A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

GEOMETRIC APPLICATIONS OF BSTs

» 1d range search
» line segment intersection
» kd trees

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Overview

This lecture. Intersections among geometric objects.

2d orthogonal range search line segment intersection

Applications. CAD, games, movies, virtual reality, databases, GIS,

Efficient solutions. Binary search trees (and extensions).

Overview

This lecture. Only the tip of the iceberg.

Computational

Geometry

Computer Science 451
Computational Geometry

LoErp (IGET)

EITTITIT e

Princeton University Bernard Chazelle
Computer Science
Department

GEOMETRIC APPLICATIONS OF BSTS

» 1d range search

Algorithms

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

1d range search

Extension of ordered symbol table.
« Insert key—value pair.
« Search for key «.

« Range search: find all keys between k; and k.
« Range count: number of keys between k; and k.

Application. Database queries.
insert B

insert D
insert A
Geometric interpretation. insert |
« Keys are point on a line. insert H
« Find/count points in a given 1d interval. insert F
insert P

search G to K

count G to K

N T > > > P> W W

H W W W W W O

DI
DHI
DFHTI
DFHIP

Geometric applications of BSTs: quiz 1 L

Suppose that the keys are stored in a sorted array. What is the running
time for range count as a function of n and R ?

o N w »

\

n = humber of keys
log R R = number of matching keys

log n
logn + R

n+ R

1d range search: elementary implementations

Ordered array. Slow insert; fast range search.
Unordered list. Slow insert; slow range search.

order of growth of running time for 1d range search

data structure m range count range search

ordered array log n R +logn
unordered list n n n
goal log n log n R +logn

n = number of keys
R = number of keys that match

1d range search: BST implementation

1d range search. Find all keys between 1o and hi.

« Recursively find all keys in left subtree (if any could fall in range).
« Check key in current node.

« Recursively find all keys in right subtree (if any could fall in range).

range search [D...Q] Q
. (E)

G

H (A (R)

L

y O (H]

P

assuming BST is balanced

/
Proposition. Running time proportional to R + log n.

Pf. Nodes examined = search path to To + search path to hi + matches.

1d range search: summary of performance

Ordered array. Slow insert; fast range search.
Unordered list. Slow insert; slow range search.
BST. Fast insert; fast range search/count.

order of growth of running time for 1d range search

data structure m range count range search

ordered array log n R +logn
unordered list n n n
goal log n log n R +logn
use rank () function n=number of keys

(see precept) R = number of keys that match

INTERVAL STABBING QUERIES

Goal. Given n intervals (left, right), support queries of the form
“how many intervals contain x 7~

Performance requirement log n per query.

Non-degeneracy assumption. Assume no two intervals contain an endpoint
in common, and that no query is equal to an endpoint.

X=7.5 x=11.5

o— 3,6)—e oe—— (7,11) —eo ® (16, 20) —eo

o— (5, 9) ® o— (14,17) —o

® (4, 8) —e o— (12,15) —eo

10

GEOMETRIC APPLICATIONS OF BSTS

» line segment intersection

Algorithms

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Orthogonal line segment intersection

Given n horizontal and vertical line segments, find all intersections.

Quadratic algorithm. Check all pairs of line segments for intersection.

13

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

« Very Large Scale Integration (VLSI).
« Computer-Aided Design (CAD).

Design-rule checking.
« Certain wires cannot intersect.
« Certain spacing needed between different types of wires.
« Debugging = line segment (or rectangle) intersection.

-"“";smzlzulu;

14

Algorithms and Moore’s law

Moore’s law (1965). Transistor count doubles every 2 years.

16-Core SPARC T3

Six-Core Caore i7
2,600,000,000 SbeCore Xeon "°°__ @10-Core Xeon Westmere-EX
Dual-Core ltanium 2@ @ £-Eoore POWER?
«——Quad-core z
1,000,000,000 - Moo, o B GRTER T s
Ranium 2 with 9MB cache @ "\ Six-Core Opteron 2400
AMD K10@ Core i7 (Quad)
SRR [Gordon Moore
100,000,000 @ AMD K8
Pantium 4 @ @ Barion ® Atom
° 2?:18 ysm

— curve shows transistor AMD K8

§ 10,000,000 count doubling every ‘;em.'m Foton

8 [ROESE @ AMD K5

— ® Pantium

O

1) o
2 1,000,000 eoiss

g /
': 803860
80236 @
100,000 -
68000 @
® 50185
8085 @ @8068
B085
1 0,000 . 6300\‘. @® 6800
8080\ l 280
BOOB® OMOS 6502
2,300 = 4004@ RBCa 1802
f T T T]
1971 1980 1990 2000 2011

http:/ /commons.wikimedia.org/wiki/File%3ATransistor_Count_and_Moore's Law_- 2011.svg

Algorithms and Moore’s law

Sustaining Moore’s law.

