
The de Bruijn sequence for alphabet
size k = 2 and substring length n = 2.
In general there are many sequences for
a particular n and k but in this example
it is unique, up to cycling.

A de Bruijn graph. Every four-digit
sequence occurs exactly once if one
traverses every edge exactly once and
returns to one's starting point (an
Eulerian cycle). Every three-digit
sequence occurs exactly once if one
visits every node exactly once (a
Hamiltonian path).

From Wikipedia, the free encyclopedia

In combinatorial mathematics, a de Bruijn sequence of order n on a
size-k alphabet A is a cyclic sequence in which every possible
length-n string on A occurs exactly once as a substring (i.e., as a
contiguous subsequence). Such a sequence is denoted by B(k, n) and
has length kn, which is also the number of distinct substrings of
length n on A; de Bruijn sequences are therefore optimally short.

There are distinct de Bruijn sequences B(k, n).

The sequences are named after the Dutch mathematician Nicolaas
Govert de Bruijn. According to him,[1] the existence of de Bruijn
sequences for each order together with the above properties were
first proved, for the case of alphabets with two elements, by Camille
Flye Sainte-Marie in 1894,[2] whereas the generalization to larger
alphabets is originally due to Tanja van Aardenne-Ehrenfest and
himself.

In most applications, A = {0,1}.

1 History
2 Examples
3 Construction

3.1 Example using de Bruijn graph
3.2 Example using inverse Burrows—Wheeler

transform[11]

3.3 Algorithm
4 Uses
5 f-fold de Bruijn sequences
6 De Bruijn torus
7 De Bruijn decoding
8 See also
9 Notes
10 References
11 External links

The earliest known example of a de Bruijn sequence comes from Sanskrit prosody where, since the work of
Pingala, each possible three-syllable pattern of long and short syllables is given a name, such as 'y' for short–
long–long and 'm' for long–long–long. To remember these names, the mnemonic yamātārājabhānasalagām is
used, in which each three-syllable pattern occurs starting at its name: 'yamātā' has a short–long–long pattern,
'mātārā' has a long–long–long pattern, and so on, until 'salagām' which has a short–short–long pattern. This
mnemonic, equivalent to a de Bruijn sequence on binary 3-tuples, is of unknown antiquity, but is at least as
old as C. P. Brown's 1869 book on Sanskrit prosody that mentions it and considers it "an ancient line, written
by Pāṇini".[3][4][5][6][7]

In 1894, A. de Rivière raised the question in an issue of the French problem journal L'Intermédiaire des
Mathématiciens, of the existence of a circular arrangement of length which contains all binary
sequences of length . The problem was solved, along with the count , by C. Flye Sainte-Marie in
the same year.[1] This was largely forgotten, and Martin (1934) proved the existence of such cycles for
general alphabet size in place of 2, with an algorithm for constructing them. Finally, when in 1944 Kees
Posthumus conjectured the count for binary sequences, de Bruijn proved the conjecture in 1946,
through which the problem became well-known.[1]

Karl Popper independently describes these objects in his The Logic of Scientific Discovery (1934), calling
them "shortest random-like sequences".[8]

Taking A = {0, 1}, there are two distinct B(2, 3): 00010111 and 11101000, one being the reverse or
negation of the other.
Two of the 2048 possible B(2, 5) in the same alphabet are 00000100011001010011101011011111 and
00000101001000111110111001101011.

The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn
graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph).[9]

An alternative construction involves concatenating together, in lexicographic order, all the Lyndon words
whose length divides n.[10]

An inverse Burrows—Wheeler transform can be used to generate the required Lyndon words in
lexicographic order.[11]

De Bruijn sequences can also be constructed using shift registers[12] or via finite fields.[13]

Example using de Bruijn graph

Goal: to construct a B(2, 4) de Bruijn sequence of length 24 = 16
using Eulerian (n − 1 = 4 − 1 = 3) 3-D de Bruijn graph cycle.

