
The de Bruijn sequence for alphabet
size k = 2 and substring length n = 2.
In general there are many sequences for
a particular n and k but in this example
it is unique, up to cycling.

A de Bruijn graph. Every four-digit
sequence occurs exactly once if one
traverses every edge exactly once and
returns to one's starting point (an
Eulerian cycle). Every three-digit
sequence occurs exactly once if one
visits every node exactly once (a
Hamiltonian path).
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In combinatorial mathematics, a de Bruijn sequence of order n on a
size-k alphabet A is a cyclic sequence in which every possible
length-n string on A occurs exactly once as a substring (i.e., as a
contiguous subsequence). Such a sequence is denoted by B(k, n) and
has length kn, which is also the number of distinct substrings of
length n on A; de Bruijn sequences are therefore optimally short.

There are  distinct de Bruijn sequences B(k, n).

The sequences are named after the Dutch mathematician Nicolaas
Govert de Bruijn. According to him,[1] the existence of de Bruijn
sequences for each order together with the above properties were
first proved, for the case of alphabets with two elements, by Camille
Flye Sainte-Marie in 1894,[2] whereas the generalization to larger
alphabets is originally due to Tanja van Aardenne-Ehrenfest and
himself.

In most applications, A = {0,1}.
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The earliest known example of a de Bruijn sequence comes from Sanskrit prosody where, since the work of
Pingala, each possible three-syllable pattern of long and short syllables is given a name, such as 'y' for short–
long–long and 'm' for long–long–long. To remember these names, the mnemonic yamātārājabhānasalagām is
used, in which each three-syllable pattern occurs starting at its name: 'yamātā' has a short–long–long pattern,
'mātārā' has a long–long–long pattern, and so on, until 'salagām' which has a short–short–long pattern. This
mnemonic, equivalent to a de Bruijn sequence on binary 3-tuples, is of unknown antiquity, but is at least as
old as C. P. Brown's 1869 book on Sanskrit prosody that mentions it and considers it "an ancient line, written
by Pāṇini".[3][4][5][6][7]

In 1894, A. de Rivière raised the question in an issue of the French problem journal L'Intermédiaire des
Mathématiciens, of the existence of a circular arrangement of length  which contains all  binary
sequences of length . The problem was solved, along with the count , by C. Flye Sainte-Marie in
the same year.[1] This was largely forgotten, and Martin (1934) proved the existence of such cycles for
general alphabet size in place of 2, with an algorithm for constructing them. Finally, when in 1944 Kees
Posthumus conjectured the count  for binary sequences, de Bruijn proved the conjecture in 1946,
through which the problem became well-known.[1]

Karl Popper independently describes these objects in his The Logic of Scientific Discovery (1934), calling
them "shortest random-like sequences".[8]

Taking A = {0, 1}, there are two distinct B(2, 3): 00010111 and 11101000, one being the reverse or
negation of the other.
Two of the 2048 possible B(2, 5) in the same alphabet are 00000100011001010011101011011111 and
00000101001000111110111001101011.

The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn
graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph).[9]

An alternative construction involves concatenating together, in lexicographic order, all the Lyndon words
whose length divides n.[10]

An inverse Burrows—Wheeler transform can be used to generate the required Lyndon words in
lexicographic order.[11]

De Bruijn sequences can also be constructed using shift registers[12] or via finite fields.[13]

Example using de Bruijn graph

Goal: to construct a B(2, 4) de Bruijn sequence of length 24 = 16
using Eulerian (n − 1 = 4 − 1 = 3) 3-D de Bruijn graph cycle.

Each edge in this 3-dimensional de Bruijn graph corresponds to a
sequence of four digits: the three digits that label the vertex that the
edge is leaving followed by the one that labels the edge. If one
traverses the edge labeled 1 from 000, one arrives at 001, thereby
indicating the presence of the subsequence 0001 in the de Bruijn
sequence. To traverse each edge exactly once is to use each of the 16
four-digit sequences exactly once.

