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In mathematics, in the areas of combinatorics and computer science, a Lyndon word is a nonempty string
that is strictly smaller in lexicographic order than all of its rotations. Lyndon words are named after
mathematician Roger Lyndon, who investigated them in 1954, calling them standard lexicographic
sequences.[1] Anatoly Shirshov introduced Lyndon words in 1953 calling them regular words. [2]
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Several equivalent definitions are possible.

A k-ary Lyndon word of length n > 0 is an n-character string over an alphabet of size k, and which is the
unique minimum element in the lexicographical ordering of all its rotations. Being the singularly smallest
rotation implies that a Lyndon word differs from any of its non-trivial rotations, and is therefore aperiodic.[3]

Alternately, a Lyndon word has the property that it is nonempty and, whenever it is split into two nonempty
substrings, the left substring is always lexicographically less than the right substring. That is, if w is a Lyndon
word, and w = uv is any factorization into two substrings, with u and v understood to be non-empty, then
u < v. This definition implies that a string w of length ≥ 2 is a Lyndon word if and only if there exist Lyndon
words u and v such that u < v and w = uv.[4] Although there may be more than one choice of u and v with
this property, there is a particular choice, called the standard factorization, in which v is as long as
possible.[5]

The Lyndon words over the two-symbol binary alphabet {0,1}, sorted by length and then lexicographically
within each length class, form an infinite sequence that begins

0, 1, 01, 001, 011, 0001, 0011, 0111, 00001, 00011, 00101, 00111, 01011, 01111, ...

The first string that does not belong to this sequence, "00", is omitted because it is periodic (it consists of two
repetitions of the substring "0"); the second omitted string, "10", is aperiodic but is not minimal in its
permutation class as it can be cyclically permuted to the smaller string "01".

The numbers of binary Lyndon words of each length, starting with length zero, form the integer sequence

0, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, ... ((sequence A001037 in the OEIS), from k = 1 on).

Lyndon words correspond to aperiodic necklace class representatives and can thus be counted with Moreau's
necklace-counting function.[3][6]

Duval (1988) provides an efficient algorithm for listing the Lyndon words of length at most n with a given
alphabet size s in lexicographic order. If w is one of the words in the sequence, then the next word after w
can be found by the following steps:

Repeat the symbols from w to form a new word x of length exactly n, where the ith symbol of x is the
same as the symbol at position (i mod length(w)) of w.

1. 

As long as the final symbol of x is the last symbol in the sorted ordering of the alphabet, remove it,
producing a shorter word.

2. 

Replace the final remaining symbol of x by its successor in the sorted ordering of the alphabet.3. 

The worst-case time to generate the successor of a word w by this procedure is O(n). However, if the words
being generated are stored in an array of length n, and the construction of x from w is performed by adding
symbols onto the end of w rather than by making a new copy of w, then the average time to generate the
successor of w (assuming each word is equally likely) is constant. Therefore, the sequence of all Lyndon
words of length at most n can be generated in time proportional to the length of the sequence.[7] A constant
fraction of the words in this sequence have length exactly n, so the same procedure can be used to efficiently
generate words of length exactly n or words whose length divides n, by filtering out the generated words that
do not fit these criteria.

According to the Chen–Fox–Lyndon theorem, every string may be formed in a unique way by concatenating
a sequence of Lyndon words, in such a way that the words in the sequence are nonincreasing
lexicographically.[8] The final Lyndon word in this sequence is the lexicographically smallest suffix of the
given string.[9] A factorization into a nonincreasing sequence of Lyndon words (the so-called Lyndon
factorization) can be constructed in linear time.[9] Lyndon factorizations may be used as part of a bijective
variant of the Burrows–Wheeler transform for data compression,[10] and in algorithms for digital
geometry.[11]

Duval (1983) developed an algorithm for finding the standard factorization that runs in linear time and
constant space. It iterates over a string trying to find as long a Lyndon word as possible. When it finds one, it
adds it to the result list and proceeds to search the remaining part of the string. The resulting list of strings is
the standard factorization of the given string. More formal description of the algorithm follows.

Given a string S of length N, one should proceed with the following steps:

Let m be the index of the symbol-candidate to be appended to the already collected symbols. Initially,
m = 1 (indices of symbols in a string start from zero).

1. 

Let k be the index of the symbol we would compare others to. Initially, k = 0.2. 
While k and m are less than N, compare S[k] (the k-th symbol of the string S) to S[m]. There are three
possible outcomes:

S[k] is equal to S[m]: append S[m] to the current collected symbols. Increment k and m.1. 
S[k] is less than S[m]: if we append S[m] to the current collected symbols, we'll get a Lyndon
word. But we can't add it to the result list yet because it may be just a part of a larger Lyndon
word. Thus, just increment m and set k to 0 so the next symbol would be compared to the first
one in the string.

2. 

S[k] is greater than S[m]: if we append S[m] to the current collected symbols, it will be neither
a Lyndon word nor a possible beginning of one. Thus, add the first m-k collected symbols to the
result list, remove them from the string, set m to 1 and k to 0 so that they point to the second and
the first symbol of the string respectively.

3. 

3. 

When m > N, it is essentially the same as encountering minus infinity, thus, add the first m-k collected
symbols to the result list after removing them from the string, set m to 1 and k to 0, and return to the
previous step.

4. 

Add S to the result list.5. 

If one concatenates together, in lexicographic order, all the Lyndon words that have length dividing a given
number n, the result is a de Bruijn sequence, a circular sequence of symbols such that each possible length-n
sequence appears exactly once as one of its contiguous subsequences. For example, the concatenation of the
binary Lyndon words whose length divides four is

0 0001 0011 01 0111 1

This construction, together with the efficient generation of Lyndon words, provides an efficient method for
constructing a particular de Bruijn sequence in linear time and logarithmic space.[12]

Lyndon words have an application to the description of free Lie algebras, in constructing a basis for the
homogeneous part of a given degree; this was Lyndon's original motivation for introducing these words.[4]

Lyndon words may be understood as a special case of Hall sets.[4]

A theorem of Radford states that a shuffle algebra over a field of characteristic 0 can be viewed as a
polynomial algebra over the Lyndon words. More precisely, let A be an alphabet, let k be a field of
characteristic 0 (or, more general, a commutative ℚ-algebra), and let R be the free noncommutative
k-algebra k  xa | a ∈ A . The words over A can then be identified with the "noncommutative monomials"
(i.e., products of the xa) in R; namely, we identify a word (a1,a2,...,an) with the monomial xa1xa2...xan. Thus,
the words over A form a k-vector space basis of R. Then, a shuffle product is defined on R; this is a
k-bilinear, associative and commutative product, which is denoted by ш, and which on the words can be
recursively defined by

1 ш v = v for any word v;
u ш 1 = u for any word u;
ua ш vb = (u ш vb)a + (ua ш v)b for any a,b ∈ A and any words u and v.

The shuffle algebra on the alphabet A is defined to be the additive group R endowed with ш as
multiplication. Radford's theorem[13] now states that the Lyndon words are algebraically independent
elements of this shuffle algebra, and generate it; thus, the shuffle algebra is isomorphic to a polynomial ring
over k, with the indeterminates corresponding to the Lyndon words.[13]
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