Each edge in this 3-dimensional de Bruijn graph corresponds to a
sequence of four digits: the three digits that label the vertex that the
edge is leaving followed by the one that labels the edge. If one
traverses the edge labeled 1 from 000, one arrives at 001, thereby
indicating the presence of the subsequence 0001 in the de Bruijn
sequence. To traverse each edge exactly once is to use each of the 16
four-digit sequences exactly once.

For example, suppose we follow the following Eulerian path through
these nodes:

000, 000, 001, 011, 111, 111, 110, 101, 011,

110, 100, 001, 010, 101, 010, 100, 000.

These are the output sequences of length k:

0 0 0 0
_ 0 0 0 1
_ _ 0 0 1 1

This corresponds to the following de Bruijn sequence:

0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

The eight vertices appear in the sequence in the following way:

 {0 0 0} 0 1 1 1 1 0 1 1 0 0 1 0 1
 0 {0 0 0} 1 1 1 1 0 1 1 0 0 1 0 1
 0 0 {0 0 1} 1 1 1 0 1 1 0 0 1 0 1
 0 0 0 {0 1 1} 1 1 0 1 1 0 0 1 0 1
 0 0 0 0 {1 1 1} 1 0 1 1 0 0 1 0 1
 0 0 0 0 1 {1 1 1} 0 1 1 0 0 1 0 1
 0 0 0 0 1 1 {1 1 0} 1 1 0 0 1 0 1
 0 0 0 0 1 1 1 {1 0 1} 1 0 0 1 0 1
 0 0 0 0 1 1 1 1 {0 1 1} 0 0 1 0 1
 0 0 0 0 1 1 1 1 0 {1 1 0} 0 1 0 1
 0 0 0 0 1 1 1 1 0 1 {1 0 0} 1 0 1
 0 0 0 0 1 1 1 1 0 1 1 {0 0 1} 0 1
 0 0 0 0 1 1 1 1 0 1 1 0 {0 1 0} 1
 0 0 0 0 1 1 1 1 0 1 1 0 0 {1 0 1}
 ... 0} 0 0 0 1 1 1 1 0 1 1 0 0 1 {0 1 ...
 ... 0 0} 0 0 1 1 1 1 0 1 1 0 0 1 0 {1 ...

...and then we return to the starting point. Each of the eight 3-digit sequences (corresponding to the eight
vertices) appears exactly twice, and each of the sixteen 4-digit sequences (corresponding to the 16 edges)
appears exactly once.

Example using inverse Burrows—Wheeler transform[11]

Mathematically, an inverse Burrows—Wheeler transform on a word w generates a multi-set of equivalence
classes consisting of strings and their rotations. These equivalence classes of strings each contain a Lyndon
word as a unique minimum element, so the inverse Burrows—Wheeler transform can be considered to
generate a set of Lyndon words. It can be shown that if we perform the inverse Burrows—Wheeler
transform on a word w consisting of the size-k alphabet repeated kn-1 times (so that it will produce a word
the same length as the desired de Bruijn sequence), then the result will be the set of all Lyndon words whose
length divides n. It follows that arranging these Lyndon words in lexicographic order will yield a de Bruijn
sequence B(k,n), and that this will be the first de Bruijn sequence in lexicographic order. The following
method can be used to perform the inverse Burrows—Wheeler transform, using its standard permutation:

Sort the characters in the string w, yielding a new string w'1.
Position the string w' above the string w, and map each letter's position in w' to its position in w while
preserving order. This process defines the standard permutation.

2.

Write this permutation in cycle notation with the smallest position in each cycle first, and the cycles
sorted in increasing order.

3.

For each cycle, replace each number with the corresponding letter from string w' in that position.4.
Each cycle has now become a Lyndon word, and they are arranged in lexicographic order, so dropping
the parentheses yields the first de Bruijn sequence.

5.