For example, suppose we follow the following Eulerian path through
these nodes:

000, 000, 001, 011, 111, 111, 110, 101, 011,

110, 100, 001, 010, 101, 010, 100, 000.

These are the output sequences of length k:

0 0 0 0
_ 0 0 0 1
_ _ 0 0 1 1

This corresponds to the following de Bruijn sequence:

0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1

The eight vertices appear in the sequence in the following way:

      {0  0  0} 0  1  1  1  1  0  1  1  0  0  1  0  1
       0 {0  0  0} 1  1  1  1  0  1  1  0  0  1  0  1
       0  0 {0  0  1} 1  1  1  0  1  1  0  0  1  0  1
       0  0  0 {0  1  1} 1  1  0  1  1  0  0  1  0  1
       0  0  0  0 {1  1  1} 1  0  1  1  0  0  1  0  1
       0  0  0  0  1 {1  1  1} 0  1  1  0  0  1  0  1
       0  0  0  0  1  1 {1  1  0} 1  1  0  0  1  0  1
       0  0  0  0  1  1  1 {1  0  1} 1  0  0  1  0  1
       0  0  0  0  1  1  1  1 {0  1  1} 0  0  1  0  1
       0  0  0  0  1  1  1  1  0 {1  1  0} 0  1  0  1
       0  0  0  0  1  1  1  1  0  1 {1  0  0} 1  0  1
       0  0  0  0  1  1  1  1  0  1  1 {0  0  1} 0  1
       0  0  0  0  1  1  1  1  0  1  1  0 {0  1  0} 1
       0  0  0  0  1  1  1  1  0  1  1  0  0 {1  0  1}
   ... 0} 0  0  0  1  1  1  1  0  1  1  0  0  1 {0  1 ...
   ... 0  0} 0  0  1  1  1  1  0  1  1  0  0  1  0 {1 ...

...and then we return to the starting point. Each of the eight 3-digit sequences (corresponding to the eight
vertices) appears exactly twice, and each of the sixteen 4-digit sequences (corresponding to the 16 edges)
appears exactly once.

Example using inverse Burrows—Wheeler transform[11]

Mathematically, an inverse Burrows—Wheeler transform on a word w generates a multi-set of equivalence
classes consisting of strings and their rotations. These equivalence classes of strings each contain a Lyndon
word as a unique minimum element, so the inverse Burrows—Wheeler transform can be considered to
generate a set of Lyndon words. It can be shown that if we perform the inverse Burrows—Wheeler
transform on a word w consisting of the size-k alphabet repeated kn-1 times (so that it will produce a word
the same length as the desired de Bruijn sequence), then the result will be the set of all Lyndon words whose
length divides n. It follows that arranging these Lyndon words in lexicographic order will yield a de Bruijn
sequence B(k,n), and that this will be the first de Bruijn sequence in lexicographic order. The following
method can be used to perform the inverse Burrows—Wheeler transform, using its standard permutation:

Sort the characters in the string w, yielding a new string w'1. 
Position the string w' above the string w, and map each letter's position in w' to its position in w while
preserving order. This process defines the standard permutation.

2. 

Write this permutation in cycle notation with the smallest position in each cycle first, and the cycles
sorted in increasing order.

3. 

For each cycle, replace each number with the corresponding letter from string w' in that position.4. 
Each cycle has now become a Lyndon word, and they are arranged in lexicographic order, so dropping
the parentheses yields the first de Bruijn sequence.

5. 

For example, to construct the smallest B(2,4) de Bruijn sequence of length 24 = 16, repeat the alphabet (ab)
8 times yielding w=abababababababab. Sort the characters in w, yielding w'=aaaaaaaabbbbbbbb. Position w'
above w as shown, and map each element in w' to the corresponding element in w by drawing a line. Number
the columns as shown so we can read the cycles of the permutation:

Starting from the left, the cycles are: (1) (2 3 5 9) (4 7 13 10) (6 11) (8 15 14 12) (16).

Then, replacing each number by the corresponding letter in w' from that column yields: (a)(aaab)(aabb)
(ab)(abbb)(b).

