Blossom algorithm

From Wikipedia, the free encyclopedia

The blossom algorithm is an algorithm in graph theory for constructing maximum matchings on graphs.

The algorithm was developed by Jack Edmonds in 1961111 and published in 1965.12] Given a general graph

G =(V, E), the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M
and |M| is maximized. The matching is constructed by iteratively improving an initial empty matching along
augmenting paths in the graph. Unlike bipartite matching, the key new idea is that an odd-length cycle in the
graph (blossom) is contracted to a single vertex, with the search continuing iteratively in the contracted

graph.

A major reason that the blossom algorithm is important is that it gave the first proof that a maximum-size
matching could be found using a polynomial amount of computation time. Another reason is that it led to a
linear programming polyhedral description of the matching polytope, yielding an algorithm for min-weight
matching.3] As elaborated by Alexander Schrijver, further significance of the result comes from the fact that
this was the first polytope whose proof of integrality "does not simply follow just from total unimodularity,
and its description was a breakthrough in polyhedral combinatorics."[*]

Contents

1 Augmenting paths
2 Blossoms and contractions
3 Finding an augmenting path
= 3.1 Examples
= 3.2 Analysis
= 3.3 Bipartite matching
= 3.4 Weighted matching
4 References

Augmenting paths

Given G = (V, E) and a matching M of G, a vertex v is exposed if no edge of M is incident with v.
A path in G is an alternating path, if its edges are alternately not in M and in M (or in M and not in M).
An augmenting path P is an alternating path that starts and ends at two distinct exposed vertices.

A matching augmentation along an augmenting path P is the operation of replacing M with a new matching
Mi=M&P=(M\P)U(P\M).

N !

daugrmenta Clam

*

EITJQE'E In matching E'-fiq5'i- mn l'|1F.|TC|'|II":|_:|'
M MaP

R all:

A matching M is maximum if and only if there is no M-augmenting path in G.[I6] Hence, either a matching
1s maximum, or it can be augmented. Thus, starting from an initial matching, we can compute a maximum
matching by augmenting the current matching with augmenting paths as long as we can find them, and return
whenever no augmenting paths are left. We can formalize the algorithm as follows:

1
. INPUT: Graph G, initial matching M on G
! OUTPUT: maximum matching M* on G

18 end function

1
:
1
Al Ffunction find_maximum_matching( G, M ) : M* '
A2 P — find_augmenting_path( G, M) 1
A3 if P is non-empty then !
na return find_maximum_matching( G, augment M along P ) 1
A5 else ,
A6 return M '
A7 end if !
:
1

We still have to describe how augmenting paths can be found efficiently. The subroutine to find them uses
blossoms and contractions.

Blossoms and contractions

Given G = (V, E) and a matching M of G, a blossom B is a cycle in G consisting of 2k + [ edges of which
exactly £ belong to M, and where one of the vertices v of the cycle (the base) is such that there exists an
alternating path of even length (the stem) from v to an exposed vertex w.

Define the contracted graph G’ as the graph obtained from G by contracting every edge of B, and define
the contracted matching M’ as the matching of G’ corresponding to M.

G’ has an M -augmenting path iff G has an M-augmenting path, and that any M -augmenting path P’ in G’
can be lifted to an M-augmenting path in G by undoing the contraction by B so that the segment of P’
(if any) traversing through v is replaced by an appropriate segment traversing through B.[7] In more detail:

= if P’ traverses through a segment u — vg — win G’, then this segment is replaced with the segment

u— (u —..—>w’)— win G, where blossom vertices #” and w’ and the side of B, (u’— ... > w’),
going from u " to w’ are chosen to ensure that the new path is still alternating (u” is exposed with
respect to M N B, {w',w} € E\ M);

=4
=
(]
/\ ——
— @ - Case 1.
Hlll
" Case 2.

