
Problems with solutions in the Analysis of Algorithms c© Minko Markov

Basis. The first time the execution reaches line 3, it is the case that i = n. The current
subarray A[i+ 1, . . . , n] is empty and thus, vacuously, it consists of zero in number biggest
elements from A ′[1, . . . , n], in sorted order. A[1, . . . , n] is a heap by Lemma 17, applied to
line 1.

Maintenance. Assume the claim holds at a certain execution of line 3 and the for loop
is to be executed at least once more. Let us call the array A[] at that moment, A ′′[]. By
the maintenance hypothesis, A ′′[i + 1, . . . , n] are n − i in number maximum elements of
A ′[], in sorted order. By the maintenance hypothesis again, A ′′[1] is a maximum element of
A ′′[1, . . . , i]. After the swap at line 4, A ′′[i, . . . , n] are n− i in number maximum elements
of A ′[], in sorted order. Relative to the new value of i the next time the execution is at
line 3, the first sentence of the invariant holds.

The second sentence holds, too, by applying Lemma 15 or Lemma 14, whichever one is
applicable (depending on whether the recursive or the iterative Heapify is used), at line 6.
Just keep in mind that Heapify considers the heap to be A[1, . . . , i − 1] because i equals
A.size when the execution is at line 6; note that because of line 5, A.size is i − 1 at line 6.
Thus at line 6, the current A[i] is outside the scope of the current heap.

Termination. Consider the moment when the execution is at line 3 for the last time.
Clearly, i equals 1. Plug the value 1 in place of i in the invariant to obtain “the current
subarray A[2, . . . , n] consists of n − 1 in number biggest elements of A ′[1, . . . , n].”. But
then A[1] has to be a minimum element from A ′[1, . . . , n]. And that concludes the proof of
the correctness of Heap Sort. �

4.5 The Correctness of Dijkstra’s Algorithm

We assume the reader is familiar with the terminology concerning weighted digraphs. When
we talk about path lengths or distances, we mean weighted lengths or distances. Note the
distance is not necessarily symmetric in digraphs. Let the weight function be w : E→ R+.
The proof of correctness of the algorithm below is a detailed version of the proof in [Man05].
If G(V, E) is a graph, for any u ∈ V we denote the set {v ∈ V | (u, v) ∈ E} by “adj(u)”, and for
any u, v ∈ V we denote the distance from u to v in G by “distG(u, v)”. The subscript G in
that notation is useful when u and v are vertices in more than one graph under consideration
and we want to emphasise we mean the distance in that particular graph. We postulate
that distG(u, v) =∞ iff there is no path from u to v in G.

Dijkstra(G(V, E): graph; w: weight function; s: vertex from V)
1 (∗ U is a variable of type vertex set ∗)
2 foreach u ∈ V
3 dist[u]←∞
4 π[u]← 0

5 U← {s}

6 dist[s]← 0

7 foreach x ∈ adj(s)
8 dist[x]← w((s, x))
9 π[x]← s

10 while
(
{v ∈ V \U |dist[v] <∞} 6= ∅

)
do

125

Problems with solutions in the Analysis of Algorithms c© Minko Markov

11 select any x ∈ {v ∈ V \U |dist[v] <∞} such that dist[x] is minimum
12 U← U ∪ {x}

13 foreach y ∈ adj(x)
14 if dist[y] > dist[x] +w((x, y))
15 dist[y]← dist[x] +w((x, y))
16 π[y]← x

It is obvious that Dijkstra’s algorithm terminates because at each iteration of the while
loop (lines 10–16) precisely one vertex is added to U and since V is finite, inevitably the
set {v ∈ V \ U |dist[v] < ∞} will become ∅. Now we prove Dijkstra’s algorithm computes
correctly the shortest paths in G from s to all vertices.

Lemma 18. At the termination of Dijkstra, it is the case that

• ∀u ∈ V : the value dist[u] equals distG(s, u), and

• the array π[] represents a shortest-paths tree in G, rooted at s.

