automatic differentiation solves all of these problems, at the expense of introducing more software dependencies.
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Fundamental  to  AD  is  the  decomposition  of  differentials  provided  by  the  chain  rule.  For  the  simple  composition

 the chain rule gives

Usually, two distinct modes of AD are presented, forward accumulation (or forward mode) and reverse accumulation (or

reverse mode). Forward accumulation specifies that one traverses the chain rule from inside to outside (that is, first compute

 and then   and at  last  ),  while  reverse  accumulation  has  the  traversal  from  outside  to  inside  (first

compute  and then  and at last ). More succinctly,

forward accumulation computes the recursive relation:  with , and,1. 

reverse accumulation computes the recursive relation:  with .2. 

Generally, both forward and reverse accumulation are specific manifestations of applying the operator of program composition, with

the appropriate one of the two mappings  being fixed.

In  forward accumulation AD, one  first  fixes  the  independent  variable  to

which  differentiation  is  performed and computes  the  derivative  of  each

sub-expression recursively. In a pen-and-paper calculation, one can do so by

repeatedly substituting the derivative of  the inner  functions  in  the  chain

rule:

This can be generalized to multiple variables as a matrix product of Jacobians.

Compared  to  reverse  accumulation,  forward  accumulation  is  very  natural  and  easy  to  implement  as  the  flow  of  derivative

information  coincides  with  the  order of  evaluation.  One  simply  augments  each  variable  w with  its  derivative  ẇ  (stored as  a

numerical value, not a symbolic expression),

as denoted by the dot. The derivatives are then computed in sync with the evaluation steps and combined with other derivatives via

the chain rule.

As an example, consider the function:

For clarity, the individual sub-expressions have been labeled with the variables wi.

The choice of the independent variable to which differentiation is performed affects the seed  values ẇ1 and ẇ2. Suppose one is

interested in the derivative of this function with respect to x1. In this case, the seed values should be set to:

With the seed values set, one may then propagate the values using the chain rule as shown in the table below. Figure 2 shows a

pictorial depiction of this process as a computational graph.

To compute the gradient of this example function, which requires the derivatives of f  with respect to not only x1 but also x2, one

must perform an additional sweep over the computational graph using the seed values .

The computational complexity of one sweep of forward accumulation is proportional to the complexity of the original code.

Forward accumulation is more efficient than reverse accumulation for functions f  : ℝn → ℝm with m ≫ n as only n sweeps are

necessary, compared to m sweeps for reverse accumulation.

In reverse accumulation AD, one first  fixes the dependent variable  to  be

differentiated  and  computes  the  derivative  with  respect  to  each

sub-expression recursively. In a pen-and-paper calculation, one can perform

the  equivalent  by  repeatedly  substituting  the  derivative  of  the  outer

functions in the chain rule:

In reverse accumulation, the quantity of interest is the adjoint, denoted with a bar (w̄); it is a derivative of a chosen dependent

variable with respect to a subexpression w:

Reverse accumulation traverses the chain rule from outside to inside, or in the case of the computational graph in Figure 3, from top

to bottom. The example function is  scalar-valued, and thus there is only one seed for the derivative computation, and only one

sweep of the computational graph is needed in order to calculate the (two-component) gradient. This is only half the work when

compared to forward accumulation, but reverse accumulation requires the storage of the intermediate variables wi as well as the

instructions that produced them in a data structure known as a Wengert list (or "tape"),[3][4] which may represent a significant

memory issue if the computational graph is large. This can be mitigated to some extent by storing only a subset of the intermediate

variables and then reconstructing the necessary work variables by repeating the evaluations, a technique known as checkpointing.

The operations to compute the derivative using reverse accumulation are shown in the table below (note the reversed order):

The data flow graph of a computation can be manipulated to calculate the gradient of its original calculation. This is done by adding

an adjoint node for each primal node, connected by adjoint edges which parallel the primal edges but flow in the opposite direction.

The nodes in the adjoint graph represent multiplication by the derivatives of the functions calculated by the nodes in the primal. For

instance, addition in the primal causes fanout in the adjoint; fanout in the primal causes addition in the adjoint; a unary function

y = f(x) in the primal causes x ̄ = ȳ f′(x) in the adjoint; etc.

Reverse accumulation is more efficient than forward accumulation for functions f  : ℝn → ℝm with m ≪ n as only m sweeps are

necessary, compared to n sweeps for forward accumulation.