« Problem size doubles every 2 years. <—— problem size = transistor count

« Processing power doubles every 2 years. «—— get to use faster computer

« How much $ do | need to get the job done with a quadratic algorithm?

T, = an?
Ty, = (a/2)(2n)*
= 2T

running time today

running time in 2 years
n $ x $ x $x $x

nlogn $x $x $x $x

n? $ x $2x $4x $ 2 x

Bottom line. Linearithmic algorithm is necessary to sustain Moore’s Law.

16

Orthogonal line segment intersection: sweep-line algorithm

Non-degeneracy assumption. All x- and y-coordinates are distinct.

17

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
« x-coordinates define events.
« h-segment (left endpoint): insert y-coordinate into BST.

|
|
|
|
|
|
|
|
o
|
|
|
|
|
|
|
2 o——o o
|
|
®
|
|
|
|
|
|
o
|
|
|
|

non-degeneracy assumption: all x- and y-coordinates are distinct y-coordinates

18

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
« x-coordinates define events.
« h-segment (left endpoint): insert y-coordinate into BST.
« h-segment (right endpoint): remove y-coordinate from BST.

|
|
|
|
|
|
|
|
o
|
|
|
|
|
|
|
|
|
|
] @ ® ® |
|
|
|
|
|
|
®
|
|
|
1

non-degeneracy assumption: all x- and y-coordinates are distinct y-coordinates

19

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
« x-coordinates define events.
« h-segment (left endpoint): insert y-coordinate into BST.
« h-segment (right endpoint): remove y-coordinate from BST.
« y-segment: range search for interval of y-endpoints.

1d range

/ search

non-degeneracy assumption: all x- and y-coordinates are distinct y-coordinates 20

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time proportional to nlogn + R
to find all R intersections among n orthogonal line segments.

Pf.
« Put x-coordinates on a PQ (or sort). <— nlogn
« |Insert y-coordinates into BST. <« nlogn
« Delete y-coordinates from BST. <« nlogn
« Range searches in BST. e el

Bottom line. Sweep line reduces 2d orthogonal line segment intersection
search to 1d range search.

21

Sweep-line algorithm: context

The sweep-line algorithm is a key technique in computational geometry.

Geometric intersection.
« General line segment intersection.
- Axis-aligned rectangle intersection.

More problems.
« Andrew’s algorithm for convex hull.
« Fortune’s algorithm Voronoi diagram.
« Scanline algorithm for rendering computer graphics.

| UEOL

22

GEOMETRIC APPLICATIONS OF BSTS

» kd trees

Algorithms

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
« Insert a 2d key.
« Search for a 2d key.
« Range search: find all keys that lie in a 2d range.

« Range count: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.
« Keys are point in the plane.
« Find/count points in a given h-v rectangle -

T

rectangle is axis-aligned o

24

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.
Quadtree. Recursively divide space into four quadrants.

(2d tree. Recursively divide space into two halfplanes.)

BSP tree. Recursively divide space into two regions.

Grid Quadtree 2d tree

BSP tree

25

Space-partitioning trees: applications

Applications.
« Ray tracing.
« 2d range search.
« Flight simulators.
« N-body simulation.
« Collision detection.
« Astronomical databases.
- Nearest neighbor search.

- Adaptive mesh generation. ;L_“v__;_gﬁjzﬁ /;\\\ "

« Accelerate rendering in Doom.
« Hidden surface removal and shadow casting.

..

Grid Quadtree 2d tree BSP tree

2d tree construction

Recursively partition plane into two halfplanes.

27

Geometric applications of BSTs: quiz 2 L

Where would point K be inserted in the 2d tree below?

A. Left child of G.
B. Left child ofJ.

C. Right child of J.
D. Right child of I.

28

2d tree implementation

Data structure. BST, but alternate using x- and y-coordinates as key.
« Search gives rectangle containing point.
« Insert further subdivides the plane.

points points | points points
left of p right of p : i below g above q

even levels odd levels

29

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
« Check if point in node lies in given rectangle.

« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

H @
. query
. rectangle e |.
C
!
— A @
E
B
®
e C
J
®

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
« Check if point in node lies in given rectangle.

« Recursively search left/bottom (if any could fall in rectangle).

« Recursively search right/top (if any could fall in rectangle).