Proof:
Let us first make several definitions. A u-path for any u ∈ V is a any path from s to u.
During the execution of Dijkstra, relative to the current value of U, for any z ∈ V \ U,
a z-special path in G is any path p = s, u, . . . , w, z, such that |p| > 0 and precisely one
vertex in p, namely z, is not from U. A special path is any path that is a z-special path
for some z ∈ V \ U. Relative to the current value of U, the fringe F(U) is the set {z ∈
V \U | there exists a z-special path}.
The following is a loop invariant for the while loop (lines 10–16):

Every time the execution of Dijkstra is at line 10 the following conjunction
holds:

part i: ∀u ∈ U : dist[u] = distG(s, u), and

part ii: ∀u ∈ U \ {s} : π[u] is the neighbour of u is some shortest u-path and
π[u] ∈ U, and

part iii: ∀u ∈ V \U : dist[u] <∞ iff u ∈ F(U), and

part iv: ∀u ∈ F(U) : dist[u] is the length of a shortest u-special path and π[u]
is the neighbour of u in such a path.

Basis. The first time the execution reaches line 10, it is the case that U = {s} because of
the assignment at line 5. part i holds because dist[s] = 0 (line 6) and distG(s, s) = 0 (by
definition). part ii holds vacuously since U \ {s} = ∅. part iii holds because on the one
hand F(U) = adj(s) and on the other hand the assignments at lines 3 and 8 imply adj(s)
are the only vertices with dist[] <∞. part iv holds because ∀u ∈ F(U) the only u-special
path is the edge (s, u); at lines 8 and line 9, dist[u] and π[u] are set accordingly.

Maintenance. Assume the claim holds at a certain execution of line 10 and the while
loop is to be executed at least once more. Let us call the set U at that moment, Uold and
after the assignment at line 12, Unew. So, {x} = Unew \ Uold. We first prove part i and
part ii. We do that by considering Uold and x separately. We claim that for all vertices
in Uold, their dist[] and π[] values do not change during the current iteration of the while

126

Problems with solutions in the Analysis of Algorithms c© Minko Markov

loop. But that follows trivially from the fact that by part i of the inductive hypothesis
their dist[] values are optimal and the fact that, if the while loop changes the dist[] and
π[] values of any vertex, that implies decreasing its dist[] value.

Consider vertex x. Before the assignment at line 12, by part iii of the inductive hy-
pothesis x is a fringe vertex and so by part iv, its dist[] value is the length of a shortest
x-special—with respect to Uold—path p and π[x] is the neighbour of u in p. Now we prove
that p is a shortest x-path in G.

Assume the contrary. Then there exists an x-path q that is shorter than p. Since one
endpoint of q, namely s, is from Uold, and the other endpoint x is not from Uold, there is
at least one pair of neighbour vertices in q such that one is from Uold and the other one
is not from Uold. Among all such pairs, consider the pair a, b that is closest to s in the
sense that between s and a inclusive there are only vertices from Uold and b is the first
vertex (in direction away from s) not from Uold. Note that b 6= x, for if b were x then q
would be an x-special—with respect to Uold—path shorter than p, and by part iv that is
not possible. Let the subpath of q between s and b be called q ′. Note that |q ′| < |q|. By
assumption, |q| < |p|, therefore |q ′| < |p|. Then note q ′ is a special path with respect to Uold

and b ∈ F(Uold). By part iv, dist[b] is at most |q ′| at the beginning of the current iteration
of the while-loop, thus dist[b] < dist[x] and Dijkstra would have selected b rather than
x at line 11. This contradiction refutes the assumption there exists any x-path shorter
than p. So, dist[x] indeed equals distG(s, x), therefore part i and part ii hold the next
time the execution reaches line 10. The following two figures illustrate the contradiction we
just derived. Initially we assumed the existence of a path q shorter than p and defined its
rightmost neighbour pair a, b such that b is the vertex closest to s and not from Uold:

q

vertices from Uold only

not from Uold

s x

a b

p

Then we concluded the subpath q ′ between s and b must be special with respect to Uold

and, furthermore, shorter than p:

s x

a b

p

q ′

Immediately we concluded the algorithm whould have picked b rather than x.