Reverse mode AD was first published in 1970 by Seppo Linnainmaa in his master thesis.[5][6][7]

Backpropagation of errors in multilayer perceptrons, a technique used in machine learning, is a special case of reverse mode AD.[2]

Forward and reverse  accumulation are  just  two (extreme)  ways  of  traversing the  chain  rule. The problem of  computing a full

Jacobian of f : ℝn → ℝm with a minimum number of arithmetic operations is known as the optimal Jacobian accumulation (OJA)

problem, which is NP-complete.[8] Central to this proof is the idea that there may exist algebraic dependencies between the local

partials that label the edges of the graph. In particular, two or more edge labels may be recognized as equal. The complexity of the

problem is still open if it is assumed that all edge labels are unique and algebraically independent.

Forward  mode  automatic  differentiation  is  accomplished  by  augmenting  the  algebra  of  real  numbers  and  obtaining  a  new

arithmetic. An additional component is added to every number which will represent the derivative of a function at the number, and

all  arithmetic operators  are  extended for the  augmented algebra. The  augmented algebra is  the  algebra of  dual  numbers.  This

approach was generalized by the theory of operational calculus on programming spaces (see Analytic programming space), through

tensor algebra of the dual space.

Replace every number  with the number , where  is a real number, but  is an abstract number with the property 

(an infinitesimal; see Smooth infinitesimal analysis). Using only this, we get for the regular arithmetic

and likewise for subtraction and division.

Now, we may calculate polynomials in this augmented arithmetic. If , then

where  denotes the derivative of  with respect to its first argument, and , called a seed, can be chosen arbitrarily.

The new arithmetic consists of ordered pairs, elements written , with ordinary arithmetics on the first component, and first

order differentiation  arithmetic  on the  second component, as  described above. Extending the  above  results  on polynomials  to

analytic functions we obtain a list of the basic arithmetic and some standard functions for the new arithmetic:

and in general for the primitive function ,

where  and  are the derivatives of  with respect to its first and second arguments, respectively.

When a binary basic arithmetic operation is applied to mixed arguments—the pair  and the real number —the real number is

first lifted to . The derivative of a function  at the point  is now found by calculating  using the above

arithmetic, which gives  as the result.

Multivariate functions can be handled with the same efficiency and mechanisms as univariate functions by adopting a directional

derivative operator. That is, if it is sufficient to compute , the directional derivative  of  at

 in the direction , this may be calculated as  using the same

arithmetic as above. If all the elements of  are desired, then  function evaluations are required. Note that in many optimization

applications, the directional derivative is indeed sufficient.

The above arithmetic can be generalized to calculate second order and higher derivatives of multivariate functions. However, the

arithmetic rules quickly grow very complicated: complexity will be quadratic in the highest derivative degree. Instead, truncated

Taylor polynomial algebra can be used. The resulting arithmetic, defined on generalized dual numbers, allows to efficiently compute

using functions as if  they were a new data type. Once the Taylor polynomial  of  a function is  known, the derivatives  are easily

extracted.  A  rigorous,  general  formulation  is  achieved  through  the  tensor  series  expansion  using  operational  calculus  on

programming spaces.

Operational calculus on programming spaces [9] provides differentiable programming with formal semantics through an algebra of

higher-order constructs. It can thus be used to express the concepts underlying automatic differentiation.

A differentiable programming space  is any subspace of  such that

where  is the tensor algebra of the dual space . When all elements of  are analytic, we call  an analytic programming

space.

Theorem. Any differentiable programming space  is an infinitely differentiable programming space,
meaning that

for any  If all elements of  are analytic, than so are the elements of .

Definition. Let  be a differentiable programming space. The space  spanned by  over ,

where  is called a differentiable programming space of order .

Corollary. A differentiable programming space of order  can be embedded
into the tensor product of the function space  and the subspace  of the tensor
algebra of the dual of the virtual space . By taking the limit as , we consider

where

is the tensor series algebra, the algebra of the infinite formal tensor series, which is a completion of the
tensor algebra  in suitable topology.

Proofs can be found in.[9]

This  means that  we can represent calculation of  derivatives  of  the  map , with  only  one mapping .  We  define  the

operator  as a direct sum of operators

The image  is  a multitensor of  order , which is  a direct sum of  the maps value and all  derivatives of  order ,  all

evaluated at the point 

The operator  satisfies the recursive relation.

that can be used to recursively construct programming spaces of arbitrary order. Only explicit knowledge of  is required

for the construction of  from , which is evident from the above theorem.

The paper [9] proposed an abstract virtual machine capable of constructing and implementing the theory. Such a machine provides a

framework for analytic study of algorithmic procedures through algebraic means.

Claim. The tuple  and the belonging tensor series algebra are sufficient conditions for the
existence and construction of infinitely differentiable programming spaces , through linear
combinations of elements of .