= if P’ has an endpoint vp, then the path segment u — vp in G’ is replaced with the segment
u->(u'"— .. > v’)in G, where blossom vertices #” and v’ and the side of B, (u’— ... > v’),
going from u' to v’ are chosen to ensure

that the path is alternating (now the vertex v’ is exposed and {u',u} € E\ M).

Thus blossoms can be contracted and search performed in the contracted graphs. This reduction
is at the heart of Edmonds' algorithm.

Finding an augmenting path

The search for an augmenting path uses an auxiliary data structure consisting of a forest /' whose individual
trees correspond to specific portions of the graph G. In fact, the forest F is the same that would be used

to find maximum matchings in bipartite graphs (without need for shrinking blossoms). In each iteration

the algorithm either (1) finds an augmenting path, (2) finds a blossom and recurses onto the corresponding
contracted graph, or (3) concludes there are no augmenting paths. The auxiliary structure is built

by an incremental procedure discussed next.[’]

The construction procedure considers vertices v and edges e in G and incrementally updates F'
as appropriate. If v is in a tree 7 of the forest, we let root(v) denote the root of 7. If both v and v
are in the same tree 7'in F, we let distance(u,v) denote the length of the unique path from « to v in T.

1
, INPUT: Graph G, matching M on G
1 OUTPUT: augmenting path P in G or empty path if none found

B33 end function
1

1
;
1
01 function find_augmenting path( G, M ) : P '
'B02 F « empty forest f
BO3 unmark all vertices and edges in G, mark all edges of M :
1BOS for each exposed vertex Vv do 1
B06 create a singleton tree { V } and add the tree to F :
BO7 end for !
1B08 while there is an unmarked vertex Vv in F with distance( v, root( v ) ) even do 1
BO9 while there exists an unmarked edge e = { v, w } do !
1B10 if w is not in F then 1
: // W is matched, so add e and W"s matched edge to F :
B11 X — vertex matched to W in M :
$12 add edges { Vv, w } and { W, X } to the tree of Vv 1
B13 else '
B14 if distance( w, root( w ) ) is odd then !
, // Do nothing. '
B15 else '
B16 if root( v ) # root( w ) then 1
1 // Report an augmenting path in F U { e }. :
B17 Popath (root(Vv) - ... 5V ) - (W ... - root(w) ) 1
B18 return P :
1B19 else ,
: // Contract a blossom in G and look for the path in the contracted graph.
?20 B —« blossom formed by € and edges on the path Vv - w in T '
B21 G”, M” « contract G and M by B :
B22 P* ~ find_augmenting_path( G*>, M” ) 1
B23 P« 1lift P” to G '
B24 return P 1
1825 end if :
B26 end if !
B27 end if 1
B28 mark edge € :
B29 end while !
?30 mark vertex V 1
B31 end while !
1B32 return empty path :
1
1

Examples

The following four figures illustrate the execution of the algorithm. Dashed lines indicate edges
that are currently not present in the forest. First, the algorithm processes an out-of-forest edge
that causes the expansion of the current forest (lines B10 — B12).

oxposed exposed  exposed
] L L
Forest expansion

I I Yo es{ww) i) &
Illllllllllll‘*‘k*

R ]

[TI] [ [==

forest F and out-of-forest edges notin M out-of-forest vertices
out-of-forest edges in M

Next, it detects a blossom and contracts the graph (lines B20 — B21).

exposed cxposed  exposed

| |
| 1]

farest F and out-of-forest edges notin M out-of-forest vertices
out-of-forest edges in M

Blossom contraction

Py

[ L ]
[ L ]
| LLEL ]

W

Finally, it locates an augmenting path P’ in the contracted graph (line B22) and lifts it to the original graph
(line B23). Note that the ability of the algorithm to contract blossoms is crucial here; the algorithm cannot
find P in the original graph directly because only out-of-forest edges between vertices at even distances
from the roots are considered on line B17 of the algorithm.

exposed exposed  exposed

® _ 0

Path detectionin G’

I I P
. W
..4
* sl
Se= fvw)
» 'III-
Ld
Pl L ILET
v
forest F* in Q" and out-of-forest edges not in M out-of-forest vertices

out-of-forest edges in M’

exposed exposed exposed
(8] ® Oy .

