

 Contents

- 1 Notation- 2 Stirling numbers of the first kind- 3 Stirling numbers of the second kind- 4 Lah numbers- 5 Inversion relationships- 6 Symmetric formulae- 7 See also- 8 References

Notation

 $s(n, k)$
Or orfinary (siegec) Stiring unumers of fhe fists kin!
$c(n, k)=\left[\begin{array}{l}n \\ k\end{array}\right]=\mid s(n, k| |$
$S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}=S_{n}^{\left(n_{n}\right)}$

Stirling numbers of the first kind

$(x)_{n}=\sum_{k=0}^{n} s(n, k) x^{k}$.
Where $\left(x_{n}(\right.$ a P Pochhammer symbol denotes the falling factoriii
$(x)_{n}=x(x-1)(x-2) \cdots(x-n+1)$.

$c(n, k)=\left[\begin{array}{l}n \\ k\end{array}\right]=|s(n, k)|=(-1)^{n-k_{s}(n, k)}$

```
#
crrrrrern
```

${ }_{s(n, e r e}{ }_{s(n, t)}$

Stirling numbers of the second kind

$\sum_{k=0}^{n} S(n, k)=B_{n}$
is the m me Bell unmer.

Lah numbers

Inversion relationships

$\sum_{j=0}^{n} s(n, j) S(j, k)=\delta_{n k}$
$\sum_{j=0}^{n} S(n, j) s(j, k)=\delta_{n, k}$

$(-1)^{n} L(n, k)=\sum_{z}(-1)^{s} s(n, z) S(z, k)$,

Symmetric formulae

 $s(n, k)=\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1+j}{n-k+j}\binom{2 n-k}{n-k-j} s(n-k+j, j)$
$S(n, k)=\sum_{j=0}^{n=1}(-1)^{j}\binom{n-1+j}{n-k+j}\binom{2 n-k}{n-k-j} s$
See also

References