This claim allows a simple definition of such a machine.

Definition (Virtual tensor machine). The tuple  is a virtual tensor machine, where

 is a finite dimensional vector space
 is the virtual memory space

 is an analytic programming space over 

Expansion into a series offers valuable insights into programs through methods of analysis.

There exists a space spanned by the set  over a field . Thus, the expression

is well defined. The operator  is a mapping between function spaces

It also defines a map

by taking the image of the map  at a certain point .

We may construct a map from the space of programs, to the space of polynomials. Note that the space of multivariate polynomials

 is  isomorphic  to  symmetric  algebra ,  which  is  in  turn  a  quotient  of  tensor algebra .  To  any  element  of

 one  can  attach  corresponding  element  of   namely  a  polynomial  map .  Thus,  we  consider  the

completion of the symmetric algebra  as the Formal power series , which is in turn isomorphic to a quotient of tensor

series algebra , arriving at

For any element , the expression  is a map , mapping a program to a Formal power series. We can

express the correspondence between multi-tensors in  and polynomial maps  given by multiple contractions for

all possible indices.

Theorem. For a program  the expansion into an infinite tensor series at the point  is
expressed by multiple contractions

Proof can be found in.[9] Evaluated at , the operator is a generalization of the Shift operator widely used in physics. For a

specific  it is here on denoted by

When the choice of  is arbitrary, we omit it from expressions for brevity. Following this work, a similar approach was taken

by others [10].

Theory offers a generalization of  both forward and reverse mode of  automatic differentiation to arbitrary order, under a single

invariant operator in the theory. This condenses complex notions to simple expressions allowing meaningful manipulations before

being applied to a particular programming space.

Theorem. Composition of maps  is expressed as

where  is an operator on pairs of maps , where  is applied to 
and  to .

Proof can be found in.[9]

Both forward and reverse mode (generalized to arbitrary order) are obtainable using this operator, by fixing the appropriate one of

the two maps. This generalizes both concepts under a single operator in the theory. For example, by considering projections of the

operator onto the space spanned by , and fixing the second map , we retrieve the basic first order forward mode of

automatic differentiation, or reverse mode, by fixing .

Thus the operator alleviates the need for explicit implementation of the higher order chain rule (see Faà di Bruno's formula), as it is

encoded in the structure of the operator itself, which can be efficiently implemented by manipulating its generating map (see [9]).

It is useful to be able to use the -th derivative of a program  as part of a different differentiable program . As such, we

must be able to treat the derivative itself as a differentiable program , while only coding the original program .

Theorem. There exists a reduction of order map  satisfying

for each  where  is the projection of the operator  onto the set .

By the above Theorem, -differentiable -th derivatives of a program  can be extracted by

Thus, we gained the ability of writing a differentiable program acting on derivatives of another program, stressed as crucial by other

authors.[11]

Forward-mode AD is implemented by a nonstandard interpretation of  the program in which real  numbers are replaced by dual

numbers, constants are lifted to dual numbers with a zero epsilon coefficient, and the numeric primitives are lifted to operate on

dual numbers. This nonstandard interpretation is generally implemented using one of two strategies: source code transformation or

operator overloading.

The source code for a function is  replaced by an automatically generated

source  code  that  includes  statements  for  calculating  the  derivatives

interleaved with the original instructions.

Source  code  transformation  can  be  implemented  for  all  programming

languages,  and  it  is  also  easier  for  the  compiler  to  do  compile  time

optimizations. However, the implementation of the AD tool itself  is more

difficult.

Operator overloading is a possibility for source code written in a language

supporting  it.  Objects  for  real  numbers  and  elementary  mathematical

operations  must  be  overloaded  to  cater  for  the  augmented  arithmetic

depicted  above.  This  requires  no  change  in  the  form  or  sequence  of

operations in the original source code for the function to be differentiated,

but often requires changes in basic data types for numbers and vectors to

support overloading and often also involves the insertion of special flagging

operations.

Operator overloading for forward accumulation is easy to implement, and also possible for reverse accumulation. However, current

compilers lag behind in optimizing the code when compared to forward accumulation.

Operator overloading, for both forward and reverse accumulation, can be well-suited to applications where the objects are vectors of

real numbers rather than scalars. This is  because the tape then comprises vector operations; this can facilitate computationally

efficient implementations where each vector operation performs many scalar operations. Vector adjoint algorithmic differentiation

(vector AAD) techniques may be used, for example, to differentiate values calculated by Monte-Carlo simulation.

Examples of operator-overloading implementations of automatic differentiation in C++ are the Adept and Stan libraries.
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