Path lifting

*—_

'I-I*

L LEEL. |

'I-I*
forest F and out-of-forest edges not in M out-of-forest vertices

out-of-forest edges in M

Analysis

The forest F constructed by the find augmenting path() function is an alternating forest.®!

= Atree Tin G is an alternating tree with respect to M, if
= T contains exactly one exposed vertex r called the tree root,
= every vertex at an odd distance from the root has exactly two incident edges in 7, and
» all paths from 7 to leaves in 7" have even lengths, their odd edges are not in M and their even
edges are in M.
= A forest F in G is an alternating forest with respect to M, if
= its connected components are alternating trees, and
= every exposed vertex in G is a root of an alternating tree in F.

Each iteration of the loop starting at line B09 either adds to a tree 7 in F (line B10) or finds an augmenting
path (line B17) or finds a blossom (line B20). It is easy to see that the running time is O(|V|4). Micali and

Vaziranil®l show an algorithm that constructs maximum matching in O(|E||V| Y ?) time.

Bipartite matching

The algorithm reduces to the standard algorithm for matching in bipartite graphsl®! when G is bipartite.
As there are no odd cycles in G in that case, blossoms will never be found and one can simply remove
lines B20 — B24.

Weighted matching

The matching problem can be generalized by assigning weights to edges in G and asking for a set M that
produces a matching of maximum (minimum) total weight. The weighted matching problem can be solved
by a combinatorial algorithm that uses the unweighted Edmonds's algorithm as a subroutine.[>) Kolmogorov
provides an efficient C++ implementation of this.[10]

References

1. Edmonds, Jack (1991), "A glimpse of heaven", in J.K. Lenstra; A.H.G. Rinnooy Kan; A. Schrijver, History of
Mathematical Programming --- A Collection of Personal Reminiscences, CWI1, Amsterdam and North-Holland,
Amsterdam, pp. 3254

2. Edmonds, Jack (1965). "Paths, trees, and flowers". Canad. J. Math. 17: 449—467. doi:10.4153/CIJM-
1965-045-4.

3. Edmonds, Jack (1965). "Maximum matching and a polyhedron with 0,1-vertices". Journal of Research of the
National Bureau of Standards Section B. 69: 125-130.

4. Schrijver, Alexander. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics.
24. Springer.

5. Lovasz, Laszlo; Plummer, Michael (1986). Matching Theory. Akadémiai Kiadd. ISBN 963-05-4168-8.

6. Karp, Richard, "Edmonds's Non-Bipartite Matching Algorithm", Course Notes. U. C. Berkeley (PDF)

7. Tarjan, Robert, "Sketchy Notes on Edmonds' Incredible Shrinking Blossom Algorithm for General Matching",
Course Notes, Department of Computer Science, Princeton University (PDF)

8. Kenyon, Claire; Lovasz, Laszlo, "Algorithmic Discrete Mathematics", Technical Report CS-TR-251-90),
Department of Computer Science, Princeton University

9. Micali, Silvio; Vazirani, Vijay (1980). An O(V!/?E) algorithm for finding maximum matching in general
graphs. 21st Annual Symposium on Foundations of Computer Science,. IEEE Computer Society Press, New
York. pp. 17-27.

10. Kolmogorov, Vladimir (2009), "Blossom V: A new implementation of a minimum cost perfect matching
algorithm", Mathematical Programming Computation, 1 (1): 43—67

Retrieved from "https://en.wikipedia.org/w/index.php?title=Blossom_algorithmé&oldid=737924820"

Categories: Graph algorithms | Matching

= This page was last modified on 5 September 2016, at 21:32.

» Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered
trademark of the Wikimedia Foundation, Inc., a non-profit organization.



