A a e A combined automatic differentiation and array library
P o for C++

About Automatic differentiation Array features Documentation Download Licence

What is Adept?

Adept (Automatic Differentiation using Expression Templates) is a free C++ software library that enables algorithms to be automatically
differentiated, very useful for a wide range of applications that involve mathematical optimization. It uses an operator overloading approach, so
very little code modification is required. Moreover, the way that expression templates have been used and several other important optimizations
mean that reverse-mode differentiation is significantly faster than other C++ libraries that provide equivalent functionality. Learn more...

The fundamental object of most mathematical software is the array, and it is therefore natural to want to differentiate array expressions. There are
numerous mature C++ array libraries that support a wide variety of array operations, but because they also use expression templates to optimize
array expressions, they do not work efficiently with Adept. The solution provided in version 2 of Adept is to use a single expression-template
framework that incorporates both array and automatic-differentiation capabilities at a low level, thus enabling efficient differentiation of array
expressions. Arrays of up to 7 dimensions are supported along with matrix multiplication and basic linear algebra operations. Of course, the library
also works well with passive arrays (those that do not need to be differentiated). Learn more...

News
e October 2017: Adept 2.0 has been released.
Example

Here is an example program that demonstrates both the automatic differentiation and the array capabilities of Adept:

#include <iostream>
#include <adept_arrays.h> // include adept.h if array features not required
int main(int argc, const char** argv) {

using namespace adept;

Stack stack; // Object to store differential statements

aVector x(3); // Independent variables: active vector with 3 elements
x << 1.0, 2.0, 3.0; // Fill vector x

stack.new_recording() ; // Clear any existing differential statements

aReal J = cbrt(sum(abs (x*x*x))); // Compute dependent variable: L3-norm in this case
J.set_gradient(1.0); // Seed the dependent variable

stack.reverse() ; // Reverse-mode differentiation

std::cout << "dJ/dx = "
<< x.get_gradient() << "\n"; // Print the vector of partial derivatives dJ/dx
return 0;

}
When compiled and executed, this program reports the derivative as:
dJd/dx = {0.0917202, 0.366881, 0.825482}

The line defining J can of course be replaced by a much more complicated algorithm with function calls and so on.

Return to Clouds Group | Department of Meteorology | University of Reading This page is maintained by Robin Hogan