For example, to construct the smallest B(2,4) de Bruijn sequence of length 24 = 16, repeat the alphabet (ab)
8 times yielding w=abababababababab. Sort the characters in w, yielding w'=aaaaaaaabbbbbbbb. Position w'
above w as shown, and map each element in w' to the corresponding element in w by drawing a line. Number
the columns as shown so we can read the cycles of the permutation:

Starting from the left, the cycles are: (1) (2 3 5 9) (4 7 13 10) (6 11) (8 15 14 12) (16).

Then, replacing each number by the corresponding letter in w' from that column yields: (a)(aaab)(aabb)
(ab)(abbb)(b).

These are all of the Lyndon words whose length divides 4, in lexicographic order, so dropping the
parentheses gives B(2,4) = aaaabaabbababbbb.

Algorithm

The following Python code calculates a de Bruijn sequence, given k and n, based on an algorithm from Frank
Ruskey's Combinatorial Generation.[14]

def de_bruijn(k, n):
"""

 de Bruijn sequence for alphabet k
 and subsequences of length n.
 """

try:
let's see if k can be cast to an integer;
if so, make our alphabet a list
_ = int(k)
alphabet = list(map(str, range(k)))

except (ValueError, TypeError):
alphabet = k
k = len(k)

a = [0] * k * n
sequence = []

def db(t, p):
if t > n:

if n % p == 0:
sequence.extend(a[1:p + 1])

else:
a[t] = a[t - p]
db(t + 1, p)
for j in range(a[t - p] + 1, k):

a[t] = j
db(t + 1, t)

db(1, 1)
return "".join(alphabet[i] for i in sequence)

print(de_bruijn(2, 3))
print(de_bruijn("abcd", 2))

which prints

00010111
aabacadbbcbdccdd

Note that these sequences are understood to "wrap around" in a cycle. For example, the first sequence
contains 110 and 100 in this fashion.

The sequence can be used to shorten a brute-force attack on a PIN-like code lock that does not have an
"enter" key and accepts the last n digits entered. For example, a digital door lock with a 4-digit code would
have B(10, 4) solutions, with length 10 000. Therefore, only at most 10 000 + 3 = 10 003 (as the solutions
are cyclic) presses are needed to open the lock. Trying all codes separately would require
4 × 10 000 = 40 000 presses.

The symbols of a de Bruijn sequence written around a circular object (such as a wheel of a robot) can be
used to identify its angle by examining the n consecutive symbols facing a fixed point. This angle-encoding
problem is known as the "rotating drum problem".[15] Gray codes can be used as similar rotary positional
encoding mechanisms.

De Bruijn cycles are of general use in neuroscience and psychology experiments that examine the effect of
stimulus order upon neural systems,[16] and can be specially crafted for use with functional magnetic
resonance imaging.[17]

A de Bruijn sequence can be used to quickly find the index of the least significant set bit ("right-most 1") or
the most significant set bit ("left-most 1") in a word using bitwise operations.[18][19] An example of returning
the index of the least significant bit from a 32 bit unsigned integer is given below using bit manipulation and
multiplication.

unsigned int v;
int r;
static const int MultiplyDeBruijnBitPosition[32] =
{

0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9

};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x077CB531U)) >> 27];

The index of the LSB in v is stored in r and if v has no set bits the operation returns 0. The constant,
0x077CB531U, in the expression is a de Bruijn sequence.

f-fold n-ary de Bruijn sequence' is an extension of the notion n-ary de Bruijn sequence, such that the
sequence of the length contains every possible subsequence of the length n exactly f times. For
example, for the cyclic sequences 11100010 and 11101000 are two-fold 2-ary binary de Bruijn
sequences. The number of two-fold de Bruijn sequences, for is , the other known
numbers[20] are , , and .

A de Bruijn torus is a toroidal array with the property that every k-ary m-by-n matrix occurs exactly once.

