Wilf's Snake-Oil Method

We begin with an example.
Example 1. Find a closed form (if one exists) of the sum below.

$$
\begin{equation*}
\sum_{k \geq 0}\binom{k}{n-k} \tag{1}
\end{equation*}
$$

Notice that n is the free variable. So let $a_{n}=\sum_{k \geq 0}\binom{k}{n-k}$ and let $A(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{a_{n}\right\}_{n \geq 0}$. Then

$$
\begin{aligned}
A(x)=\sum_{n} a_{n} x^{n} & =\sum_{n} \sum_{k \geq 0}\binom{k}{n-k} x^{n} \\
& =\sum_{k \geq 0} \sum_{n}\binom{k}{n-k} x^{n} \\
& =\sum_{k \geq 0} x^{k} \sum_{n}\binom{k}{n-k} x^{n-k} \\
& =\sum_{k \geq 0} x^{k} \sum_{r}\binom{k}{r} x^{r} \\
& =\sum_{k \geq 0} x^{k}(1+x)^{k} \\
& =\sum_{k \geq 0}\left(x+x^{2}\right)^{k}
\end{aligned}
$$

So we have a geometric series with common ratio $x+x^{2}$. Thus

$$
A(x)=\frac{1}{1-x-x^{2}}
$$

It follows that

$$
a_{n}=\sum_{k \geq 0}\binom{k}{n-k}=f_{n}
$$

where the f_{n} 's are the Fibonacci numbers.

The Snake Oil Method for Managing Combinatorial Sums

a. Identify the free variable in the sum and name the sum. For example, $a_{n}=\sum_{k \geq 0}\binom{k}{n-k}$ in the introductory example.
b. Let $A(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{a_{n}\right\}_{n \geq 0}$. Then $a_{n}=\left[x^{n}\right] A(x)$.
c. Now $A(x)$ is a double sum over n. Interchange the order of summation so that the inner sum has a simple closed form. It will be useful to have a catalogue of series whose closed forms are known (see 2.5 of the text). We list a few of the more common forms below.
d. Finally, try to identify the coefficients of the result.

A Few Useful Power Series

$$
\begin{align*}
\sum_{k}\binom{n}{k} x^{k} & =(1+x)^{n} \tag{2}\\
\sum_{n}\binom{n}{k} x^{n} & =\frac{x^{k}}{(1-x)^{k+1}} \tag{3}\\
\sum_{n} \frac{1}{n+1}\binom{n}{n} x^{n} & =\frac{1-\sqrt{1-4 x}}{2 x} \tag{4}
\end{align*}
$$

We will also avoid specifying limits on indices whenever possible. For example, if n is a positive integer, we will write

$$
2^{n}=\sum_{k}\binom{n}{k}
$$

since the summand vanishes unless $0 \leq k \leq n$. This allows us to carry out the following manipulation without obsessing over the ranges of our variables of summation. For example,

$$
\begin{aligned}
\sum_{k}\binom{n}{r+k} x^{k} & =x^{-r} \sum_{k}\binom{n}{r+k} x^{r+k} \\
& =x^{-r} \sum_{s}\binom{n}{s} x^{s} \\
& =x^{-r}(1+x)^{n}
\end{aligned}
$$

We demonstrate the technique with a few more examples.
Example 2. Evaluate the sum

$$
\sum_{k}\binom{n+k}{2 k} 2^{n-k}, \quad n \geq 0
$$

Let $\alpha \in \mathbb{R}$ and $a_{n}=a_{n}(\alpha)=\sum_{k}\binom{n+k}{2 k} \alpha^{n-k}$. Also, let $A(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{a_{n}\right\}_{n \geq 0}$. Then

$$
\begin{aligned}
A(x)=\sum_{n} a_{n} x^{n} & =\sum_{n} \sum_{k}\binom{n+k}{2 k} \alpha^{n-k} x^{n} \\
& =\sum_{k} \sum_{n}\binom{n+k}{2 k} \alpha^{n-k} x^{n} \\
& =\sum_{k} \alpha^{-k} \sum_{n}\binom{n+k}{2 k} \alpha^{n} x^{n} \\
& =\sum_{k} \alpha^{-2 k} x^{-k} \sum_{n}\binom{n+k}{2 k}(\alpha x)^{n+k} \\
& =\sum_{k} \alpha^{-2 k} x^{-k} \frac{(\alpha x)^{2 k}}{(1-\alpha x)^{2 k+1}}, \quad \text { (by (3)) } \\
& =\sum_{k} \frac{x^{k}}{(1-\alpha x)^{2 k+1}} \\
& =\frac{1}{1-\alpha x} \sum_{k}\left(\frac{x}{(1-\alpha x)^{2}}\right)^{k} \\
& =\frac{1}{1-\alpha x} \frac{1}{1-\frac{x}{(1-\alpha x)^{2}}} \\
& =\frac{1}{1-\alpha x} \frac{(1-\alpha x)^{2}}{(1-2 x)^{2}-x} \\
& =\frac{1-\alpha x}{1-(1+2 \alpha) x+\alpha^{2} x^{2}}
\end{aligned}
$$