. query
. rectangle o
C
e
— A @
E
e D : done

31

Geometric applications of BSTs: quiz 3 ot

Suppose we explore the right/top subtree before the left/bottom subtree
in range search. What effect would it have on typical inputs?

Returns wrong answer.
Explores more nodes.

Both A and B.

O N w »

Neither A nor B.

32

Range search in a 2d tree analysis

Typical case. R +logn.
Worst case (assuming tree is balanced). R+ va.

. query
. rectangle o
C
e
— A @
E

2d tree demo: nearest neighbor

Goal. Find closest point to query point.

i H e
. query |
. point
_
\ N
: B
°
® G
J
°
oD

34

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

i F o
. query
. point
<
T
oD nearest neighbor = E

35

Geometric applications of BSTs: quiz 4 i

Suppose we always explore the left/bottom subtree before the right/top
subtree in nearest-neighbor search. What effect will it have on typical
iInputs?

Returns wrong answer.
Explores more nodes.

Both A and B.

o N ® »

Neither A nor B.

36

Geometric applications of BSTs: quiz 5 o

Which of the following is the worst case for nearest-neighbor search?

W
o . .
. " ’
. ' Sy . .
Ay -' ‘e
; T ity £ .
L t'ee 2 Lot ‘ e
' v
- N ’ -
- -
'*-p“: o "
.
et .
W ! Y
*‘\ R N ; .
\\‘ L -‘ :
pd - S

o ° [] ° o . ° .. . [] ° °
[]
B. © ° o '.. O A L ° ° ° ° ° ° ° ° ° °
e o ° ° °® c e > b L] °
° ° ° ° ° © ° .
L] [] [} ° Y ° ° [] °
° ° o ° oo °
° o © ° o ° ° ° ° ° ° ° ° ° °
e © o L ° ° ® o °
° o o °)
° ° o A ° o °
o, e 4 ° “a ° *, oo o C ° ° ° ° ° ° ° ° ° °
° ° ° ® ®e ° o °
O o ° O e ° L
L4 ° ° ° °
°
6o © o o N e, ° ° ° ° ° ° ° ° ° ° ° °
o0 o .. ° O o o o °
® o
° o0 ° S o © ° ° ° o
. P o ¢ ° ° ° ° ° ° ° ° ° °
°
[]
° N O o ° L4
° ° ° ° ° L) L
o0 [] []
°,° o . O 50 e o°° ° ° ° ° ° ° ° ° ° °
. 0oq ©
° ° °
5 . W « . . o ©® o o, °
° ° ° 5 ° ° ° O (]
o o ° e o o ° ° ° ° ° ° ° ° ° ° °
i L4 ° ®e e ° a ® a C
° ° ° ° ° ° ° ° ° °

37

Nearest neighbor search in a 2d tree analysis

Typical case. logn.

Worst case (even if tree is balanced). .

o N

nearest neighbor = E

38

Flocking birds

Q. Which “natural algorithm™ do starlings, migrating geese, starlings,

cranes, bait balls of fish, and flashing fireflies use to flock?

39

http://www.youtube.com/watch?v=XH-groCeKbE

Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:
« Collision avoidance: point away from k-nearest boids.
« Flock centering: point towards the center of mass of k-nearest boids.
« Velocity matching: update velocity to the average of k-nearest boids.

.....

40

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

/@\

level =i (mod k) 5

(™

points points
whose ith whose ith
coordinate coordinate
is less than p’s is greater than p’s

Efficient, simple data structure for processing k-dimensional data.
« Widely used.
« Adapts well to high-dimensional and clustered data.

« Discovered by an undergrad in an algorithms class! Jon Bentley

41

N-body simulation

Goal. Simulate the motion of n particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force: = "1™

742
Running time. Time per step is nZ.

42

http://www.youtube.com/watch?v=ua7YlN4eL_w

Appel’s algorithm for n-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
« Treat cluster of particles as a single aggregate particle.
« Compute force between particle and center of mass of aggregate.

43

Appel’s algorithm for n-body simulation

« Build 3d-tree with n particles as nodes.

« Store center-of-mass of subtree in each node.

« To compute total force acting on a particle, traverse tree, but stop
as soon as distance from particle to subdivision is sufficiently large.

SIAM J. SCI1. STAT. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 008

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPEL+t

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N?) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (NN =10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

Impact. Running time per step is nlogn = enables new research.

Geometric applications of BSTs

problem example solution

1d range search ve oo ses oEERRRRe v+ oeves binary search tree

2d orthogonal line
segment intersection -

sweep line reduces problem
to ld range search

2d range search . . 2d tree
kd range search T L. kd tree