Such a pattern can be used for two-dimensional positional encoding in a fashion analogous to that described
above for rotary encoding. Position can be determined by examining the m-by-n matrix directly adjacent to
the sensor, and calculating its position on the de Bruijn torus.

Computing the position of a particular unique tuple or matrix in a de Bruijn sequence or torus is known as
the de Bruijn Decoding Problem. Efficient O(n log n) decoding algorithms exists for special, recursively
constructed sequences[21] and extend to the two dimensional case.[22] De Bruijn decoding is of interest, e.g.,
in cases where large sequences or tori are used for positional encoding.

De Bruijn graph
De Bruijn torus
Normal number
Linear feedback shift register
n-sequence

De Bruijn (1975).1.
Flye Sainte-Marie, C. (1894), "Solution to question
nr. 48", L'Intermédiaire des Mathématiciens, 1:
107–110

2.

C. P. Brown, 1869, Sanskrit Prosody and
Numerical Symbols Explained, p. 28
(https://archive.org/stream
/sanskritprosody00browgoog#page/n44/mode/2up)

3.

Subhash Kak, 2000, Yamātārājabhānasalagāṃ an
interesting combinatoric sūtra (http://202.41.82.144
/rawdataupload/upload/insa/INSA_2
/200059d2_123.pdf), Indian Journal of History of
Science, 35.2 (2000), 123–127.

4.

Rachel W. Hall. Math for poets and drummers
(http://www.sju.edu/~rhall/mathforpoets.pdf). Math
Horizons 15 (2008) 10–11.

5.

Donald Ervin Knuth (2006). The Art of Computer
Programming, Fascicle 4: Generating All Trees –
History of Combinatorial Generation. Addison–
Wesley. p. 50. ISBN 978-0-321-33570-8.

6.

Stein, Sherman K. (1963),
"Yamátárájabhánasalagám", The Man-made
Universe: An Introduction to the Spirit of
Mathematics, pp. 110–118. Reprinted in
Wardhaugh, Benjamin, ed. (2012), A Wealth of
Numbers: An Anthology of 500 Years of Popular
Mathematics Writing, Princeton Univ. Press, pp.
139–144.

7.

Karl Popper (2002) [1934]. The logic of scientific
discovery. Routledge. p. 294.
ISBN 978-0-415-27843-0.

8.

Klein, Andreas (2013), Stream Ciphers, Springer,
p. 59, ISBN 9781447150794.

9.

According to Berstel & Perrin (2007), the sequence
generated in this way was first described (with a
different generation method) by Martin (1934), and
the connection between it and Lyndon words was
observed by Fredricksen & Maiorana (1978).

10.

Higgins, Peter (November 2012). "Burrows-
Wheeler transforms and de Bruijn words" (PDF).
Retrieved February 11, 2017.

11.

Goresky, Mark; Klapper, Andrew (2012), "8.2.5
Shift register generation of de Bruijn sequences",
Algebraic Shift Register Sequences, Cambridge
University Press, pp. 174–175,
ISBN 9781107014992.

12.

Ralston, Anthony (1982), "de Bruijn sequences—a
model example of the interaction of discrete
mathematics and computer science", Mathematics
Magazine, 55 (3): 131–143, doi:10.2307/2690079,
MR 653429. See in particular "the finite field
approach", pp. 136–139.

13.

"De Bruijn sequences". Sage. Retrieved
3 November 2016.

14.

van Lint, J. H.; Wilson, Richard Michael (2001), A
Course in Combinatorics, Cambridge University
Press, p. 71, ISBN 9780521006019.

15.

GK Aguirre, MG Mattar, L Magis-Weinberg.
(2011) "de Bruijn cycles for neural decoding"..
NeuroImage 56: 1293–1300

16.

"De Bruijn cycle generator".17.
Anderson, Sean Eron (1997–2009). "Bit Twiddling
Hacks". Stanford University. Retrieved
2009-02-12.

18.