Now let $\alpha=2$. Then

$$
\begin{aligned}
A(x) & =\frac{1-2 x}{1-5 x+4 x^{2}} \\
& =\frac{1 / 3}{1-x}+\frac{2 / 3}{1-4 x}
\end{aligned}
$$

It follows that

$$
a_{n}(2)=\frac{1+2 \cdot 4^{n}}{3}, \quad n \geq 0
$$

The result in Example 2 depended on our ability to identify the sum $\sum_{n}\binom{n+k}{2 k}(\alpha x)^{n+k}$. What about something like

$$
\sum_{k}\binom{n}{k}\binom{2 n}{n-k}
$$

Since the free variable n appears in both binomial coefficients, it's difficult to see how changing the order of summation might help. Fortunately, there is another way.

Example 3. Evaluate the

$$
\begin{equation*}
\sum_{k}\binom{n}{k}\binom{2 n}{n-k} \tag{5}
\end{equation*}
$$

Here we make the odd choice to replace all but one appearance of n with new free variables. So let

$$
\begin{equation*}
a_{n}=\sum_{k}\binom{n}{k}\binom{m}{s-k} \tag{6}
\end{equation*}
$$

Then

$$
\begin{aligned}
A(x) & =\sum_{n} \sum_{k}\binom{n}{k}\binom{m}{s-k} x^{n} \\
& =\sum_{k}\binom{m}{s-k} \sum_{n}\binom{n}{k} x^{n} \\
& =\sum_{k}\binom{m}{s-k} \frac{x^{k}}{(1-x)^{k+1}}
\end{aligned}
$$

Unfortunately, this doesn't look terribly inviting. Let's try summing on one of the other free variables in (5). So let

$$
b_{m}=\sum_{k}\binom{n}{k}\binom{m}{s-k}
$$

and $B(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{b_{m}\right\}_{m \geq 0}$. Then

$$
\begin{aligned}
B(x) & =\sum_{m} b_{m} x^{m} \\
& =\sum_{m} \sum_{k}\binom{n}{k}\binom{m}{s-k} x^{m} \\
& =\sum_{k}\binom{n}{k} \sum_{n}\binom{m}{s-k} x^{m} \\
& =\sum_{k}\binom{n}{k} \frac{x^{s-k}}{(1-x)^{s-k+1}} \\
& =\frac{x^{s}}{(1-x)^{s+1}} \sum_{k}\binom{n}{k} u^{k}, \quad u=\frac{1-x}{x}
\end{aligned}
$$

Now that looks better. Did you see what happened? Summing on m allowed us to move the troublesome index $s-k$ outside of the binomial coefficient, where it was easier to deal with. Continuing, we have

$$
\begin{aligned}
B(x) & =\frac{u^{-s}}{1-x} \sum_{k}\binom{n}{k} u^{k} \\
& =\frac{u^{-s}}{1-x}(1+u)^{n}
\end{aligned}
$$

Substituting $s=n$ yields

$$
\begin{aligned}
& =\frac{1}{1-x}\left(\frac{1}{u}+1\right)^{n} \\
& =\frac{1}{1-x} \frac{1}{(1-x)^{n}}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sum_{k}\binom{n}{k}\binom{2 n}{n-k}=a_{2 n} & =\left[x^{2 n}\right] \frac{1}{(1-x)^{n+1}} \\
& =\left[x^{2 n}\right] \frac{1}{x^{n}} \frac{x^{n}}{(1-x)^{n+1}} \\
& =\left[x^{2 n+n}\right] \sum_{r}\binom{r}{n} x^{r} \\
& =\binom{3 n}{n}
\end{aligned}
$$

You can compare a few values of the last expression with (5) by visiting the URLs: https://tinyurl.com/y97goulm and https://tinyurl.com/ydf2gyyh.