127

Problems with solutions in the Analysis of Algorithms c© Minko Markov

It remains to prove that part iii and part iv hold after the current iteration. Have in
mind that x was a fringe vertex at the beginning of the current iteration of the while loop
but at the end of it x is in U, we exclude x from consideration. The proof of part iii is
straightforward. As just said, x is no longer in V \U.

• In one direction, partition the remaining vertices of V \ U into those whose dist[]
value was <∞ at the beginning of the current iteration and those whose dist[] value
was equal to ∞ at the at the beginning of the current iteration. By part iii of the
inductive hypothesis, the former set were neighbours of vertices from Uold, so at the
end of the iteration they are neighbours of vertices from Unew which makes them
fringe vertices. On the other hand, the latter set are neighbours to x, which makes
them fringe vertices with respect to Unew.

• In the other direction, consider the vertices from V \ U whose dist[] value is equal
to ∞ at the end of the current iteration. They can neither be neighbours to vertices
from Uold, otherwise they would have dist[] value <∞ at the beginning of the current
iteration of the while-loop, nor can they be neighbours of x, otherwise their dist[]
values would be set to some positive reals by for-loop at lines 13–16. Therefore, they
are not fringe vertices at the end of the current iteration of the while-loop.

To prove part iv, partition F(Unew) into F(Uold) \ {x} and F(Unew) \ (F(Uold) \ {x})—
the vertices added during the current iteration of the while-loop. It is obvious that for
every vertex u from F(Unew) \ (F(Uold) \ {x}) its only neighbour from Unew is x—otherwise,
dist[u] would not be ∞ at the beginning of the current iteration of the while-loop. Then
every shortest u-special path p is such that the path neighbour of u is x and so |p| equals
distG(s, x)+w((x, u)). We already showed that distG(s, x) equals dist[x] during the current
iteration of the while-loop. We note that at line 16, dist[u] is assigned precisely dist[x] +
w((x, u)). Clearly, part iv holds for u.

Now consider any vertex u in F(Uold) \ {x}. If dist[u] is not changed, in other words
decreased, during the current iteration of the while-loop, part iv holds by the induction
hypothesis regardless of whether u is or is not a neighbour of x. Suppose dist[u] is decreased
during the current iteration of the while-loop. u must be a neighbour of x because the
only place dist[u] can be altered is at line 15 that is executed within the for-loop (lines
13–16). However, u is a neighbour of at least one vertex from Uold, otherwise u would not
be a vertex from F(Uold). By part iv of the induction hypothesis, at the beginning of the
current iteration of the while-loop, it is the case that dist[u] = |p|, where p is a shortest
u-special path with respect to Uold. The fact that dist[u] was altered at line 15 means that

dist[x] +w((x, u)) < |p|

It follows there is a u-special path q with respect to Unew such that the path neighbour of
u in q is x, and |q| = dist[x] + w((x, u)). Furthermore, |q| is the minimum length of any
u-special path q with respect to Unew such that the path neighbour of u in q is x because
dist[x] = distG(s, x) as we already proved. There cannot be a shorter than q, u-special path
with respect to Unew—assuming the opposite leads to a contradiction because the path
neighbour of u in that alleged path cannot be x and cannot be any other vertex from Unew.
That concludes the proof of part iv.

Termination. Consider the moment when the execution is at line 10 for the last time.
It is either the case that U = V, or U ⊂ V but all vertices in V \ U have dist[] values

128

Problems with solutions in the Analysis of Algorithms c© Minko Markov

equal to ∞. In the former case, the claim of this lemma follows directly from part i and
part ii of the invariant. In the latter case, it is easy to see that every vertex w such that
dist[w] = ∞ is such that no path exists from s to w—assuming the opposite leads to a
contradiction because that alleged path must have neighbour vertices a and b, such that
dist[a] <∞, dist[b] =∞, and (a, b) ∈ E(G); clearly, b would have gotten finite dist[] value
as a neighbour of a during the iteration of the while-loop when the value of the x variable
at line 11 was a. It follows that Dijkstra assigns∞ precisely to the dist[] of those vertices
that are not reachable from s, and all other ones are dealt with correctly. �

129