Busch, Philip (2009). "Computing Trailing Zeros
HOWTO". Retrieved 2015-01-29.

19.

Osipov (2016).20.
Tuliani (2001).21.
Hurlbert & Isaak (1993).22.

van Aardenne-Ehrenfest, T.; de Bruijn, N. G. (1951), "Circuits and trees in oriented linear graphs"
(PDF), Simon Stevin, 28: 203–217, MR 0047311.
Berstel, Jean; Perrin, Dominique (2007), "The origins of combinatorics on words" (PDF), European
Journal of Combinatorics, 28 (3): 996–1022, doi:10.1016/j.ejc.2005.07.019, MR 2300777.
de Bruijn, N. G. (1946), "A combinatorial problem" (PDF), Proc. Koninklijke Nederlandse Akademie v.
Wetenschappen, 49: 758–764, MR 0018142, Indagationes Mathematicae 8: 461–467.
de Bruijn, N. G. (1975), Acknowledgement of Priority to C. Flye Sainte-Marie on the counting of
circular arrangements of 2n zeros and ones that show each n-letter word exactly once (PDF),
T.H.-Report 75-WSK-06, Technological University Eindhoven.
Fredricksen, Harold; Maiorana, James (1978), "Necklaces of beads in k colors and k-ary de Bruijn
sequences", Discrete Mathematics, 23 (3): 207–210, doi:10.1016/0012-365X(78)90002-X,
MR 523071.
Hurlbert, Glenn; Isaak, Garth (1993), "On the de Bruijn torus problem" (PDF), Journal of
Combinatorial Theory, Series A, 64 (1): 50–62, doi:10.1016/0097-3165(93)90087-O, MR 1239511.
Martin, M. H. (1934), "A problem in arrangements" (PDF), Bulletin of the American Mathematical
Society, 40 (12): 859–864, doi:10.1090/S0002-9904-1934-05988-3, MR 1562989.
Ralston, Anthony (1982), "de Bruijn sequences—a model example of the interaction of discrete
mathematics and computer science", Mathematics Magazine, 55 (3): 131–143, doi:10.2307/2690079,
MR 653429.
Tuliani, Jonathan (2001), "de Bruijn sequences with efficient decoding algorithms", Discrete
Mathematics, 226 (1-3): 313–336, doi:10.1016/S0012-365X(00)00117-5, MR 1802599.
Osipov, Vladimir (2016), "Wavelet Analysis on Symbolic Sequences and Two-Fold de Bruijn
Sequences", Journal of Statistical Physics: 1–24, doi:10.1007/s10955-016-1537-5, ISSN 1572-9613.

Weisstein, Eric W. "de Bruijn Sequence". MathWorld.

"Sloane's A166315 : Lexicographically smallest binary de Bruijn sequences". The On-Line
Encyclopedia of Integer Sequences. OEIS Foundation.
De Bruijn sequence (http://chessprogramming.wikispaces.com/De+Bruijn+sequence)
Combinatorial Object Server (http://www.theory.csc.uvic.ca/~cos/), includes a de Bruijn sequence
generator among many others
CGI generator (http://www.hakank.org/comb/debruijn.cgi)
Applet generator (http://www.hakank.org/comb/deBruijnApplet.html)
Javascript generator and decoder (http://jgeisler0303.github.io/deBruijnDecode/). Implementation of J.
Tuliani's algorithm.
Door code lock (http://www.stefangeens.com/000435.html)
Minimal arrays containing all sub-array combinations of symbols: De Bruijn sequences and tori
(https://web.archive.org/web/20140527202958/http://lcni.uoregon.edu/~dow/Geek_art
/Minimal_combinatorics/Minimal_arrays_containing_all_combinations.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=De_Bruijn_sequence&oldid=774138029"

Categories: Binary sequences Enumerative combinatorics

This page was last modified on 6 April 2017, at 14:35.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered
trademark of the Wikimedia Foundation, Inc., a non-profit organization.