These are all of the Lyndon words whose length divides 4, in lexicographic order, so dropping the
parentheses gives B(2,4) = aaaabaabbababbbb.

Algorithm

The following Python code calculates a de Bruijn sequence, given k and n, based on an algorithm from Frank
Ruskey's Combinatorial Generation.[14]

def de_bruijn(k, n):
"""

    de Bruijn sequence for alphabet k
    and subsequences of length n.
    """

try:
# let's see if k can be cast to an integer;
# if so, make our alphabet a list
_ = int(k)
alphabet = list(map(str, range(k)))

except (ValueError, TypeError):
alphabet = k
k = len(k)

a = [0] * k * n
sequence = []

def db(t, p):
if t > n:

if n % p == 0:
sequence.extend(a[1:p + 1])

else:
a[t] = a[t - p]
db(t + 1, p)
for j in range(a[t - p] + 1, k):

a[t] = j
db(t + 1, t)

db(1, 1)
return "".join(alphabet[i] for i in sequence)

print(de_bruijn(2, 3))
print(de_bruijn("abcd", 2))

which prints

00010111
aabacadbbcbdccdd

Note that these sequences are understood to "wrap around" in a cycle. For example, the first sequence
contains 110 and 100 in this fashion.

The sequence can be used to shorten a brute-force attack on a PIN-like code lock that does not have an
"enter" key and accepts the last n digits entered. For example, a digital door lock with a 4-digit code would
have B(10, 4) solutions, with length 10 000. Therefore, only at most 10 000 + 3 = 10 003 (as the solutions
are cyclic) presses are needed to open the lock. Trying all codes separately would require
4 × 10 000 = 40 000 presses.

The symbols of a de Bruijn sequence written around a circular object (such as a wheel of a robot) can be
used to identify its angle by examining the n consecutive symbols facing a fixed point. This angle-encoding
problem is known as the "rotating drum problem".[15] Gray codes can be used as similar rotary positional
encoding mechanisms.

De Bruijn cycles are of general use in neuroscience and psychology experiments that examine the effect of
stimulus order upon neural systems,[16] and can be specially crafted for use with functional magnetic
resonance imaging.[17]

A de Bruijn sequence can be used to quickly find the index of the least significant set bit ("right-most 1") or
the most significant set bit ("left-most 1") in a word using bitwise operations.[18][19] An example of returning
the index of the least significant bit from a 32 bit unsigned integer is given below using bit manipulation and
multiplication.

unsigned int v;   
int r;           
static const int MultiplyDeBruijnBitPosition[32] = 
{

0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9

};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x077CB531U)) >> 27];

The index of the LSB in v is stored in r and if v has no set bits the operation returns 0. The constant,
0x077CB531U, in the expression is a de Bruijn sequence.

f-fold n-ary de Bruijn sequence' is an extension of the notion n-ary de Bruijn sequence, such that the
sequence of the length  contains every possible subsequence of the length n exactly f times. For
example, for  the cyclic sequences 11100010 and 11101000 are two-fold 2-ary binary de Bruijn
sequences. The number of two-fold de Bruijn sequences,  for  is , the other known
numbers[20] are , , and .

A de Bruijn torus is a toroidal array with the property that every k-ary m-by-n matrix occurs exactly once.

Such a pattern can be used for two-dimensional positional encoding in a fashion analogous to that described
above for rotary encoding. Position can be determined by examining the m-by-n matrix directly adjacent to
the sensor, and calculating its position on the de Bruijn torus.

Computing the position of a particular unique tuple or matrix in a de Bruijn sequence or torus is known as
the de Bruijn Decoding Problem. Efficient O(n log n) decoding algorithms exists for special, recursively
constructed sequences[21] and extend to the two dimensional case.[22] De Bruijn decoding is of interest, e.g.,
in cases where large sequences or tori are used for positional encoding.

De Bruijn graph
De Bruijn torus
Normal number
Linear feedback shift register
n-sequence
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